Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 2
Apr 2020
Turn off MathJax
Article Contents
Huang Yang, Deng Hao. Geochemical Characteristics of Zoned Chromites in Peridotites from the Proterozoic Miaowan Ophiolitic Complex, Yangtze Craton: Implications for Element Mobility and Tectonic Setting. Journal of Earth Science, 2020, 31(2): 223-236. doi: 10.1007/s12583-019-1278-x
Citation: Huang Yang, Deng Hao. Geochemical Characteristics of Zoned Chromites in Peridotites from the Proterozoic Miaowan Ophiolitic Complex, Yangtze Craton: Implications for Element Mobility and Tectonic Setting. Journal of Earth Science, 2020, 31(2): 223-236. doi: 10.1007/s12583-019-1278-x

Geochemical Characteristics of Zoned Chromites in Peridotites from the Proterozoic Miaowan Ophiolitic Complex, Yangtze Craton: Implications for Element Mobility and Tectonic Setting

doi: 10.1007/s12583-019-1278-x
More Information
  • Corresponding author: Hao Deng
  • Received Date: 04 Jun 2019
  • Accepted Date: 25 Oct 2019
  • Publish Date: 01 Apr 2020
  • The chrome spinel (chromite) in mantle peridotites from ophiolites can shed light on the formation and evolution process of ophiolites. Podiform chromites were found in the Late Proterozoic Miaowan ophiolitic complex (MOC), Yangtze Craton. Due to the metamorphism and intense deformation, most chromite grains in the MOC peridotites show typical chemical zoning (core-rim texture). The values of major and trace elements largely vary from core to rim within chromite grains, indicating that the chromites have undergone strong alteration and element mobility. Major and trace elements in the core parts of chromites are used to infer the tectonic origins and evolution of mantle peridotites in the MOC. The chromites from the MOC peridotites have higher Cr# values and lower Ni and Ga contents with respect to those from Phanerozoic mantle peridotites, indicating a higher degree of depletion. In-situ major and trace elements (e.g., Ga) characteristics of podiform chromites in the MOC show that chromites from both harzburgites and dunites have strong subduction-related signatures, indicating that the MOC has formed in a supra-subduction setting which is consistent with the geological and geochemical data presented in previous studies.

     

  • loading
  • Ahmed A., Arai S.. 2002. Unexpectedly High-PGE Chromitite from the Deeper Mantle Section of the Northern Oman Ophiolite and Its Tectonic Implications. Contributions to Mineralogy and Petrology, 143(3):263-278. https://doi.org/10.1007/s00410-002-0347-8
    Ahmed A. H., Arai S., Attia A. K.. 2001. Petrological Characteristics of Podiform Chromitites and Associated Peridotites of the Pan African Proterozoic Ophiolite Complexes of Egypt. Mineralium Deposita, 36(1):72-84. https://doi.org/10.1007/s001260050287
    Ahmed A. H., Gharib M. E., Arai S.. 2012. Characterization of the Thermally Metamorphosed Mantle-Crust Transition Zone of the Neoproterozoic Ophiolite at Gebel Mudarjaj, South Eastern Desert, Egypt. Lithos, 142-143:67-83. https://doi.org/10.1016/j.lithos.2012.02.014
    Arai S., Okamura H., Kadoshima K., et al. 2011. Chemical Characteristics of Chromian Spinel in Plutonic Rocks:Implications for Deep Magma Processes and Discrimination of Tectonic Setting. Island Arc, 20(1):125-137. https://doi.org/10.1111/j.1440-1738.2010.00747.x
    Arai S., Ahmed A. H.. 2018. Secular Change of Chromite Concentration Processes from the Archean to the Phanerozoic. In: Mondal S. K., Griffin W. L., eds, Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time. Elsevier Inc., Amsterdam. 139-157. https://doi.org/10.1016/b978-0-12-811159-8.00006-8
    Burkhard D. J. M.. 1993. Accessory Chromium Spinels:Their Coexistence and Alteration in Serpentinites. Geochimica et Cosmochimica Acta, 57(6):1297-1306. https://doi.org/10.1016/0016-7037(93)90066-6
    Chen K., Gao S., Wu Y. B., et al. 2013.2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China. Precambrian Research, 224:472-490. https://doi.org/10.1016/j.precamres.2012.10.017
    Colás V., González-Jiménez J. M., Griffin W. L., et al. 2014. Fingerprints of Metamorphism in Chromite:New Insights from Minor and Trace Elements. Chemical Geology, 389:137-152. https://doi.org/10.1016/j.chemgeo.2014.10.001
    Dare S. A. S., Pearce J. A., McDonald I., et al. 2009. Tectonic Discrimination of Peridotites Using FO2-Cr# and Ga-Ti-FeIII Systematics in Chrome-Spinel. Chemical Geology, 261(3/4):199-216. https://doi.org/10.1016/j.chemgeo.2008.08.002
    Deng H., Peng S. B., Polat A., et al. 2017. Neoproterozoic IAT Intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton:Evidence for Evolving Tectonic Settings. Precambrian Research, 289:75-94. https://doi.org/10.1016/j.precamres.2016.12.003
    Derbyshire E. J., O'Driscoll B., Lenaz D., et al. 2013. Compositionally Heterogeneous Podiform Chromitite in the Shetland Ophiolite Complex (Scotland):Implications for Chromitite Petrogenesis and Late-Stage Alteration in the Upper Mantle Portion of a Supra-Subduction Zone Ophiolite. Lithos, 162-163:279-300. https://doi.org/10.1016/j.lithos.2012.11.013
    Dick H. J. B., Bullen T.. 1984. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contributions to Mineralogy and Petrology, 86(1):54-76. https://doi.org/10.1007/bf00373711
    Gahlan H. A., Arai S.. 2007. Genesis of Peculiarly Zoned Co, Zn and Mn-Rich Chromian Spinel in Serpentinite of Bou-Azzer Ophiolite, Anti-Atlas, Morocco. Journal of Mineralogical and Petrological Sciences, 102(2):69-85. https://doi.org/10.2465/jmps.060212
    Gao S., Ling W. L., Qiu Y. M., et al. 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton:Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13/14):2071-2088. https://doi.org/10.1016/s0016-7037(99)00153-2
    Gervilla F., Padrón-Navarta J. A., Kerestedjian T., et al. 2012. Formation of Ferrian Chromite in Podiform Chromitites from the Golyamo Kamenyane Serpentinite, Eastern Rhodopes, SE Bulgaria:A Two-Stage Process. Contributions to Mineralogy and Petrology, 164(4):643-657. https://doi.org/10.1007/s00410-012-0763-3
    González-Jiménez J. M., Kerestedjian T., Proenza J. A., et al. 2009. Metamorphism on Chromite Ores from the Dobromirtsi Ultramafic Massif, Rhodope Mountains (SE Bulgaria). Geologica Acta, 7(4):413-429. https://doi.org/10.1344/104.000001447
    González-Jiménez J. M., Augé T., Gervilla F., et al. 2011. Mineralogy and Geochemistry of Platinum-Rich Chromitites from the Mantle-Crust Transition Zone at Ouen Island, New Caledonia Ophiolite. The Canadian Mineralogist, 49(6):1549-1569. https://doi.org/10.3749/canmin.49.6.1549
    González-Jiménez J. M., Griffin W. L., Proenza J. A., et al. 2014. Chromitites in Ophiolites:How, Where, When, Why? Part II. The Crystallization of Chromitites. Lithos, 189:140-158. https://doi.org/10.1016/j.lithos.2013.09.008
    Goodman R. J.. 1972. The Distribution of Ga and Rb in Coexisting Groundmass and Phenocryst Phases of Some Basic Volcanic Rocks. Geochimica et Cosmochimica Acta, 36(3):303-317. https://doi.org/10.1016/0016-7037(72)90025-7
    Grieco G., Merlini A., Cazzaniga A.. 2012. The Tectonic Significance of PGM-Bearing Chromitites at the Ranomena Mine, Toamasina Chromite District, Madagascar. Ore Geology Reviews, 44:70-81. https://doi.org/10.1016/j.oregeorev.2011.09.006
    Guo J. L., Gao S., Wu Y. B., et al. 2014.3.45 Ga Granitic Gneisses from the Yangtze Craton, South China:Implications for Early Archean Crustal Growth. Precambrian Research, 242:82-95. https://doi.org/10.1016/j.precamres.2013.12.018
    Han Q. S., Peng S. B., Kusky T. M., et al. 2017. A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China:Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293:13-38. https://doi.org/10.1016/j.precamres.2017.03.004
    Hu Z. C., Zhang W., Liu Y., et al. 2014. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis:Application to Lead Isotope Analysis. Analytical Chemistry, 87(2):1152-1157. https://doi.org/10.1021/ac503749k
    Huang Y., Wang L., Kusky T., et al. 2017. High-Cr Chromites from the Late Proterozoic Miaowan Ophiolite Complex, South China:Implications for Its Tectonic Environment of Formation. Lithos, 288-289:35-54. https://doi.org/10.1016/j.lithos.2017.07.014
    Irvine T. N.. 1965. Chromian Spinel as a Petrogenetic Indicator:Part 1. Theory. Canadian Journal of Earth Sciences, 2(6):648-672. https://doi.org/10.1139/e65-046
    Jiang X. F., Peng S. B., Polat A., et al. 2016. Geochemistry and Geochronology of Mylonitic Metasedimentary Rocks Associated with the Proterozoic Miaowan Ophiolite Complex, Yangtze Craton, China:Implications for Geodynamic Events. Precambrian Research, 279:37-56. https://doi.org/10.1016/j.precamres.2016.04.004
    Jiang X. F., Peng S. B., Kusky T. M., et al. 2018. Petrogenesis and Geotectonic Significance of Early-Neoproterzoic Olivine-Gabbro within the Yangtze Craton:Constrains from the Mineral Composition, U-Pb Age and Hf Isotopes of Zircons. Journal of Earth Science, 29(1):93-102. https://doi.org/10.1007/s12583-018-0821-5
    Kamenetsky V. S.. 2001. Factors Controlling Chemistry of Magmatic Spinel:An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks. Journal of Petrology, 42(4):655-671. https://doi.org/10.1093/petrology/42.4.655
    Kapsiotis A. N.. 2014. Alteration of Mélange-Hosted Chromitites from Korydallos, Pindos Ophiolite Complex, Greece:Evidence for Modification by a Residual High-T Post-Magmatic Fluid. Acta Geologica Polonica, 64(4):473-494. https://doi.org/10.2478/agp-2014-0025
    Kusky T. M., Li J., Glass A., et al. 2004. Origin and Emplacement of Archean Ophiolites of the Central Orogenic Belt, North China Craton. Developments in Precambrian Geology, 13:223-274. https://doi.org/10.1016/s0166-2635(04)13007-7
    Kusky T. M., Polat A., Windley B. F., et al. 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis:A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162:387-432. https://doi.org/10.1016/j.earscirev.2016.09.002
    Li J. H., Kusky T. M., Huang X. N.. 2002. Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton:A Record of Early Oceanic Mantle Processes. GSA Today, 12(7):4-11. https://doi.org/10.1130/1052-5173(2002)012<0004:apcamt>2.0.co;2
    Liipo J., Vuollo J., Nykä nen V., et al. 1995. Chromites from the Early Proterozoic Outokumpu-Jormua Ophiolite Belt:A Comparison with Chromites from Mesozoic Ophiolites. Lithos, 36(1):15-27. https://doi.org/10.1016/0024-4937(95)00002-w
    Liu Y. S., Hu Z. C., Gao S., et al. 2008. In-situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Maibam B., Foley S., Luguet A., et al. 2017. Characterisation of Chromites, Chromite Hosted Inclusions of Silicates and Metal Alloys in Chromitites from the Indo-Myanmar Ophiolite Belt of Northeastern India. Ore Geology Reviews, 90:260-273. https://doi.org/10.1016/j.oregeorev.2017.05.032
    Mellini M., Rumori C., Viti C.. 2005. Hydrothermally Reset Magmatic Spinels in Retrograde Serpentinites:Formation of "Ferritchromit" Rims and Chlorite Aureoles. Contributions to Mineralogy and Petrology, 149(3):266-275. https://doi.org/10.1007/s00410-005-0654-y
    Merlini A., Grieco G., Diella V.. 2009. Ferritchromite and Chromian-Chlorite Formation in Melange-Hosted Kalkan Chromitite (Southern Urals, Russia). American Mineralogist, 94(10):1459-1467. https://doi.org/10.2138/am.2009.3082
    Mondal S. K., Ripley E. M., Li C. S., et al. 2006. The Genesis of Archaean Chromitites from the Nuasahi and Sukinda Massifs in the Singhbhum Craton, India. Precambrian Research, 148(1/2):45-66. https://doi.org/10.1016/j.precamres.2006.04.001
    Mukherjee R., Mondal S. K., Rosing M. T., et al. 2010. Compositional Variations in the Mesoarchean Chromites of the Nuggihalli Schist Belt, Western Dharwar Craton (India):Potential Parental Melts and Implications for Tectonic Setting. Contributions to Mineralogy and Petrology, 160(6):865-885. https://doi.org/10.1007/s00410-010-0511-5
    Pagé P., Barnes S. J.. 2009. Using Trace Elements in Chromites to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Quebec, Canada. Economic Geology, 104(7):997-1018. https://doi.org/10.2113/gsecongeo.104.7.997
    Pagé P., Barnes S. J., Bédard J. H., et al. 2012. In-situ Determination of Os, Ir, and Ru in Chromites Formed from Komatiite, Tholeiite and Boninite Magmas:Implications for Chromite Control of Os, Ir and Ru during Partial Melting and Crystal Fractionation. Chemical Geology, 302-303:3-15. https://doi.org/10.1016/j.chemgeo.2011.06.006
    Paktunc A. D., Cabri L. J.. 1995. A Proton-and Electron-Microprobe Study of Gallium, Nickel and Zinc Distribution in Chromian Spinel. Lithos, 35(3/4):261-282. https://doi.org/10.1016/0024-4937(95)99071-4
    Pal T., Bhattacharya A., Nagendran G., et al. 2014. Petrogenesis of Chromites from the Manipur Ophiolite Belt, NE India:Evidence for a Supra-Subduction Zone Setting Prior to Indo-Myanmar Collision. Mineralogy and Petrology, 108(5):713-726. https://doi.org/10.1007/s00710-014-0320-z
    Peng S. B., Li C., Kusky T. M., et al. 2010. Discovery and Its Tectonic Significance of the Proterozoic Miaowan Ophiolites in the Southern Huangling Anticline, Western Hubei, China. Geological Bulletin of China, 29(1):8-20 (in Chinese with English Abstract)
    Peng S. B., Kusky T. M., Jiang X. F., et al. 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton:Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2/3):577-594. https://doi.org/10.1016/j.gr.2011.07.010
    Proenza J. A., Ortega-Gutiérrez F., Camprubı́ A., et al. 2004. Paleozoic Serpentinite-Enclosed Chromitites from Tehuitzingo (Acatlán Complex, Southern Mexico):A Petrological and Mineralogical Study. Journal of South American Earth Sciences, 16(8):649-666. https://doi.org/10.1016/j.jsames.2003.12.003
    Rollinson H.. 2008. The Geochemistry of Mantle Chromitites from the Northern Part of the Oman Ophiolite:Inferred Parental Melt Compositions. Contributions to Mineralogy and Petrology, 156(3):273-288. https://doi.org/10.1007/s00410-008-0284-2
    Rollinson H., Adetunji J., Yousif A. A., et al. 2012. New Mö ssbauer Measurements of Fe3+/ΣFe in Chromites from the Mantle Section of the Oman Ophiolite:Evidence for the Oxidation of the Sub-Oceanic Mantle. Mineralogical Magazine, 76(3):579-596. https://doi.org/10.1180/minmag.2012.076.3.09
    Rui H. C., Jiao J. G., Xia M. Z., et al. 2019. Origin of Chromitites in the Songshugou Peridotite Massif, Qinling Orogen (Central China):Mineralogical and Geochemical Evidence. Journal of Earth Science, 30(3):476-493. https://doi.org/10.1007/s12583-019-1227-8
    Scowen P. A. H., Roeder P. L., Helz R. T.. 1991. Reequilibration of Chromite within Kilauea Iki Lava Lake, Hawaii. Contributions to Mineralogy and Petrology, 107(1):8-20. https://doi.org/10.1007/bf00311181
    Shannon R. D.. 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(5):751-767. https://doi.org/10.1107/s0567739476001551
    Singh A. K., Singh R. B.. 2013. Genetic Implications of Zn-And Mn-Rich Cr-Spinels in Serpentinites of the Tidding Suture Zone, Eastern Himalaya, NE India. Geological Journal, 48(1):22-38. https://doi.org/10.1002/gj.2428
    Stowe C. W.. 1994. Compositions and Tectonic Settings of Chromite Deposits through Time. Economic Geology and the Bulletin of the Society of Economic Geologists, 89(3):528-546. https://doi.org/10.2113/gsecongeo.89.3.528
    Su B. X., Zhou M. F., Jing J. J., et al. 2019. Distinctive Melt Activity and Chromite Mineralization in Luobusa and Purang Ophiolites, Southern Tibet:Constraints from Trace Element Compositions of Chromite and Olivine. Science Bulletin, 64(2):108-121. https://doi.org/10.1016/j.scib.2018.12.018
    Thayer T. P.. 1964. Principal Features and Origin of Podiform Chromite Deposits, and Some Observations on the Guelman-Soridag District, Turkey. Economic Geology, 59(8):1497-1524. https://doi.org/10.2113/gsecongeo.59.8.1497
    Vuollo J., Liipo J., Nykanen V., et al. 1995. An Early Proterozoic Podiform Chromitite in the Outokumpu Ophiolite Complex, Finland. Economic Geology, 90(2):445-452. https://doi.org/10.2113/gsecongeo.90.2.445
    Wang J. P., Kusky T. M., Polat A., et al. 2012. Sea-Floor Metamorphism Recorded in Epidosites from the ca. 1.0 Ga Miaowan Ophiolite, Huangling Anticline, China. Journal of Earth Science, 23(5):696-704. https://doi.org/10.1007/s12583-012-0288-8
    Xiong F. H., Yang J. S., Robinson P. T., et al. 2015. Petrology and Geochemistry of High Cr# Podiform Chromitites of Bulqiza, Eastern Mirdita Ophiolite (EMO), Albania. Ore Geology Reviews, 70:188-207. https://doi.org/10.1016/j.oregeorev.2015.04.011
    Xiong Q., Henry H., Griffin W. L., et al. 2017. High-and Low-Cr Chromitite and Dunite in a Tibetan Ophiolite:Evolution from Mature Subduction System to Incipient Forearc in the Neo-Tethyan Ocean. Contributions to Mineralogy and Petrology, 172(6):45. https://doi.org/10.1007/s00410-017-1364-y
    Yu H., Zhang H. F., Zou H. B., et al. 2019. Minor and Trace Element Variations in Chromite from the Songshugou Dunites, North Qinling Orogen:Evidence for Amphibolite-Facies Metamorphism. Lithos, 328-329:146-158. https://doi.org/10.1016/j.lithos.2019.01.009
    Zhou M. F., Robinson P. T., Su B. X., et al. 2014. Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits:The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments. Gondwana Research, 26(1):262-283. https://doi.org/10.1016/j.gr.2013.12.011
    Zhou M. F., Robinson P. T., Malpas J., et al. 1996. Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet):Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 37(1):3-21. https://doi.org/10.1093/petrology/37.1.3
    Zong K. Q., Klemd R., Yuan Y., et al. 2017. The Assembly of Rodinia:The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290:32-48. https://doi.org/10.1016/j.precamres.2016.12.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(642) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return