Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 6
Dec 2020
Turn off MathJax
Article Contents
Kun Fang, Huiming Tang, Xuexue Su, Wentao Shang, Shenglong Jia. Geometry and Maximum Width of a Stable Slope Considering the Arching Effect. Journal of Earth Science, 2020, 31(6): 1087-1096. doi: 10.1007/s12583-020-1052-0
Citation: Kun Fang, Huiming Tang, Xuexue Su, Wentao Shang, Shenglong Jia. Geometry and Maximum Width of a Stable Slope Considering the Arching Effect. Journal of Earth Science, 2020, 31(6): 1087-1096. doi: 10.1007/s12583-020-1052-0

Geometry and Maximum Width of a Stable Slope Considering the Arching Effect

doi: 10.1007/s12583-020-1052-0
More Information
  • Corresponding author: Huiming Tang, tanghm@cug.edu.cn
  • Received Date: 10 Dec 2019
  • Accepted Date: 26 Jul 2020
  • Publish Date: 18 Dec 2020
  • The stability of an arching slope in deformable materials above strong rocks strongly depends on the shape and width of the span. Equations for a free surface problem that incorporate these two parameters were derived using a simplified two-dimensional arching slope model,and were validated using physical model tests under 1g and centrifugal conditions. The results are used to estimate the maximum excavation width for a weak claystone slope in a lignite mine,for which we calculate a safety factor of 1.31.

     

  • loading
  • Beddoe, R. A., Take, W. A., 2015. Influence of Slope Inclination on the Triggering and Distal Reach of Hydraulically-Induced Flow Slides. Engineering Geology, 187:170–182. https://doi.org/10.1016/j.enggeo.2015.01.006
    Bosscher, P. J., Gray, D. H., 1986. Soil Arching in Sandy Slopes. Journal of Geotechnical Engineering, 112(6):626–645. https://doi.org/10.1061/(asce) 0733-9410(1986)112:6(626) doi: 10.1061/(asce)0733-9410(1986)112:6(626)
    Chen, C. Y., Martin, G. R., 2002. Soil-Structure Interaction for Landslide Stabilizing Piles. Computers and Geotechnics, 29(5):363–386. https://doi.org/10.1016/s0266-352x(01)00035-0
    Coulomb, C. A., 1776. Essai sur une Application des rÈ gles de Maximis & Minimis à Quelques Problèmes de Statique, Relatifs à l'Architecture. Mémoires de Mathématique et de Physique de l'Académie, 7:343–382 (in French)
    Coulomb, C. A., 1781. Théorie des Machines Simples, en Ayant É gard au Frottement de Leur Partie, et à la Raideur des Cordages. Recueil des Savants éTrangers de l'Académie Royale des Sciences, 10:161–342 (in French) http://ci.nii.ac.jp/ncid/BB10483025
    Das, B. M., Sivakugan, N., 2016. Fundamentals of Geotechnical Engineering. Cengage Learning, Boston
    Davis, R. O., Selvadurai, A. P., 2005. Plasticity and Geomechanics. Cambridge University Press, Cambridge
    Eab, K. H., Takahashi, A., Likitlersuang, S., 2014. Centrifuge Modelling of Root-Reinforced Soil Slope Subjected to Rainfall Infiltration. Géotechnique Letters, 4(3):211–216. https://doi.org/10.1680/geolett.14.00029
    EGAT (Electricity Generating Authority of Thailand), 1985. Thailand-Australia Lignite Mines Development Project. Geotechnical Report, Mae Moh Mine, vol. 3. Mae Moh Mine Planning & Administration Division, Thailand
    Fang, K., 2019. Progression and Onset of Undercut Slope Failure Observed by Surface Velocity in Physical Models Subjected to Arch Action: [Dissertation]. University of Kyoto, Kyoto
    Fang, K., Minamide, K., Pipatpongsa, T., et al., 2018. Effect of Groundwater Seepage in Undercut Slope Centrifugal Model. 53th Japan Geotechnical Society, Takamatsu
    Guo, P., Zhou, S., 2013. Arch in Granular Materials as a Free Surface Problem. International Journal for Numerical and Analytical Methods in Geomechanics, 37(9):1048–1065. http://doi.org/10.1002/nag.1137
    Higo, Y., Lee, C. W., Doi, T., et al., 2015. Study of Dynamic Stability of Unsaturated Embankments with Different Water Contents by Centrifugal Model Tests. Soils and Foundations, 55(1):112–126. https://doi.org/10.1016/j.sandf.2014.12.009
    Hill, R., 1954. On the Limits Set by Plastic Yielding to the Intensity of Singularities of Stress. Journal of the Mechanics and Physics of Solids, 2(4):278–285. https://doi.org/10.1016/0022-5096(54)90018-6
    Huang, Z. Y., Zhang, Y. X., Dong, J., 2013. Determination of the Influence Scope of Opencast Mining in Bedding Slope Based on Arch Effect. Safety and Environmental Engineering, 4:34 (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTAQ201304034.htm
    Ito, T., Matsui, T., Hong, W. P., 1981. Design Method for Stabilizing Piles Against Landslide—One Row of Piles. Soils and Foundations, 21(1):21–37. https://doi.org/10.3208/sandf1972.21.21
    Jenike, A. W., 1964. Steady Gravity Flow of Frictional-Cohesive Solids in Converging Channels. Journal of Applied Mechanics, 31(1):5–11. https://doi.org/10.1115/1.3629571
    Khosravi, M. H., Pipatpongsa, T., Takahashi, A., et al., 2011. Arch Action over an Excavated Pit on a Stable Scarp Investigated by Physical Model Tests. Soils and Foundations, 51(4):723–735. https://doi.org/10.3208/sandf.51.723
    Khosravi, M., Pipatpongsa, T., Takemura, J., 2013. Interface Shearing Resistance Properties between Moist Silica Sand and Surface of Materials Investigated by Direct Shear Apparatus. The Japanese Geotechnical Society, Geo-Kanto
    Khosravi, M. H., Takemura, J., Pipatpongsa, T., et al., 2016. In-Flight Excavation of Slopes with Potential Failure Planes. Journal of Geotechnical and Geoenvironmental Engineering, 142(5):06016001. https://doi.org/10.1061/(asce)gt.1943-5606.0001439
    Li, C. D., Fu, Z. Y., Wang, Y., et al., 2019a. Susceptibility of Reservoir-Induced Landslides and Strategies for Increasing the Slope Stability in the Three Gorges Reservoir Area:Zigui Basin as an Example. Engineering Geology, 261:105279. https://doi.org/10.1016/j.enggeo.2019.105279
    Li, C. D., Yan, J. F., Wu, J. J., et al., 2019b. Determination of the Embedded Length of Stabilizing Piles in Colluvial Landslides with Upper Hard and Lower Weak Bedrock Based on the Deformation Control Principle. Bulletin of Engineering Geology and the Environment, 78(2):1189–1208. https://doi.org/10.1007/s10064-017-1123-3
    Ma, S. Y., Xu, C., 2019. Applicability of Two Newmark Models in the Assessment of Coseismic Landslide Hazard and Estimation of Slope-Failure Probability:An Example of the 2008 Wenchuan Mw 7.9 Earthquake Affected Area. Journal of Earth Science, 30(5):1020–1030. https://doi.org/10.1007/s12583-019-0874-0
    McCue, S. W., Hill, J. M., 2005. Free Surface Problems for Static Coulomb-Mohr Granular Solids. Mathematics and Mechanics of Solids, 10(6):651–672. https://doi.org/10.1177/1081286505036423
    Ohta, H., Pipatpongsa, T., Heng, S., et al., 2010. Significance of Saturated Clays Seams for the Stability of Rainfall-Induced Landslides. Bulletin of Engineering Geology and the Environment, 69(1):71–87. https://doi.org/10.1007/s10064-009-0246-6
    Pipatpongsa, T., Khosravi, M. H., Doncommul, P., et al., 2009. Excavation Problems in Mae Moh Lignite Open-Pit Mine of Thailand. Proc., Geo-Kanto, Tochigi. 459–464
    Pipatpongsa, T., Khosravi, M. H., Takemura, J., et al., 2016. Modelling Concepts of Passive Arch Action in Undercut Slopes. Australian Centre for Geomechanics, Perth
    Sakaguchi, H., Ozaki, E., Tanaka, M., 1993. Some Relation between Stability of Arches and Plugging of Granular Materials. The Science Reports of Faculty of Agriculture, Kobe University, 20(2):225–229 http://ci.nii.ac.jp/naid/110000410485
    Sokolovskii, V. V., 1965. Statics of Granular Materials. Pergamon Press, Oxford
    Tang, H. M., Wasowski, J., Juang, C. H., 2019. Geohazards in the Three Gorges Reservoir Area, China—Lessons Learned from Decades of Research. Engineering Geology, 261:105267. https://doi.org/10.1016/j.enggeo.2019.105267
    Take, W. A., Bolton, M. D., Wong, P. C. P., et al., 2004. Evaluation of Landslide Triggering Mechanisms in Model Fill Slopes. Landslides, 1(3):173–184. https://doi.org/10.1007/s10346-004-0025-1
    Terzaghi, K., 1936. Stress Distribution in Dry and in Saturated Sand above a Yielding Trap-Door. Int. Conf. on Soil Mechanics Proc., 1:307–311 http://ci.nii.ac.jp/naid/10008851136
    Terzaghi, K., 1943. Theoretical Soil Mechanics. JohnWiley & Sons, New York. 11–15
    Tian, Y. Y., Xu, C., Ma, S. Y., et al., 2019. Inventory and Spatial Distribution of Landslides Triggered by the 8th August 2017 MW 6.5 Jiuzhaigou Earthquake, China. Journal of Earth Science, 30(1):206–217. https://doi.org/10.1007/s12583-018-0869-2
    Wang, J. J., Liang, Y., Zhang, H. P., et al., 2014. A Loess Landslide Induced by Excavation and Rainfall. Landslides, 11(1):141–152. https://doi.org/10.1007/s10346-013-0418-0
    Wang, W. L., Yen, B. C., 1974. Soil Arching in Slopes. Journal of Geotechnical Engineering, 61–78. https://doi.org/10.1016/0148-9062(74)90721-9
    Yao, W. M., Li, C. D., Zuo, Q. J., et al., 2019. Spatiotemporal Deformation Characteristics and Triggering Factors of Baijiabao Landslide in Three Gorges Reservoir Region, China. Geomorphology, 343:34–47. https://doi.org/10.1016/j.geomorph.2019.06.024
    Zhang, W. Y., 2015. The Analysis and Application Study of Arch Effect in Bedding Rock Foundation Pit: [Dissertation]. Chongqing Jiaotong University, Chongqing (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views(893) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return