Aggarwal, S., Rai, S. C., Thakur, P. K., et al., 2017. Inventory and Recently Increasing GLOF Susceptibility of Glacial Lakes in Sikkim, Eastern Himalaya. Geomorphology, 295: 39-54. https://doi.org/10.1016/j.geomorph.2017.06.014 |
Ali, S. N., Biswas, R. H., Shukla, A. D., et al., 2013. Chronology and Climatic Implications of Late Quaternary Glaciations in the Goriganga Valley, Central Himalaya, India. Quaternary Science Reviews, 73: 59-76. https://doi.org/10.1016/j.quascirev.2013.05.016 |
Allen, S. K., Linsbauer, A., Randhawa, S. S., et al., 2016. Glacial Lake Outburst Flood Risk in Himachal Pradesh, India: An Integrative and Anticipatory Approach Considering Current and Future Threats. Natural Hazards, 84(3): 1741-1763. https://doi.org/10.1007/s11069-016-2511-x |
Azam, M. F., Wagnon, P., Berthier, E., et al., 2018. Review of the Status and Mass Changes of Himalayan-Karakoram Glaciers. Journal of Glaciology, 64(243): 61-74. https://doi.org/10.1017/jog.2017.86 |
Bahr, D. B., Pfeffer, W. T., Sassolas, C., et al., 1998. Response Time of Glaciers as a Function of Size and Mass Balance: 1. Theory. Journal of Geophysical Research: Solid Earth, 103(B5): 9777-9782. https://doi.org/10.1029/98jb00507 |
Bajracharya, S. R., Mool, P. K., Shrestha, B. R., 2008. Global Climate Change and Melting of Himalayan Glaciers. In: Ranade, P. S., ed., Melting Glaciers and Rising Sea Levels: Impacts and Implications. The Icfai's University Press, India. 28-46 |
Bajracharya, S. R., Mool, P., 2009. Glaciers, Glacial Lakes and Glacial Lake Outburst Floods in the Mount Everest Region, Nepal. Annals of Glaciology, 50(53): 81-86. https://doi.org/10.3189/172756410790595895 |
Bali, R., Ali, S. N., Agarwal, K. K., et al., 2013. Chronology of Late Quaternary Glaciation in the Pindar Valley, Alaknanda Basin, Central Himalaya (India). Journal of Asian Earth Sciences, 66: 224-233. https://doi.org/10.1016/j.jseaes.2013.01.011 |
Benn, D. I., Bolch, T., Hands, K., et al., 2012. Response of Debris-Covered Glaciers in the Mount Everest Region to Recent Warming, and Implications for Outburst Flood Hazards. Earth-Science Reviews, 114(1/2): 156-174. https://doi.org/10.1016/j.earscirev.2012.03.008 |
Bhambri, R., Mehta, M., Dobhal, D. P., et al., 2015. Glacier Lake Inventory of Uttarakhand. Wadia Institute of Himalayan Geology, Dehradun, India |
Bhambri, R., Misra, A., Kumar, A., et al., 2018. Glacier Lake Inventory of Himachal Pradesh. Himalayan Geology, 39(1): 1-89 |
Bhutiyani, M. R., Kale, V. S., Pawar, N. J., 2010. Climate Change and the Precipitation Variations in the Northwestern Himalaya: 1866-2006. International Journal of Climatology, 30(4): 535-548. https://doi.org/10.1002/joc.1920 |
Bisht, P., Ali, S. N., Shukla, A. D., et al., 2016. Chronology of Late Quaternary Glaciation and Landform Evolution in the Upper Dhauliganga Valley, (Trans Himalaya), Uttarakhand, India. Quaternary Science Reviews, 129: 147-162. https://doi.org/10.1016/j.quascirev.2015.10.017 |
Blumthaler, M., Ambach, W., Ellinger, R., 1997. Increase in Solar UV Radiation with Altitude. Journal of Photochemistry and Photobiology B: Biology, 39(2): 130-134. https://doi.org/10.1016/s1011-1344(96)00018-8 |
Bolch, T., Kulkarni, A., Kääb, A., et al., 2012. The State and Fate of Himalayan Glaciers. Science, 336(6079): 310-314. https://doi.org/10.1126/science.1215828 |
Bookhagen, B., Burbank, D. W., 2006. Topography, Relief, and TRMM-Derived Rainfall Variations along the Himalaya. Geophysical Research Letters, 33(8): L08405. https://doi.org/10.1029/2006gl026037 |
Brun, F., Berthier, E., Wagnon, P., et al., 2017. A Spatially Resolved Estimate of High Mountain Asia Glacier Mass Balances from 2000 to 2016. Nature Geoscience, 10(9): 668-673. https://doi.org/10.1038/ngeo2999 |
Carrivick, J. L., Tweed, F. S., 2013. Proglacial Lakes: Character, Behaviour and Geological Importance. Quaternary Science Reviews, 78: 34-52. https://doi.org/10.1016/j.quascirev.2013.07.028 |
Carrivick, J. L., Tweed, F. S., 2016. A Global Assessment of the Societal Impacts of Glacier Outburst Floods. Global and Planetary Change, 144: 1-16. https://doi.org/10.1016/j.gloplacha.2016.07.001 |
Clague, J. J., Huggel, C., Korup, O., et al., 2012. Climate Change and Hazardous Processes in High Mountains. Revista de la Asociación Geológica Argentina, 69(3): 328-338 http://www.scielo.org.ar/pdf/raga/v69n3/v69n3a02.pdf |
Cramer, W., Yohe, G., Auffhammer, M., et al., 2014. Detection and Attribution of Observed Impacts. In: Field, C. B., Barros, V., Dokken, D. J., et al., eds., Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects. Cambridge University Press, Cambridge, New York |
Davies, B. J., Glasser, N. F., 2012. Accelerating Shrinkage of Patagonian Glaciers from the Little Ice Age (~AD 1870) to 2011. Journal of Glaciology, 58(212): 1063-1084. https://doi.org/10.3189/2012jog12j026 |
DeBeer, C. M., Sharp, M. J., 2009. Topographic Influences on Recent Changes of very Small Glaciers in the Monashee Mountains, British Columbia, Canada. Journal of Glaciology, 55(192): 691-700. https://doi.org/10.3189/002214309789470851 |
Dimri, A. P., Dash, S. K., 2012. Wintertime Climatic Trends in the Western Himalayas. Climatic Change, 111(3/4): 775-800. https://doi.org/10.1007/s10584-011-0201-y |
Dobhal, D. P., Gupta, A. K., Mehta, M., et al., 2013. Kedarnath Disaster: Facts and Plausible Causes. Current Science, 105(2): 171-174 http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Current%20Science&atitle=Kedarnath%20disaster%3A%20facts%20and%20plausible%20causes |
Emmer, A., Loarte, E. C., Klimeš, J., et al., 2015. Recent Evolution and Degradation of the Bent Jatunraju Glacier (Cordillera Blanca, Peru). Geomorphology, 228: 345-355. https://doi.org/10.1016/j.geomorph.2014.09.018 |
Emmer, A., Vilímek, V., Klimeš, J., et al., 2014. Glacier Retreat, Lakes Development and Associated Natural Hazards in Cordilera Blanca, Peru. In: Shan, W., Guo, Y., Wang, F. W., et al., eds., Landslides in Cold Regions in the Context of Climate Change. Springer, Cham. 231-252 |
Fleischer, F., Otto, J. C., Hölbling, D., 2019. Change of Debris Cover on Glaciers of the Eastern Alps, Austria. Geophysical Research Abstracts, 21: EGU2019-15276 |
Fujita, K., Sakai, A., Nuimura, T., et al., 2009. Recent Changes in Imja Glacial Lake and Its Damming Moraine in the Nepal Himalaya Revealed by in situ Surveys and Multi-Temporal ASTER Imagery. Environmental Research Letters, 4(4): 045205. https://doi.org/10.1088/1748-9326/4/4/045205 |
Greuell, W., Smeets, P., 2001. Variations with Elevation in the Surface Energy Balance on the Pasterze (Austria). Journal of Geophysical Research: Atmospheres, 106(D23): 31717-31727. https://doi.org/10.1029/2001jd900127 |
Hall, D. K., Bayr, K. J., Schöner, W., et al., 2003. Consideration of the Errors Inherent in Mapping Historical Glacier Positions in Austria from the Ground and Space (1893-2001). Remote Sensing of Environment, 86(4): 566-577. https://doi.org/10.1016/s0034-4257(03)00134-2 |
Harrison, S., Kargel, J. S., Huggel, C., et al., 2018. Climate Change and the Global Pattern of Moraine-Dammed Glacial Lake Outburst Floods. The Cryosphere, 12(4): 1195-1209. https://doi.org/10.5194/tc-12-1195-2018 |
Huss, M., Funk, M., Ohmura, A., 2009. Strong Alpine Glacier Melt in the 1940s Due to Enhanced Solar Radiation. Geophysical Research Letters, 36(23): L23501. https://doi.org/10.1029/2009gl040789 |
IPCC (International Panel for Climate Change), 2014. Climate Change Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva. 151 |
Ives, J. D., Shrestha, R. B., Mool, P. K., 2010. Formation of Glacial Lakes in the Hindu Kush-Himalayas and Glof Risk Assessment. ICIMOD, Kathmandu, Nepal |
Jain, S. K., Mir, R. A., 2017. Glacier and Glacial Lake Classification for Change Detection Studies Using Satellite Data: A Case Study from Baspa Basin, Western Himalaya. Geocarto International, 34(4): 391-414. https://doi.org/10.1080/10106049.2017.1404145 |
Kääb, A., Haeberli, W., 2001. Evolution of a High-Mountain Thermokarst Lake in the Swiss Alps. Arctic, Antarctic, and Alpine Research, 33(4): 385-390. https://doi.org/10.1080/15230430.2001.12003445 |
Kaltenborn, B. P., Nellemann, C., Vistnes, I. I., 2010. High Mountain Glaciers and Climate Change-Challenges to Human Livelihoods and Adaptation. United Nations Environment Programme, GRID-Arendal. (2018-12-20). [2020-12-11]. https://www.unep.org/resources/report/high-mountain-glaciers-and-climate-change-challenges-human-livelihoods-and |
Kaser, G., 1999. A Review of the Modern Fluctuations of Tropical Glaciers. Global and Planetary Change, 22(1/2/3/4): 93-103. https://doi.org/10.1016/s0921-8181(99)00028-4 |
Khadka, N., Zhang, G. Q., Thakuri, S., 2018. Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977-2017). Remote Sensing, 10(12): 1913. https://doi.org/10.3390/rs10121913 |
Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., et al., 2017. Impact of a Global Temperature Rise of 1.5 Degrees Celsius on Asia's Glaciers. Nature, 549(7671): 257-260. https://doi.org/10.1038/nature23878 |
Kumar, R., Bahuguna, I. M., Ali, S. N., et al., 2019. Lake Inventory and Evolution of Glacial Lakes in the Nubra-Shyok Basin of Karakoram Range. Earth Systems and Environment, 4(1): 57-70. https://doi.org/10.1007/s41748-019-00129-6 |
Lala, J. M., Rounce, D. R., McKinney, D. C., 2018. Modeling the Glacial Lake Outburst Flood Process Chain in the Nepal Himalaya: Reassessing Imja Tshoʼs Hazard. Hydrology and Earth System Sciences, 22(7): 3721-3737. https://doi.org/10.5194/hess-22-3721-2018 |
Linsbauer, A., Frey, H., Haeberli, W., et al., 2016. Modelling Glacier-Bed Overdeepenings and Possible Future Lakes for the Glaciers in the Himalaya—Karakoram Region. Annals of Glaciology, 57(71): 119-130. https://doi.org/10.3189/2016aog71a627 |
Loubere, P., 2012. The Global Climate System. Nature Education Knowledge, 3(5): 24 http://digital.library.unt.edu/ark:/67531/metadc12053/m1/4/ |
Lutz, A., Immerzeel, W., Bajracharya, S., et al., 2016. Impacts of Climate Change on the Cryosphere, Hydrological Regimes and Glacial Lakes of the Hindu Kush Himalayas: A Review of Current Knowledge. ICIMOD Working Paper (Nepal) Eng No. 2016/3. ICIMOD, Kathmandu, Nepal |
Maurer, J. M., Schaefer, J. M., Rupper, S., et al., 2019. Acceleration of Ice Loss across the Himalayas over the Past 40 Years. Science Advances, 5(6): eaav7266. https://doi.org/10.1126/sciadv.aav7266 |
Maussion, F., Butenko, A., Champollion, N., et al., 2019. The Open Global Glacier Model (OGGM) Ⅴ1.1. Geoscientific Model Development, 12(3): 909-931. https://doi.org/10.5194/gmd-12-909-2019 |
Mehta, M., Dobhal, D. P., Bisht, M. P. S., 2011. Change of Tipra Glacier in the Garhwal Himalaya, India, between 1962 and 2008. Progress in Physical Geography: Earth and Environment, 35(6): 721-738. https://doi.org/10.1177/0309133311411760 |
Mertes, J. R., Thompson, S. S., Booth, A. D., et al., 2016. A Conceptual Model of Supra-Glacial Lake Formation on Debris-Covered Glaciers Based on GPR Facies Analysis. Earth Surface Processes and Landforms, 42(6): 903-914. https://doi.org/10.1002/esp.4068 |
Ming, J., Wang, Y. Q., Du, Z. C., et al., 2015. Widespread Albedo Decreasing and Induced Melting of Himalayan Snow and Ice in the Early 21st Century. PLoS One, 10(6): e0126235. https://doi.org/10.1371/journal.pone.0126235 |
Mishra, A., 2017. Changing Temperature and Rainfall Patterns of Uttarakhand. International Journal of Environmental Sciences & Natural Resources, 7(4): 1-6. https://doi.org/10.19080/ijesnr.2017.07.555716 |
Nie, Y., Sheng, Y. W., Liu, Q., et al., 2017. A Regional-Scale Assessment of Himalayan Glacial Lake Changes Using Satellite Observations from 1990 to 2015. Remote Sensing of Environment, 189: 1-13. https://doi.org/10.1016/j.rse.2016.11.008 |
Olson, M., Rupper, S., 2019. Impacts of Topographic Shading on Direct Solar Radiation for Valley Glaciers in Complex Topography. The Cryosphere, 13(1): 29-40. https://doi.org/10.5194/tc-13-29-2019 |
Pratap, B., Dobhal, D. P., Mehta, M., et al., 2015. Influence of Debris Cover and Altitude on Glacier Surface Melting: A Case Study on Dokriani Glacier, Central Himalaya, India. Annals of Glaciology, 56(70): 9-16. https://doi.org/10.3189/2015aog70a971 |
Pratt-Sitaula, B., Burbank, D. W., Heimsath, A. M., et al., 2011. Topographic Control of Asynchronous Glacial Advances: A Case Study from Annapurna, Nepal. Geophysical Research Letters, 38(24): L24502. https://doi.org/10.1029/2011gl049940 |
Quincey, D. J., Richardson, S. D., Luckman, A., et al., 2007. Early Recognition of Glacial Lake Hazards in the Himalaya Using Remote Sensing Datasets. Global and Planetary Change, 56(1/2): 137-152. https://doi.org/10.1016/j.gloplacha.2006.07.013 |
Raj, K. B. G., Kumar, K. V., 2016. Inventory of Glacial Lakes and Its Evolution in Uttarakhand Himalaya Using Time Series Satellite Data. Journal of the Indian Society of Remote Sensing, 44(6): 959-976. https://doi.org/10.1007/s12524-016-0560-y |
Ray, P. C., Chattoraj, S. L., Bisht, M. P. S., et al., 2016. Kedarnath Disaster 2013: Causes and Consequences Using Remote Sensing Inputs. Natural Hazards, 81(1): 227-243. https://doi.org/10.1007/s11069-015-2076-0 |
Reynolds, J. M., Richardson, S., 2000. Geological Hazards—Glacial Natural Disaster Management. A Presentation to Commemorate the International Decade for Natural Disaster Reduction (IDNDR) 1990-2000 |
Riaz, S., Ali, A., Baig, M. N., 2014. Increasing Risk of Glacial Lake Outburst Floods as a Consequence of Climate Change in the Himalayan Region. Jàmbá: Journal of Disaster Risk Studies, 6(1): 1-7. https://doi.org/10.4102/jamba.v6i1.110 |
Rich, P. M., Dubayah, R., Hetrick, W. A., et al., 1994. Using Viewshed Models to Calculate Intercepted Solar Radiation: Applications in Ecology. American Society for Photogrammetry Remote Sensing, Technical Papers. 524-529. [2020-12-11]. http://professorpaul.com/publications/rich_et_al_1994_asprs.pdf |
Richardson, S. D., Reynolds, J. M., 2000. An Overview of Glacial Hazards in the Himalayas. Quaternary International, 65/66: 31-47. https://doi.org/10.1016/s1040-6182(99)00035-x |
Sah, M., Philip, G., Mool, P. K., et al., 2005. Uttaranchal Himalaya India: Inventory of Glaciers and Glacial Lakes and the Identification of Potential Glacial Lake Outburst Floods (GLOFs) Affected by Global Warming in the Mountains of Himalayan Region. International Centre for Integrated Mountain Development, Kathmandu |
Sakai, A., Nishimura, K., Kadota, T., et al., 2009. Onset of Calving at Supraglacial Lakes on Debris-Covered Glaciers of the Nepal Himalaya. Journal of Glaciology, 55(193): 909-917. https://doi.org/10.3189/002214309790152555 |
Shrestha, A. B., Wake, C. P., Mayewski, P. A., et al., 1999. Maximum Temperature Trends in the Himalaya and Its Vicinity: An Analysis Based on Temperature Records from Nepal for the Period 1971-94. Journal of Climate, 12(9): 2775-2786. https://doi.org/10.1175/1520-0442(1999)012<2775:mttith>2.0.co;2 doi: 10.1175/1520-0442(1999)012<2775:mttith>2.0.co;2 |
Shukla, A., Garg, P. K., Srivastava, S., 2018. Evolution of Glacial and High-Altitude Lakes in the Sikkim, Eastern Himalaya over the Past Four Decades (1975-2017). Frontiers in Environmental Science, 6. https://doi.org/10.3389/fenvs.2018.00081 |
Silverio, W., Jaquet, J. M., 2005. Glacial Cover Mapping (1987-1996) of the Cordillera Blanca (Peru) Using Satellite Imagery. Remote Sensing of Environment, 95(3): 342-350. https://doi.org/10.1016/j.rse.2004.12.012 |
Song, C. Q., Huang, B., Richards, K., et al., 2014. Accelerated Lake Expansion on the Tibetan Plateau in the 2000s: Induced by Glacial Melting or other Processes?. Water Resources Research, 50(4): 3170-3186. https://doi.org/10.1002/2013wr014724 |
Soruco, A., Vincent, C., Francou, B., et al., 2009. Glacier Decline between 1963 and 2006 in the Cordillera Real, Bolivia. Geophysical Research Letters, 36(3): L03502. https://doi.org/10.1029/2008gl036238 |
Upadhyay, K. 2015. Ticking Time Bombs in Uttarakhand. The Hindu, 2015-9-30. Updated, 2017-2-19. https://www.thehindu.com/news/national/other-states/Glacial-lakes-Ticking-time-bombs-in-Uttarakhand/article10400445.ece |
Wang, X., Siegert, F., Zhou, A. G., et al., 2013. Glacier and Glacial Lake Changes and Their Relationship in the Context of Climate Change, Central Tibetan Plateau 1972-2010. Global and Planetary Change, 111: 246-257. https://doi.org/10.1016/j.gloplacha.2013.09.011 |
Way, R. G., Bell, T., Barrand, N. E., 2014. An Inventory and Topographic Analysis of Glaciers in the Torngat Mountains, Northern Labrador, Canada. Journal of Glaciology, 60(223): 945-956. https://doi.org/10.3189/2014jog13j195 |
Williams, R. S., Hall, D. K., Sigurðsson, O., et al., 1997. Comparison of Satellite-Derived with Ground-Based Measurements of the Fluctuations of the Margins of Vatnajökull, Iceland, 1973-92. Annals of Glaciology, 24: 72-80. https://doi.org/10.1017/s0260305500011964 |
Worni, R., Huggel, C., Stoffel, M., 2013. Glacial Lakes in the Indian Himalayas—From an Area-Wide Glacial Lake Inventory to On-Site and Modeling Based Risk Assessment of Critical Glacial Lakes. Science of the Total Environment, 468/469: S71-S84. https://doi.org/10.1016/j.scitotenv.2012.11.043 |
Yao, T. D., Thompson, L., Yang, W., et al., 2012. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nature Climate Change, 2(9): 663-667. https://doi.org/10.1038/nclimate1580 |
Yao, X. J., Liu, S. Y., Han, L., et al., 2018. Definition and Classification System of Glacial Lake for Inventory and Hazards Study. Journal of Geographical Sciences, 28(2): 193-205. https://doi.org/10.1007/s11442-018-1467-z |
Ye, B. S., Ding, Y. J., Liu, C. H., 2001. Response of Valley Glaciers in Various Sizes and Their Runoff to Climate Change. Journal of Glaciology and Geocryology, 23(2): 103-110 (in Chinese with English Abstract) http://www.researchgate.net/publication/285135937_Response_of_valley_glaciers_in_various_sizes_and_their_runoff_to_climate_change |
Ye, Q. H., Kang, S. C., Chen, F., et al., 2006. Monitoring Glacier Variations on Geladandong Mountain, Central Tibetan Plateau, from 1969 to 2002 Using Remote-Sensing and GIS Technologies. Journal of Glaciology, 52(179): 537-545. https://doi.org/10.3189/172756506781828359 |
Zhang, G. Q., Bolch, T., Allen, S., et al., 2019. Glacial Lake Evolution and Glacier-Lake Interactions in the Poiqu River Basin, Central Himalaya, 1964-2017. Journal of Glaciology, 65(251): 347-365. https://doi.org/10.1017/jog.2019.13 |