Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 6
Dec 2021
Turn off MathJax
Article Contents
Pratima Pandey, Sheikh Nawaz Ali, Prashant Kumar Champati Ray. Glacier-Glacial Lake Interactions and Glacial Lake Development in the Central Himalaya, India (1994-2017). Journal of Earth Science, 2021, 32(6): 1563-1574. doi: 10.1007/s12583-020-1056-9
Citation: Pratima Pandey, Sheikh Nawaz Ali, Prashant Kumar Champati Ray. Glacier-Glacial Lake Interactions and Glacial Lake Development in the Central Himalaya, India (1994-2017). Journal of Earth Science, 2021, 32(6): 1563-1574. doi: 10.1007/s12583-020-1056-9

Glacier-Glacial Lake Interactions and Glacial Lake Development in the Central Himalaya, India (1994-2017)

doi: 10.1007/s12583-020-1056-9
More Information
  • Corresponding author: Pratima Pandey, pandeypreetu@gmail.com
  • Received Date: 12 Dec 2019
  • Accepted Date: 07 Jul 2020
  • Publish Date: 30 Dec 2021
  • Despite several regional glacier and glacier lake inventories, the relationship between receding glacier, glacial lake evolution (glacial-lake interactions) and their sensitivity to different forcing factors have not been properly understood yet. To better understand these processes, we used satellite images collected in 1994, 2015 and 2017 to monitor the spatially-explicit evolution of glacial lakes and glacier changes. The results show a total of 1 353 glacial lakes covering an area of 7.96 km2 in the year 2015. Out of these, a total of 137 glacial lakes having an area of > 0.01 km2 and located within 2 km periphery of mother glacier have been selected for the monitoring of spatial development between 1994 and 2017. We found an increase in the total lake area from ~4.9 to ~7.73 km2 between 1994 and 2017, corresponding to an overall expansion of ~57%. The total area covered by the glaciers associated with these lakes reduced from ~365 km2 in 1994 to ~358 km2 in 2017, accounting for a glacier loss of ~7 km2 and corresponding to ~1.92% reduction. Our study results are in agreement with global glacier behavior, revealing a rapid glacier recession and accelerated glacial lake expansion under an unprecedented climate change scenario. In addition, the results suggest a significant reduction in the glacier area and a close relationship between the glacier melting and lake changes.

     

  • loading
  • Aggarwal, S., Rai, S. C., Thakur, P. K., et al., 2017. Inventory and Recently Increasing GLOF Susceptibility of Glacial Lakes in Sikkim, Eastern Himalaya. Geomorphology, 295: 39-54. https://doi.org/10.1016/j.geomorph.2017.06.014
    Ali, S. N., Biswas, R. H., Shukla, A. D., et al., 2013. Chronology and Climatic Implications of Late Quaternary Glaciations in the Goriganga Valley, Central Himalaya, India. Quaternary Science Reviews, 73: 59-76. https://doi.org/10.1016/j.quascirev.2013.05.016
    Allen, S. K., Linsbauer, A., Randhawa, S. S., et al., 2016. Glacial Lake Outburst Flood Risk in Himachal Pradesh, India: An Integrative and Anticipatory Approach Considering Current and Future Threats. Natural Hazards, 84(3): 1741-1763. https://doi.org/10.1007/s11069-016-2511-x
    Azam, M. F., Wagnon, P., Berthier, E., et al., 2018. Review of the Status and Mass Changes of Himalayan-Karakoram Glaciers. Journal of Glaciology, 64(243): 61-74. https://doi.org/10.1017/jog.2017.86
    Bahr, D. B., Pfeffer, W. T., Sassolas, C., et al., 1998. Response Time of Glaciers as a Function of Size and Mass Balance: 1. Theory. Journal of Geophysical Research: Solid Earth, 103(B5): 9777-9782. https://doi.org/10.1029/98jb00507
    Bajracharya, S. R., Mool, P. K., Shrestha, B. R., 2008. Global Climate Change and Melting of Himalayan Glaciers. In: Ranade, P. S., ed., Melting Glaciers and Rising Sea Levels: Impacts and Implications. The Icfai's University Press, India. 28-46
    Bajracharya, S. R., Mool, P., 2009. Glaciers, Glacial Lakes and Glacial Lake Outburst Floods in the Mount Everest Region, Nepal. Annals of Glaciology, 50(53): 81-86. https://doi.org/10.3189/172756410790595895
    Bali, R., Ali, S. N., Agarwal, K. K., et al., 2013. Chronology of Late Quaternary Glaciation in the Pindar Valley, Alaknanda Basin, Central Himalaya (India). Journal of Asian Earth Sciences, 66: 224-233. https://doi.org/10.1016/j.jseaes.2013.01.011
    Benn, D. I., Bolch, T., Hands, K., et al., 2012. Response of Debris-Covered Glaciers in the Mount Everest Region to Recent Warming, and Implications for Outburst Flood Hazards. Earth-Science Reviews, 114(1/2): 156-174. https://doi.org/10.1016/j.earscirev.2012.03.008
    Bhambri, R., Mehta, M., Dobhal, D. P., et al., 2015. Glacier Lake Inventory of Uttarakhand. Wadia Institute of Himalayan Geology, Dehradun, India
    Bhambri, R., Misra, A., Kumar, A., et al., 2018. Glacier Lake Inventory of Himachal Pradesh. Himalayan Geology, 39(1): 1-89
    Bhutiyani, M. R., Kale, V. S., Pawar, N. J., 2010. Climate Change and the Precipitation Variations in the Northwestern Himalaya: 1866-2006. International Journal of Climatology, 30(4): 535-548. https://doi.org/10.1002/joc.1920
    Bisht, P., Ali, S. N., Shukla, A. D., et al., 2016. Chronology of Late Quaternary Glaciation and Landform Evolution in the Upper Dhauliganga Valley, (Trans Himalaya), Uttarakhand, India. Quaternary Science Reviews, 129: 147-162. https://doi.org/10.1016/j.quascirev.2015.10.017
    Blumthaler, M., Ambach, W., Ellinger, R., 1997. Increase in Solar UV Radiation with Altitude. Journal of Photochemistry and Photobiology B: Biology, 39(2): 130-134. https://doi.org/10.1016/s1011-1344(96)00018-8
    Bolch, T., Kulkarni, A., Kääb, A., et al., 2012. The State and Fate of Himalayan Glaciers. Science, 336(6079): 310-314. https://doi.org/10.1126/science.1215828
    Bookhagen, B., Burbank, D. W., 2006. Topography, Relief, and TRMM-Derived Rainfall Variations along the Himalaya. Geophysical Research Letters, 33(8): L08405. https://doi.org/10.1029/2006gl026037
    Brun, F., Berthier, E., Wagnon, P., et al., 2017. A Spatially Resolved Estimate of High Mountain Asia Glacier Mass Balances from 2000 to 2016. Nature Geoscience, 10(9): 668-673. https://doi.org/10.1038/ngeo2999
    Carrivick, J. L., Tweed, F. S., 2013. Proglacial Lakes: Character, Behaviour and Geological Importance. Quaternary Science Reviews, 78: 34-52. https://doi.org/10.1016/j.quascirev.2013.07.028
    Carrivick, J. L., Tweed, F. S., 2016. A Global Assessment of the Societal Impacts of Glacier Outburst Floods. Global and Planetary Change, 144: 1-16. https://doi.org/10.1016/j.gloplacha.2016.07.001
    Clague, J. J., Huggel, C., Korup, O., et al., 2012. Climate Change and Hazardous Processes in High Mountains. Revista de la Asociación Geológica Argentina, 69(3): 328-338 http://www.scielo.org.ar/pdf/raga/v69n3/v69n3a02.pdf
    Cramer, W., Yohe, G., Auffhammer, M., et al., 2014. Detection and Attribution of Observed Impacts. In: Field, C. B., Barros, V., Dokken, D. J., et al., eds., Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects. Cambridge University Press, Cambridge, New York
    Davies, B. J., Glasser, N. F., 2012. Accelerating Shrinkage of Patagonian Glaciers from the Little Ice Age (~AD 1870) to 2011. Journal of Glaciology, 58(212): 1063-1084. https://doi.org/10.3189/2012jog12j026
    DeBeer, C. M., Sharp, M. J., 2009. Topographic Influences on Recent Changes of very Small Glaciers in the Monashee Mountains, British Columbia, Canada. Journal of Glaciology, 55(192): 691-700. https://doi.org/10.3189/002214309789470851
    Dimri, A. P., Dash, S. K., 2012. Wintertime Climatic Trends in the Western Himalayas. Climatic Change, 111(3/4): 775-800. https://doi.org/10.1007/s10584-011-0201-y
    Dobhal, D. P., Gupta, A. K., Mehta, M., et al., 2013. Kedarnath Disaster: Facts and Plausible Causes. Current Science, 105(2): 171-174 http://gateway.proquest.com/openurl?res_dat=xri:pqm&ctx_ver=Z39.88-2004&rfr_id=info:xri/sid:baidu&rft_val_fmt=info:ofi/fmt:kev:mtx:article&genre=article&jtitle=Current%20Science&atitle=Kedarnath%20disaster%3A%20facts%20and%20plausible%20causes
    Emmer, A., Loarte, E. C., Klimeš, J., et al., 2015. Recent Evolution and Degradation of the Bent Jatunraju Glacier (Cordillera Blanca, Peru). Geomorphology, 228: 345-355. https://doi.org/10.1016/j.geomorph.2014.09.018
    Emmer, A., Vilímek, V., Klimeš, J., et al., 2014. Glacier Retreat, Lakes Development and Associated Natural Hazards in Cordilera Blanca, Peru. In: Shan, W., Guo, Y., Wang, F. W., et al., eds., Landslides in Cold Regions in the Context of Climate Change. Springer, Cham. 231-252
    Fleischer, F., Otto, J. C., Hölbling, D., 2019. Change of Debris Cover on Glaciers of the Eastern Alps, Austria. Geophysical Research Abstracts, 21: EGU2019-15276
    Fujita, K., Sakai, A., Nuimura, T., et al., 2009. Recent Changes in Imja Glacial Lake and Its Damming Moraine in the Nepal Himalaya Revealed by in situ Surveys and Multi-Temporal ASTER Imagery. Environmental Research Letters, 4(4): 045205. https://doi.org/10.1088/1748-9326/4/4/045205
    Greuell, W., Smeets, P., 2001. Variations with Elevation in the Surface Energy Balance on the Pasterze (Austria). Journal of Geophysical Research: Atmospheres, 106(D23): 31717-31727. https://doi.org/10.1029/2001jd900127
    Hall, D. K., Bayr, K. J., Schöner, W., et al., 2003. Consideration of the Errors Inherent in Mapping Historical Glacier Positions in Austria from the Ground and Space (1893-2001). Remote Sensing of Environment, 86(4): 566-577. https://doi.org/10.1016/s0034-4257(03)00134-2
    Harrison, S., Kargel, J. S., Huggel, C., et al., 2018. Climate Change and the Global Pattern of Moraine-Dammed Glacial Lake Outburst Floods. The Cryosphere, 12(4): 1195-1209. https://doi.org/10.5194/tc-12-1195-2018
    Huss, M., Funk, M., Ohmura, A., 2009. Strong Alpine Glacier Melt in the 1940s Due to Enhanced Solar Radiation. Geophysical Research Letters, 36(23): L23501. https://doi.org/10.1029/2009gl040789
    IPCC (International Panel for Climate Change), 2014. Climate Change Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva. 151
    Ives, J. D., Shrestha, R. B., Mool, P. K., 2010. Formation of Glacial Lakes in the Hindu Kush-Himalayas and Glof Risk Assessment. ICIMOD, Kathmandu, Nepal
    Jain, S. K., Mir, R. A., 2017. Glacier and Glacial Lake Classification for Change Detection Studies Using Satellite Data: A Case Study from Baspa Basin, Western Himalaya. Geocarto International, 34(4): 391-414. https://doi.org/10.1080/10106049.2017.1404145
    Kääb, A., Haeberli, W., 2001. Evolution of a High-Mountain Thermokarst Lake in the Swiss Alps. Arctic, Antarctic, and Alpine Research, 33(4): 385-390. https://doi.org/10.1080/15230430.2001.12003445
    Kaltenborn, B. P., Nellemann, C., Vistnes, I. I., 2010. High Mountain Glaciers and Climate Change-Challenges to Human Livelihoods and Adaptation. United Nations Environment Programme, GRID-Arendal. (2018-12-20). [2020-12-11]. https://www.unep.org/resources/report/high-mountain-glaciers-and-climate-change-challenges-human-livelihoods-and
    Kaser, G., 1999. A Review of the Modern Fluctuations of Tropical Glaciers. Global and Planetary Change, 22(1/2/3/4): 93-103. https://doi.org/10.1016/s0921-8181(99)00028-4
    Khadka, N., Zhang, G. Q., Thakuri, S., 2018. Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977-2017). Remote Sensing, 10(12): 1913. https://doi.org/10.3390/rs10121913
    Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., et al., 2017. Impact of a Global Temperature Rise of 1.5 Degrees Celsius on Asia's Glaciers. Nature, 549(7671): 257-260. https://doi.org/10.1038/nature23878
    Kumar, R., Bahuguna, I. M., Ali, S. N., et al., 2019. Lake Inventory and Evolution of Glacial Lakes in the Nubra-Shyok Basin of Karakoram Range. Earth Systems and Environment, 4(1): 57-70. https://doi.org/10.1007/s41748-019-00129-6
    Lala, J. M., Rounce, D. R., McKinney, D. C., 2018. Modeling the Glacial Lake Outburst Flood Process Chain in the Nepal Himalaya: Reassessing Imja Tshoʼs Hazard. Hydrology and Earth System Sciences, 22(7): 3721-3737. https://doi.org/10.5194/hess-22-3721-2018
    Linsbauer, A., Frey, H., Haeberli, W., et al., 2016. Modelling Glacier-Bed Overdeepenings and Possible Future Lakes for the Glaciers in the Himalaya—Karakoram Region. Annals of Glaciology, 57(71): 119-130. https://doi.org/10.3189/2016aog71a627
    Loubere, P., 2012. The Global Climate System. Nature Education Knowledge, 3(5): 24 http://digital.library.unt.edu/ark:/67531/metadc12053/m1/4/
    Lutz, A., Immerzeel, W., Bajracharya, S., et al., 2016. Impacts of Climate Change on the Cryosphere, Hydrological Regimes and Glacial Lakes of the Hindu Kush Himalayas: A Review of Current Knowledge. ICIMOD Working Paper (Nepal) Eng No. 2016/3. ICIMOD, Kathmandu, Nepal
    Maurer, J. M., Schaefer, J. M., Rupper, S., et al., 2019. Acceleration of Ice Loss across the Himalayas over the Past 40 Years. Science Advances, 5(6): eaav7266. https://doi.org/10.1126/sciadv.aav7266
    Maussion, F., Butenko, A., Champollion, N., et al., 2019. The Open Global Glacier Model (OGGM) Ⅴ1.1. Geoscientific Model Development, 12(3): 909-931. https://doi.org/10.5194/gmd-12-909-2019
    Mehta, M., Dobhal, D. P., Bisht, M. P. S., 2011. Change of Tipra Glacier in the Garhwal Himalaya, India, between 1962 and 2008. Progress in Physical Geography: Earth and Environment, 35(6): 721-738. https://doi.org/10.1177/0309133311411760
    Mertes, J. R., Thompson, S. S., Booth, A. D., et al., 2016. A Conceptual Model of Supra-Glacial Lake Formation on Debris-Covered Glaciers Based on GPR Facies Analysis. Earth Surface Processes and Landforms, 42(6): 903-914. https://doi.org/10.1002/esp.4068
    Ming, J., Wang, Y. Q., Du, Z. C., et al., 2015. Widespread Albedo Decreasing and Induced Melting of Himalayan Snow and Ice in the Early 21st Century. PLoS One, 10(6): e0126235. https://doi.org/10.1371/journal.pone.0126235
    Mishra, A., 2017. Changing Temperature and Rainfall Patterns of Uttarakhand. International Journal of Environmental Sciences & Natural Resources, 7(4): 1-6. https://doi.org/10.19080/ijesnr.2017.07.555716
    Nie, Y., Sheng, Y. W., Liu, Q., et al., 2017. A Regional-Scale Assessment of Himalayan Glacial Lake Changes Using Satellite Observations from 1990 to 2015. Remote Sensing of Environment, 189: 1-13. https://doi.org/10.1016/j.rse.2016.11.008
    Olson, M., Rupper, S., 2019. Impacts of Topographic Shading on Direct Solar Radiation for Valley Glaciers in Complex Topography. The Cryosphere, 13(1): 29-40. https://doi.org/10.5194/tc-13-29-2019
    Pratap, B., Dobhal, D. P., Mehta, M., et al., 2015. Influence of Debris Cover and Altitude on Glacier Surface Melting: A Case Study on Dokriani Glacier, Central Himalaya, India. Annals of Glaciology, 56(70): 9-16. https://doi.org/10.3189/2015aog70a971
    Pratt-Sitaula, B., Burbank, D. W., Heimsath, A. M., et al., 2011. Topographic Control of Asynchronous Glacial Advances: A Case Study from Annapurna, Nepal. Geophysical Research Letters, 38(24): L24502. https://doi.org/10.1029/2011gl049940
    Quincey, D. J., Richardson, S. D., Luckman, A., et al., 2007. Early Recognition of Glacial Lake Hazards in the Himalaya Using Remote Sensing Datasets. Global and Planetary Change, 56(1/2): 137-152. https://doi.org/10.1016/j.gloplacha.2006.07.013
    Raj, K. B. G., Kumar, K. V., 2016. Inventory of Glacial Lakes and Its Evolution in Uttarakhand Himalaya Using Time Series Satellite Data. Journal of the Indian Society of Remote Sensing, 44(6): 959-976. https://doi.org/10.1007/s12524-016-0560-y
    Ray, P. C., Chattoraj, S. L., Bisht, M. P. S., et al., 2016. Kedarnath Disaster 2013: Causes and Consequences Using Remote Sensing Inputs. Natural Hazards, 81(1): 227-243. https://doi.org/10.1007/s11069-015-2076-0
    Reynolds, J. M., Richardson, S., 2000. Geological Hazards—Glacial Natural Disaster Management. A Presentation to Commemorate the International Decade for Natural Disaster Reduction (IDNDR) 1990-2000
    Riaz, S., Ali, A., Baig, M. N., 2014. Increasing Risk of Glacial Lake Outburst Floods as a Consequence of Climate Change in the Himalayan Region. Jàmbá: Journal of Disaster Risk Studies, 6(1): 1-7. https://doi.org/10.4102/jamba.v6i1.110
    Rich, P. M., Dubayah, R., Hetrick, W. A., et al., 1994. Using Viewshed Models to Calculate Intercepted Solar Radiation: Applications in Ecology. American Society for Photogrammetry Remote Sensing, Technical Papers. 524-529. [2020-12-11]. http://professorpaul.com/publications/rich_et_al_1994_asprs.pdf
    Richardson, S. D., Reynolds, J. M., 2000. An Overview of Glacial Hazards in the Himalayas. Quaternary International, 65/66: 31-47. https://doi.org/10.1016/s1040-6182(99)00035-x
    Sah, M., Philip, G., Mool, P. K., et al., 2005. Uttaranchal Himalaya India: Inventory of Glaciers and Glacial Lakes and the Identification of Potential Glacial Lake Outburst Floods (GLOFs) Affected by Global Warming in the Mountains of Himalayan Region. International Centre for Integrated Mountain Development, Kathmandu
    Sakai, A., Nishimura, K., Kadota, T., et al., 2009. Onset of Calving at Supraglacial Lakes on Debris-Covered Glaciers of the Nepal Himalaya. Journal of Glaciology, 55(193): 909-917. https://doi.org/10.3189/002214309790152555
    Shrestha, A. B., Wake, C. P., Mayewski, P. A., et al., 1999. Maximum Temperature Trends in the Himalaya and Its Vicinity: An Analysis Based on Temperature Records from Nepal for the Period 1971-94. Journal of Climate, 12(9): 2775-2786. https://doi.org/10.1175/1520-0442(1999)012<2775:mttith>2.0.co;2 doi: 10.1175/1520-0442(1999)012<2775:mttith>2.0.co;2
    Shukla, A., Garg, P. K., Srivastava, S., 2018. Evolution of Glacial and High-Altitude Lakes in the Sikkim, Eastern Himalaya over the Past Four Decades (1975-2017). Frontiers in Environmental Science, 6. https://doi.org/10.3389/fenvs.2018.00081
    Silverio, W., Jaquet, J. M., 2005. Glacial Cover Mapping (1987-1996) of the Cordillera Blanca (Peru) Using Satellite Imagery. Remote Sensing of Environment, 95(3): 342-350. https://doi.org/10.1016/j.rse.2004.12.012
    Song, C. Q., Huang, B., Richards, K., et al., 2014. Accelerated Lake Expansion on the Tibetan Plateau in the 2000s: Induced by Glacial Melting or other Processes?. Water Resources Research, 50(4): 3170-3186. https://doi.org/10.1002/2013wr014724
    Soruco, A., Vincent, C., Francou, B., et al., 2009. Glacier Decline between 1963 and 2006 in the Cordillera Real, Bolivia. Geophysical Research Letters, 36(3): L03502. https://doi.org/10.1029/2008gl036238
    Upadhyay, K. 2015. Ticking Time Bombs in Uttarakhand. The Hindu, 2015-9-30. Updated, 2017-2-19. https://www.thehindu.com/news/national/other-states/Glacial-lakes-Ticking-time-bombs-in-Uttarakhand/article10400445.ece
    Wang, X., Siegert, F., Zhou, A. G., et al., 2013. Glacier and Glacial Lake Changes and Their Relationship in the Context of Climate Change, Central Tibetan Plateau 1972-2010. Global and Planetary Change, 111: 246-257. https://doi.org/10.1016/j.gloplacha.2013.09.011
    Way, R. G., Bell, T., Barrand, N. E., 2014. An Inventory and Topographic Analysis of Glaciers in the Torngat Mountains, Northern Labrador, Canada. Journal of Glaciology, 60(223): 945-956. https://doi.org/10.3189/2014jog13j195
    Williams, R. S., Hall, D. K., Sigurðsson, O., et al., 1997. Comparison of Satellite-Derived with Ground-Based Measurements of the Fluctuations of the Margins of Vatnajökull, Iceland, 1973-92. Annals of Glaciology, 24: 72-80. https://doi.org/10.1017/s0260305500011964
    Worni, R., Huggel, C., Stoffel, M., 2013. Glacial Lakes in the Indian Himalayas—From an Area-Wide Glacial Lake Inventory to On-Site and Modeling Based Risk Assessment of Critical Glacial Lakes. Science of the Total Environment, 468/469: S71-S84. https://doi.org/10.1016/j.scitotenv.2012.11.043
    Yao, T. D., Thompson, L., Yang, W., et al., 2012. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nature Climate Change, 2(9): 663-667. https://doi.org/10.1038/nclimate1580
    Yao, X. J., Liu, S. Y., Han, L., et al., 2018. Definition and Classification System of Glacial Lake for Inventory and Hazards Study. Journal of Geographical Sciences, 28(2): 193-205. https://doi.org/10.1007/s11442-018-1467-z
    Ye, B. S., Ding, Y. J., Liu, C. H., 2001. Response of Valley Glaciers in Various Sizes and Their Runoff to Climate Change. Journal of Glaciology and Geocryology, 23(2): 103-110 (in Chinese with English Abstract) http://www.researchgate.net/publication/285135937_Response_of_valley_glaciers_in_various_sizes_and_their_runoff_to_climate_change
    Ye, Q. H., Kang, S. C., Chen, F., et al., 2006. Monitoring Glacier Variations on Geladandong Mountain, Central Tibetan Plateau, from 1969 to 2002 Using Remote-Sensing and GIS Technologies. Journal of Glaciology, 52(179): 537-545. https://doi.org/10.3189/172756506781828359
    Zhang, G. Q., Bolch, T., Allen, S., et al., 2019. Glacial Lake Evolution and Glacier-Lake Interactions in the Poiqu River Basin, Central Himalaya, 1964-2017. Journal of Glaciology, 65(251): 347-365. https://doi.org/10.1017/jog.2019.13
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(266) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return