Anbar, A. D. , 2004. Iron Stable Isotopes: Beyond Biosignatures. Earth and Planetary Science Letters, 217(3/4): 223-236. https://doi.org/10.1016/s0012-821x(03)00572-7 |
BGMRXUAR (Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region), 2010. Geological report of the Yamansu Iron Deposit in Hami, Xinjiang (in Chinese) |
Bilenker, L. D. , Simon, A. C. , Reich, M. , et al. , 2016. Fe-O Stable Isotope Pairs Elucidate a High-Temperature Origin of Chilean Iron Oxide-Apatite Deposits. Geochimica et Cosmochimica Acta, 177: 94-104. https://doi.org/10.1016/j.gca.2016.01.009 |
Cai, H. M. , Yang, H. , Gong, X. K. , 2019. Geochronology and Petrogenesis of Mafic-Intermediate Intrusions on the Northern Margin of the Central Tianshan (NW China): Implications for Tectonic Evolution. Journal of Earth Science, 30(2): 323-334. https://doi.org/10.1007/s12583-018-1205-6 |
Charvet, J. , Shu, L. S. , Laurent-Charvet, S. , 2007. Paleozoic Structural and Geodynamic Evolution of Eastern Tianshan (NW China): Welding of the Tarim and Junggar Plates. Episodes, 30(3): 162-186 |
Chen, B. , Jahn, B. M. , 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5): 691-703. https://doi.org/10.1016/s1367-9120(03)00118-4 |
Chen, F. W. , He, G. Q. , Li, H. Q. , 2003. Tectonic Attribute of Qoltag Orogenic Belt in the Eastern Tianshan Mountains, Northwestern China. Geology in China, 30: 361-366 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-DIZI200304007.htm |
Childress, T. M. , Simon, A. C. , Day, W. C. , et al. , 2016. Iron and Oxygen Isotope Signatures of the Pea Ridge and Pilot Knob Magnetite-Apatite Deposits, Southeast Missouri, USA. Economic Geology, 111(8): 2033-2044 doi: 10.2113/econgeo.111.8.2033 |
Cook, N. , Ciobanu, C. , George, L. , et al. , 2016. Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively- Coupled Plasma Mass Spectrometry: Approaches and Opportunities. Minerals, 6(4): 111. https://doi.org/10.3390/min6040111 |
Dare, S. A. S. , Barnes, S. J. , Beaudoin, G. , 2012. Variation in Trace Element Content of Magnetite Crystallized from a Fractionating Sulfide Liquid, Sudbury, Canada: Implications for Provenance Discrimination. Geochimica et Cosmochimica Acta, 88: 27-50. https://doi.org/10.1016/j.gca.2012.04.032 |
Dare, S. A. S. , Barnes, S. J. , Beaudoin, G. , 2014b. Did the Massive Magnetite "Lava Flows" of El Laco (Chile) Form by Magmatic or Hydrothermal Processes? New Constraints from Magnetite Composition by LA-ICP-MS. Mineralium Deposita, 50(5): 607-617. https://doi.org/10.1007/s00126-014-0560-1 |
Dare, S. A. S. , Barnes, S. J. , Beaudoin, G. , et al. , 2014a. Trace Elements in Magnetite as Petrogenetic Indicators. Mineralium Deposita, 49(7): 785-796. https://doi.org/10.1007/s00126-014-0529-0 |
Du, L. , Yuan, C. , Li, X. P. , et al. , 2019. Petrogenesis and Geodynamic Implications of the Carboniferous Granitoids in the Dananhu Belt, Eastern Tianshan Orogenic Belt. Journal of Earth Science, 30(6): 1243-1252. https://doi.org/10.1007/s12583-019-1256-3 |
Dupuis, C. , Beaudoin, G. , 2011. Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types. Mineralium Deposita, 46(4): 319-335. https://doi.org/10.1007/s00126-011-0334-y |
Dziony, W. , Horn, I. , Lattard, D. , et al. , 2014. In-situ Fe Isotope Ratio Determination in Fe-Ti Oxides and Sulfides from Drilled Gabbros and Basalt from the IODP Hole 1256D in the Eastern Equatorial Pacific. Chemical Geology, 363(10): 101-113. https://doi.org/10.1016/j.chemgeo.2013.10.035 |
Gao, J. F. , Zhou, M. F. , Lightfoot, P. C. , et al. , 2013. Sulfide Saturation and Magma Emplacement in the Formation of the Permian Huangshandong Ni-Cu Sulfide Deposit, Xinjiang, Northwestern China. Economic Geology, 108(8): 1833-1848. https://doi.org/10.2113/econgeo.108.8.1833 |
Gao, J. , Long, L. L. , Klemd, R. , et al. , 2009. Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks. International Journal of Earth Sciences, 98(6): 1221-1238. https://doi.org/10.1007/s00531-008-0370-8 |
Han, B. F. , He, G. Q. , Wang, X. C. , et al. , 2011. Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 109(3/4): 74-93. https://doi.org/10.1016/j.earscirev.2011.09.001 |
Han, J. S. , Chen, H. Y. , Jiang, H. J. , et al. , 2019. Genesis of the Paleozoic Aqishan-Yamansu Arc-Basin System and Fe(-Cu) Mineralization in the Eastern Tianshan, NW China. Ore Geology Reviews, 105: 55-70. https://doi.org/10.1016/j.oregeorev.2018.12.012 |
He X. G. , Pan Z. G. , Zhou C. P. , 2011. Metallogenic Geological Characteristics of Luotuofeng Iron Deposit in Shanshan, Xinjiang. Xinjiang Nonferrous Metals, 4: 1-5 (in Chinese) |
Heimann, A. , Beard, B. L. , Johnson, C. M. , 2008. The Role of Volatile Exsolution and Sub-Solidus Fluid/rock Interactions in Producing High 56Fe/54Fe Ratios in Siliceous Igneous Rocks. Geochimica et Cosmochimica Acta, 72(17): 4379-4396. https://doi.org/10.1016/j.gca.2008.06.009 |
Hou, K. J. , Li, Y. H. , Tian, Y. Y. , 2009. In situ U-Pb Zircon Dating Using Laser Ablation Multiion Counting-ICP-MS. Mineral Deposits, 28: 481-492 (in Chinese with English Abstract) |
Hou, T. , Zhang, Z. C. , Pirajno, F. , et al. , 2014a. Geology, Tectonic Settings and Iron Ore Metallogenesis Associated with Submarine Volcanism in China: An Overview. Ore Geology Reviews, 57: 498-517. https://doi.org/10.1016/j.oregeorev.2013.08.007 |
Hou, T. , Zhang, Z. C. , Santosh, M. , et al. , 2014b. Geochronology and Geochemistry of Submarine Volcanic Rocks in the Yamansu Iron Deposit, Eastern Tianshan Mountains, NW China: Constraints on the Metallogenesis. Ore Geology Reviews, 56: 487-502. https://doi.org/10.1016/j.oregeorev.2013.03.008 |
Huang, F. , Zhang, Z. F. , Lundstrom, C. C. , et al. , 2011. Iron and Magnesium Isotopic Compositions of Peridotite Xenoliths from Eastern China. Geochimica et Cosmochimica Acta, 75(12): 3318-3334. https://doi.org/10.1016/j.gca.2011.03.036 |
Huang, X. W. , Qi, L. , Gao, J. F. , et al. , 2013b. First Reliable Re-Os Ages of Pyrite and Stable Isotope Compositions of Fe(-Cu) Deposits in the Hami Region, Eastern Tianshan Orogenic Belt, NW China. Resource Geology, 63(2): 166-187. https://doi.org/10.1111/rge.12003 |
Huang, X. W. , Qi, L. , Meng, Y. M. , 2013a. Trace Element and REE Geochemistry of Minerals from Heifengshan, Shuangfengshan and Shaquanzi (Cu-) Fe Deposits, Eastern Tianshan Mountains. Mineral Deposits, 32: 1188-1210 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201306007.htm |
Johnson, C. M. , Beard, B. L. , Roden, E. E. , et al. , 2004. Isotopic Constraints on Biogeochemical Cycling of Fe. Reviews in Mineralogy and Geochemistry, 55(1): 359-408. https://doi.org/10.2138/gsrmg.55.1.359 |
Knipping, J. L. , Bilenker, L. D. , Simon, A. C. , et al. , 2015a. Giant Kiruna-Type Deposits Form by Efficient Flotation of Magmatic Magnetite Suspensions. Geology, 43(7): 591-594. https://doi.org/10.1130/g36650.1 |
Knipping, J. L. , Bilenker, L. D. , Simon, A. C. , et al. , 2015b. Trace Elements in Magnetite from Massive Iron Oxide-Apatite Deposits Indicate a Combined Formation by Igneous and Magmatic-Hydrothermal Processes. Geochimica et Cosmochimica Acta, 171: 15-38. https://doi.org/10.1016/j.gca.2015.08.010 |
Knipping, J. L. , Fiege, A. , Simon, A. C. , et al. , 2019. In-situ Iron Isotope Analyses Reveal Igneous and Magmatic-Hydrothermal Growth of Magnetite at the Los Colorados Kiruna-Type Iron Oxide-Apatite Deposit, Chile. American Mineralogist, 104(4): 471-484. https://doi.org/10.2138/am-2019-6623 |
Li, G. R. , Wu, C. Z. , 2013. Recent Advances in Skarn Forming Models and the Yamansu Skarn Related Deposits. Geological Journal of China Universities, 19(3), 425-436 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX201303004.htm |
Li, H. M. , Ding, J. H. , Li, L. X. , et al. , 2014. The Genesis of the Skarn and the Genetic Type of the Yamansu Iron Deposits, Eastern Tianshan, Xinjiang. Acta Geologica Sinica, 12: 2477-2489 (in Chinese with English Abstract) http://www.researchgate.net/publication/292759104_The_genesis_of_the_skarn_and_the_genetic_type_of_the_Yamansu_iron_deposit_Eastern_Tianshan_Xinjiang |
Li, H. M., Li, L. X., 2013. Metallogenic Map of Iron Deposits in China (1: 5 000 000). Geological Publishing House, Beijing (in Chinese) |
Li, H. M. , Li, L. X. , Ding, J. H. , et al. , 2018. Occurrence of the Iron-Rich Melt in the Heijianshan Iron Deposit, Eastern Tianshan, NW China: Insights into the Origin of Volcanic Rock-Hosted Iron Deposits. Acta Geologica Sinica: English Edition, 92(2): 666-681. https://doi.org/10.1111/1755-6724.13548 |
Li, Q. G. , Liu, S. W. , Wang, Z. Q. , et al. , 2008. Electron Microprobe Monazite Geochronological Constraints on the Late Palaeozoic Tectonothermal Evolution in the Chinese Tianshan. Journal of the Geological Society, 165(2): 511-522. https://doi.org/10.1144/0016-76492007-077 |
Li, W. Q. , Ma, H. D. , Wang, R. , et al. , 2008. SHRIMP Dating and Nd-Sr Isotopic Tracing of Kangguertage Ophiolite in East Tianshan, Xinjiang. Acta Petrologica Sinica, 24(4): 773-780 (in Chinese with English Abstract) http://www.researchgate.net/publication/287568192_SHRIMP_dating_and_Nd-Sr_isotopic_Tracing_of_Kangguertage_ophiolite_in_eastern_Tianshan_Xinjiang |
Liu, F. , Chai, F. M. , Li, Q. , et al. , 2019. Constraints on the Timing of Fe-(Cu) Metallogenesis in the Eastern Aqishan-Yamansu-Shaquanzi Metallogenic Belt, Eastern Tianshan, NW China. Ore Geology Reviews, 113: 103089. https://doi.org/10.1016/j.oregeorev.2019.103089 |
Luo, T. , Liao, Q. A. , Chen, J. P. , et al. , 2012. LA-ICP-MS Zircon U-Pb Dating of the Volcanic Rocks from Yamansu Formation in the Eastern Tianshan, and Its Geological Significance. Earth Science——Journal of China University of Geosciences, 37(6): 1338-1352 (in Chinese with English Abstract) |
Mandernack, K. W. , 1999. Oxygen and Iron Isotope Studies of Magnetite Produced by Magnetotactic Bacteria. Science, 285(5435): 1892-1896. https://doi.org/10.1126/science.285.5435.1892 |
Mao, J. W. , Goldfarb, R. J. , Wang, Y. T. , et al. , 2005. Late Paleozoic Base and Precious Metal Deposits, East Tianshan, Xinjiang, China: Characteristics and Geodynamic Setting. Episodes, 28(1): 23-36. https://doi.org/10.18814/epiiugs/2005/v28i1/003 |
Muhetaer, Z. , Nijat, A. , Wu, Z. N. , 2015. Geochemical Characteristics of the Volcanics from the Southern Jueluotage Area and Their Constraints on the Tectonic Evolution of Paleo-Asian Ocean. Earth Science Frontiers, 22(1): 238-250 (in Chinese with English Abstract) http://www.researchgate.net/publication/282189449_Geochemical_characteristics_of_the_volcanics_from_the_Southern_Jueluotage_Area_and_their_constraints_on_the_tectonic_evolution_of_Paleo-Asian_Ocean |
Nadoll, P. , Angerer, T. , Mauk, J. L. , et al. , 2014. The Chemistry of Hydrothermal Magnetite: A Review. Ore Geology Reviews, 61: 1-32. https://doi.org/10.1016/j.oregeorev.2013.12.013 |
Pirajno, F. , 2010a. Intracontinental Strike-Slip Faults, Associated Magmatism, Mineral Systems and Mantle Dynamics: Examples from NW China and Altay-Sayan (Siberia). Journal of Geodynamics, 50(3/4): 325-346. https://doi.org/10.1016/j.jog.2010.01.018 |
Pirajno, F., 2010a. Tianshan, Junggar and Altay Orogens (NW China), the Alpine-Himalayan Fold Belts (Tethyan Orogens), Kunlun and Songpan-Ganzi Terranes. The Geology and Tectonic Settings of China's Mineral Deposits, 381-545 |
Qin, K. Z. , Peng, X. M. , San, J. Z. , et al. , 2003. Types of Major Ore Deposits, Division of Metallogenic Belts in Eastern Tianshan, and Discrimination of Potential Prospects of Cu, Au, Ni Mineralization. Xinjiang Geology, 21(2): 143-150 (in Chinese with English Abstract) http://www.researchgate.net/publication/313608375_Types_of_major_ore_deposits_division_of_metallogenic_belts_in_eastern_Tianshan_and_discrimination_of_potential_prospects_of_Cu_Au_Ni_mineralization |
Sang, S. J. , Peng, M. X. , Guo, Y. H. , 2003. Optimized Target Areas and Evaluation Report of Resource in the Caixiashan to Jintan Area. Xingjiang Inst of Geol Investigation, 1: 42-44 (in Chinese with English Abstract) |
Schüßler, J. A., 2008. Controls on Stable Iron Isotope Variations in Magmatic Systems: Significance of Mineral-Melt Isotopic Fractionation in Experiments and Nature: [Dissertation]. |
Severmann, S. , Anbar, A. D. , 2009. Reconstructing Paleoredox Conditions through a Multitracer Approach: The Key to the Past is the Present. Elements, 5(6): 359-364. https://doi.org/10.2113/gselements.5.6.359 |
Sun, J. , Zhu, X. K. , Chen, Y. L. , et al. , 2012. Fe Isotope Compositions of Related Geological Formation in Bayan Obo Area and Their Constrains on the Genesis of Bayan Obo Ore Deposit. Acta Geologica Sinica, 86(5): 819-828 (in Chinese with English Abstract) http://www.researchgate.net/publication/292779120_Fe_isotope_compositions_of_related_geological_formation_in_Bayan_Obo_area_and_their_constrains_on_the_genesis_of_Bayan_Obo_ore_deposit |
Teixeira, N. L. , Caxito, F. A. , Rosière, C. A. , et al. , 2017. Trace Elements and Isotope Geochemistry (C, O, Fe, Cr) of the Cauê Iron Formation, Quadrilátero Ferrífero, Brazil: Evidence for Widespread Microbial Dissimilatory Iron Reduction at the Archean/Paleoproterozoic Transition. Precambrian Research, 298: 39-55. https://doi.org/10.1016/j.precamres.2017.05.009 |
Tornos, F. , Velasco, F. , Hanchar, J. M. , 2016. Iron-Rich Melts, Magmatic Magnetite, and Superheated Hydrothermal Systems: The El Laco Deposit, Chile. Geology, 44(6): 427-430. https://doi.org/10.1130/g37705.1 |
Van Baalen, M. R. , 1993. Titanium Mobility in Metamorphic Systems: A Review. Chemical Geology, 110(1/2/3): 233-249. https://doi.org/10.1016/0009-2541(93)90256-i |
Wang, Y. , Zhu, X. K. , Mao, J. W. , et al. , 2011. Iron Isotope Fractionation during Skarn-Type Metallogeny: A Case Study of Xinqiao Cu-S-Fe-Au Deposit in the Middle-Lower Yangtze Valley. Ore Geology Reviews, 43(1): 194-202. https://doi.org/10.1016/j.oregeorev.2010.12.004 |
Weis, F., 2013. Oxygen and Iron Isotope Systematics of the Grängesberg Mining District (GMD): [Dissertation]. Uppsala Universitet, Uppsala. 77 |
Wu, C. Z. , Zhang, Z. X. , Zaw, K. , et al. , 2006. Geochronology, Geochemistry and Tectonic Significances of the Hongyuntan Granitoids in the Qoltag Area, Eastern Tianshan. Acta Petrologica Sinica, 22(5): 1121-1134 (in Chinese with English Abstract) http://www.researchgate.net/publication/235353498_Geochronology_geochemistry_and_tectonic_significances_of_the_Hongyuntan_granitoids_in_the_Qoltag_area_Eastern_Tianshan |
Xiao, W. J. , 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304(4): 370-395. https://doi.org/10.2475/ajs.304.4.370 |
Xiao, W. J. , Han, C. M. , Yuan, C. , et al. , 2008. Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China: Implications for the Tectonic Evolution of Central Asia. Journal of Asian Earth Sciences, 32(2/3/4): 102-117. https://doi.org/10.1016/j.jseaes.2007.10.008 |
Xiao, W. J. , Windley, B. F. , Allen, M. B. , et al. , 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012 |
Yang, X. P. , Li, A. , Hunag, W. , 2013. Uplift Differential of Active Fold Zones during the Late Quaternary, Northern Piedmonts of the Tianshan Mountains, China. Science China Earth Sciences, 56(5): 794-805. https://doi.org/10.1007/s11430-012-4531-z |
Yao, P. H., Wang, K. N., Du, C. L., et al., 1993. Records of China's Iron Deposits. Metallurgic Industry Press, Beijing. 1-662 (in Chinese) |
Zhang, D. Y. , Zhou, T. F. , Yuan, F. , et al. , 2014. Genesis of Permian Granites along the Kangguer Shear Zone, Jueluotage Area, Northwest China: Geological and Geochemical Evidence. Lithos, 198/199: 141-152. https://doi.org/10.1016/j.lithos.2014.03.023 |
Zhang, W. F. , Chen, H. Y. , Han, J. S. , et al. , 2016. Geochronology and Geochemistry of Igneous Rocks in the Bailingshan Area: Implications for the Tectonic Setting of Late Paleozoic Magmatism and Iron Skarn Mineralization in the Eastern Tianshan, NW China. Gondwana Research, 38: 40-59. https://doi.org/10.1016/j.gr.2015.10.011 |
Zhang, X. R. , Zhao, G. C. , Sun, M. , et al. , 2016. Tectonic Evolution from Subduction to Arc-Continent Collision of the Junggar Ocean: Constraints from U-Pb Dating and Hf Isotopes of Detrital Zircons from the North Tianshan Belt, NW China. Geological Society of America Bulletin, 128(3/4): 644-660. https://doi.org/10.1130/b31230.1 |
Zhang, Z. C. , Santosh, M. , Li, J. W. , 2015. Iron Deposits in Relation to Magmatism in China. Journal of Asian Earth Sciences, 113: 951-956. https://doi.org/10.1016/j.jseaes.2015.09.026 |
Zhao, L. D. , Chen, H. Y. , Zhang, L. , et al. , 2017. Geology and Ore Genesis of the Late Paleozoic Heijianshan Fe Oxide-Cu(-Au) Deposit in the Eastern Tianshan, NW China. Ore Geology Reviews, 91: 110-132. https://doi.org/10.1016/j.oregeorev.2017.10.014 |
Zhu, X. K. , Sun, J. , Wang, Y. , 2016. Fe Isotope Geochemistry of Magmatic System. Journal of Earth Sciences and Environment, 38(1): 1-1 (in Chinese with English Abstract) |