Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 3
Jun 2022
Turn off MathJax
Article Contents
Hassan Abdelslam Mustafa, Fanxi Liao, Nengsong Chen, Zhendong You, Meshaal Abdelgadir Salih, Lu Wang, Lu Zhang. Early Paleoproterozoic Post-Collisional Basaltic Magmatism in Quanji Massif: Implications for Precambrian Plate Tectonic Regime in NW China. Journal of Earth Science, 2022, 33(3): 706-718. doi: 10.1007/s12583-020-1062-y
Citation: Hassan Abdelslam Mustafa, Fanxi Liao, Nengsong Chen, Zhendong You, Meshaal Abdelgadir Salih, Lu Wang, Lu Zhang. Early Paleoproterozoic Post-Collisional Basaltic Magmatism in Quanji Massif: Implications for Precambrian Plate Tectonic Regime in NW China. Journal of Earth Science, 2022, 33(3): 706-718. doi: 10.1007/s12583-020-1062-y

Early Paleoproterozoic Post-Collisional Basaltic Magmatism in Quanji Massif: Implications for Precambrian Plate Tectonic Regime in NW China

doi: 10.1007/s12583-020-1062-y
More Information
  • Corresponding author: Nengsong Chen, chennengsong@163.com
  • Received Date: 28 Apr 2020
  • Accepted Date: 15 Jul 2020
  • Basaltic magmas can provide important information about mantle source nature, tectonic settings and tectonic evolution for a given terrain. This paper reports geology, petrography and geochemistry of whole-rock major and trace elements and Nd-Sr isotopes for a suite of garnet amphibolites from southeastern Wulan (Ulan), Quanji Massif, northwestern China. The garnet amphibolites were likely generated from basaltic lavas, associated with both paragneisses and orthogneisses of the lower Delingha Group. The basaltic protolith of these amphibolites can be broadly constrained to be formed at ~2.33 Ga in an extensional setting post-collision. The geochemistry of amphibolites shows subalkaline and highly evolved characteristics. They display high-Fe low-Ti characteristics, with TFeO of 13.1 wt.%–17.9 wt.% and TiO2 of 1.42 wt.%–3.09 wt.% (in most samples TiO2 ≤2.5 wt.%). The chondrite-normalized REE patterns show enrichment of LREE and LILE and the primitive-mantle-normalized incompatible element patterns display negative P, Ti, Nb-Ta and Zr-Hf anomalies. The (87Sr/86Sr)t values of 0.697 8–0.712 3 and εNd(t) values of -2.81–5.08 respond to depleted mantle model ages (TDM) of 2.33–3.30 Ga. These suggest that the precursor magmas of the protolith of the garnet amphibolites were probably derived from the Early Paleoproterozoic depleted sub-continental lithospheric mantle that had been metasomatized by subduction-induced fluids and melts. The precursor basaltic magmas were contaminated by the older crustal components during magma ascending. This post-collisional basaltic magmatic event at ~2.33 Ga in Quanji Massif thus enhanced the subduction shutdown or slowdown tectonic regime both in NW China and coevally with those plate tectonics in some important domains worldwide during the Early Paleoproterozoic.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1-S2) are available in the online version of this article at https://doi.org/10.1007/s12583-020-1062-y.
  • loading
  • Ahijado, A., Casillas, R., Hernández-Pacheco, A., 2001. The Dyke Swarms of the Amanay Massif, Fuerteventura, Canary Islands (Spain). Journal of Asian Earth Sciences, 19(3): 333-345. https://doi.org/10.1016/s1367-9120(99)00066-8 doi: 10.1016/S1367-9120(99)00066-8
    Ba, J., Gong, S. L., Liao, F. X., et al., 2012. Re-determining the Intrusion Age for the Protolith of the Mohe Gneiss in the Quanji Massif. Geological Science Technology Information, 31: 98-101 (in Chinese with English Abstract)
    Bleeker, W., 2003. The Late Archean Record: A Puzzle in ca. 35 Pieces. Lithos, 71(2/3/4): 99-134. https://doi.org/10.1016/j.lithos.2003.07.003
    Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., et al., 2010. The Growth of the Continental Crust: Constraints from Zircon Hf-Isotope Data. Lithos, 119(3/4): 457-466. https://doi.org/10.1016/j.lithos.2010.07.024
    Berman, R. G., Pehrsson, S., Davis, W. J., et al., 2013. The Arrowsmith Orogeny: Geochronological and Thermobarometric Constraints on Its Extent and Tectonic Setting in the Rae Craton, with Implications for Pre-Nuna Supercontinent Reconstruction. Precambrian Research, 232: 44-69. https://doi.org/10.1016/j.precamres.2012.10.015
    Chen, N. S., Gong, S. L., Sun, M., et al., 2009. Precambrian Evolution of the Quanji Block, Northeastern Margin of Tibet: Insights from Zircon U-Pb and Lu-Hf Isotope Compositions. Journal of Asian Earth Sciences, 35(3/4): 367-376. https://doi.org/10.1016/j.jseaes.2008.10.004
    Chen, N. S., Liao, F. X., Wang, L., et al., 2013a. Late Paleoproterozoic Multiple Metamorphic Events in the Quanji Massif: Links with Tarim and North China Cratons and Implications for Assembly of the Columbia Supercontinent. Precambrian Research, 228: 102-116. https://doi.org/10.1016/j.precamres.2013.01.013
    Chen, N. S., Gong, S. L., Xia, X. P., et al., 2013b. Zircon Hf Isotope of Yingfeng Rapakivi Granites from the Quanji Massif and ~2.7 Ga Crustal Growth. Journal of Earth Science, 24(1): 29-41. https://doi.org/10.1007/s12583-013-0309-2
    Chen, N. S., Wang, Q. Y., Chen, Q., et al., 2007a. Components and Metamorphism of the Basements of the Qaidam and Oulongbuluke Micro-Continental Blocks, and a Tentative Interpretation of Paleocon-tinental Evolution in NW-Central China. Earth Science Frontiers, 14: 43-55 (in Chinese with English Abstract)
    Chen, N. S., Wang, X. Y., Zhang, H. F., et al., 2007b. Geochemistry and Nd-Sr-Pb Isotopic Compositions of Granitoids from Qaidam and Oulongbuluke Micro-Blocks, NW China: Constraints on Basement Nature and Tectonic Affinity. Earth Science, 32(1): 7-21 (in Chinese with English Abstract)
    Chen, N. S., Zhang, L., Sun, M., et al., 2012. U-Pb and Hf Isotopic Compositions of Detrital Zircons from the Paragneisses of the Quanji Massif, NW China: Implications for Its Early Tectonic Evolutionary History. Journal of Asian Earth Sciences, 54/55: 110-130. https://doi.org/10.1016/j.jseaes.2012.04.006
    Chen, X., Wang, X. L., Wang, D., et al., 2018. Contrasting Mantle-Crust Melting Processes within Orogenic Belts: Implications from Two Episodes of Mafic Magmatism in the Western Segment of the Neopro-terozoic Jiangnan Orogen in South China. Precambrian Research, 309: 123-137. https://doi.org/10.1016/j.precamres.2017.04.001
    Condie, K. C., Viljoen, M. J., Kable, E. J. D., 1977. Effects of Alteration on Element Distributions in Archean Tholeiites from the Barberton Greenstone Belt, South Africa. Contributions to Mineralogy and Petrology, 64(1): 75-89. https://doi.org/10.1007/bf00375286 doi: 10.1007/BF00375286
    Condie, K. C., Beyer, E., Belousova, E., et al., 2005. U-Pb Isotopic Ages and Hf Isotopic Composition of Single Zircons: The Search for Juvenile Precambrian Continental Crust. Precambrian Research, 139(1/2): 42-100. https://doi.org/10.1016/j.precamres.2005.04.006
    Condie, K. C., Belousova, E., Griffin, W. L., et al., 2009a. Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15(3/4): 228-242. https://doi.org/10.1016/j.gr.2008.06.001
    Condie, K. C., O'Neill, C., Aster, R. C., 2009b. Evidence and Implications for a Widespread Magmatic Shutdown for 250 my on Earth. Earth and Planetary Science Letters, 282(1/2/3/4): 294-298. https://doi.org/10.1016/j.epsl.2009.03.033
    Condie, K. C., Aster, R. C., 2010. Episodic Zircon Age Spectra of Orogenic Granitoids: The Supercontinent Connection and Continental Growth. Precambrian Research, 180(3/4): 227-236. https://doi.org/10.1016/j.precamres.2010.03.008
    Correia, C. T., Girardi, V. A. V., Tassinari, C. C. G., et al., 1997. Rb-Sr and Sm-Nd Geochronology of the Cana Brava Layered Mafic-Ultramafic Intrusion, Brazil, and Considerations Regarding Its Tectonic Evolution. Revista Brasileira de Geociências, 27(2): 163-168. https://doi.org/10.25249/0375-7536.1997163168
    Eglington, B. M., Reddy, S. M., Evans, D. A. D., 2009. The IGCP 509 Database System: Design and Application of a Tool to Capture and Illustrate Litho- and Chrono-Stratigraphic Information for Palaeoproterozoic Tectonic Domains, Large Igneous Provinces and Ore Deposits; With Examples from Southern Africa. Geological Society, London, Special Publications, 323(1): 27-47. https://doi.org/10.1144/sp323.2 doi: 10.1144/SP323.2
    Ernst, R. E., Bleeker, W., Söderlund, U., et al., 2013. Large Igneous Provinces and Supercontinents: Toward Completing the Plate Tectonic Revolution. Lithos, 174: 1-14. https://doi.org/10.1016/j.lithos.2013.02.017
    Ernst, R. E., Buchan, K. L., 1997. Giant Radiating Dyke Swarms: Their Use in Identifying Pre-Mesozoic Large Igneous Provinces and Mantle Plumes. In: Mahoney, J. J., Coffin, M. E., eds., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph, Vol. 100. American Geophysical Union, Washington D.C. 297-333. https://doi.org/10.1029/gm100p0297
    Ernst, R. E., Buchan, K. L., 2001. Large Mafic Magmatic Events Through Time and Links to Mantle Plume Heads. In: Ernst, R. E., Buchan, K. L., eds., Mantle Plumes: Their Identification through Time. Special Paper Geological Society of America, 352: 483-575. https://doi.org/10.1130/0-8137-2352-3.483
    Ernst, R. E., Wingate, M. T. D., Buchan, K. L., et al., 2008. Global Record of 1 600-700 Ma Large Igneous Provinces (LIPs): Implications for the Reconstruction of the Proposed Nuna (Columbia) and Rodinia Supercontinents. Precambrian Research, 160(1/2): 159-178. https://doi.org/10.1016/j.precamres.2007.04.019
    Ewart, A., Milner, S. C., Armstrong, R. A., et al., 1998. Etendeka Volcanism of the Goboboseb Mountains and Messum Igneous Complex, Namibia. Part Ⅰ: Geochemical Evidence of Early Cretaceous Tristan Plume Melts and the Role of Crustal Contamination in the Paraná-Etendeka CFB. Journal of Petrology, 39(2): 191-225. https://doi.org/10.1093/petroj/39.2.191
    Fugi, M. Y., 1989. REE Geochemistry and Sm/Nd Geochronology of the Cana Brava Complex, Brazil: [Dissertation]. Kobe University Japan, Kobe. 55
    Gill, R., 2010. Igneous Rocks and Processes a Practical Guide. John Wiley & Sons, Ltd., Publication, Oxford. 248
    Goldberg, A. S., 2010. Dyke Swarms as Indicators of Major Extensional Events in the 1.9-1.2 Ga Columbia Supercontinent. Journal of Geodynamics, 50(3/4): 176-190. https://doi.org/10.1016/j.jog.2010.01.017
    Gong, S. L., He, C., Wang, X. C., et al., 2019. No Plate Tectonic Shutdown in the Early Paleoproterozoic: Constraints from the ca. 2.4 Ga Granitoids in the Quanji Massif, NW China. Journal of Asian Earth Sciences, 172: 221-242. https://doi.org/10.1016/j.jseaes.2018.09.011
    Gong, S. L., Chen, N. S., Geng, H. Y., et al., 2014. Zircon Hf Isotopes and Geochemistry of the Early Paleoproterozoic High-Sr Low-Y Quartz-Diorite in the Quanji Massif, NW China: Crustal Growth and Tectonic Implications. Journal of Earth Science, 25(1): 74-86. https://doi.org/10.1007/s12583-014-0401-2
    Gong, S. L., Chen, N. S., Wang, Q. Y., et al., 2012. Early Paleoproterozoic Magmatism in the Quanji Massif, Northeastern Margin of the Qinghai-Tibet Plateau and Its Tectonic Significance: LA-ICPMS U-Pb Zircon Geochronology and Geochemistry. Gondwana Research, 21(1): 152-166. https://doi.org/10.1016/j.gr.2011.07.011
    Gust, D. A., Arculus, R. J., Kersting, A. B., 1997. Aspects of Magma Sources and Processes in the Honshu Arc. Canadian Mineralogist, 35(2): 347-365
    He, C., Gong, S. L., Wang, L., et al., 2018. Protracted Post-Collisional Magmatism during Plate Subduction Shutdown in Early Paleoproterozoic: Insights from Post-Collisional Granitoid Suite in NW China. Gondwana Research, 55: 92-111. https://doi.org/10.1016/j.gr.2017.11.009
    Hofmann, A. W., Jochum, K. P., 1996. Source Characteristics Derived from very Incompatible Trace Elements in Mauna Loa and Mauna Kea Basalts, Hawaii Scientific Drilling Project. Journal of Geophysical Research: Solid Earth, 101(B5): 11831-11839. https://doi.org/10.1029/95jb03701 doi: 10.1029/95JB03701
    Hollings, P., Kerrich, R., 2004. Geochemical Systematics of Tholeiites from the 2.86 Ga Pickle Crow Assemblage, Northwestern Ontario: Arc Basalts with Positive and Negative Nb-Hf Anomalies. Precambrian Research, 134(1/2): 1-20. https://doi.org/10.1016/j.precamres.2004.05.009
    Hou, G. T., 2012. Mechanism for Three Types of Mafic Dyke Swarms. Geoscience Frontiers, 3(2): 217-223. https://doi.org/10.1016/j.gsf. 2011.10.003 doi: 10.1016/j.gsf.2011.10.003
    Hu, C. S., Li, W. B., Huang, Q. Y., et al., 2017. Geochemistry and Petrogenesis of Late Carboniferous Igneous Rocks from Southern Mongolia: Implications for the Post-Collisional Extension in the Southeastern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 144: 141-154. https://doi.org/10.1016/j.jseaes.2017.01.011
    Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. https://doi.org/10.1139/e71-055
    Jensen, L. S., Pyke, D. R., 1982. Komatiites in the Ontario Portion of the Abitibi Belt. In: Arndt, N. T., Nisbet, E. G., eds., Komatiites. George Allen and Unwin, London. 147-157
    Jourdan, F., Bertrand, H., Schärer, U., et al., 2007. Major and Trace Element and Sr, Nd, Hf, and Pb Isotope Compositions of the Karoo Large Igneous Province, Botswana-Zimbabwe: Lithosphere vs. Mantle Plume Contribution. Journal of Petrology, 48(6): 1043-1077. https://doi.org/10.1093/petrology/egm010
    Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577-600. https://doi.org/10.1016/S0016-7037(96)00349-3
    La Flèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3/4): 115-136. https://doi.org/10.1016/s0009-2541(98)00002-3
    Lai, S. C., Qin, J. F., Li, Y. F., et al., 2012. Permian High Ti/Y Basalts from the Eastern Part of the Emeishan Large Igneous Province, Southwestern China: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 47: 216-230. https://doi.org/10.1016/j.jseaes.2011.07.010
    LeBas, M. J., LeMaitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745
    Lechler, P. J., Desilets, M. O., 1987. A Review of the Use of Loss on Ignition as a Measurement of Total Volatiles in Whole-Rock Analysis. Chemical Geology, 63(3/4): 341-344. https://doi.org/10.1016/0009-2541(87)90171-9
    Li, S. Z., Hao, D. F., Zhao, G. C., et al., 2004. Geochemical Features and Origin of Dandong Granite. Acta Petrologica Sinica, 20(6): 116-122 (in Chinese with English Abstract)
    Li, X. H., Sun, M., Wei, G. J., et al., 2000. Geochemical and Sm-Nd Isotopic Study of Amphibolites in the Cathaysia Block, Southeastern China: Evidence for an Extremely Depleted Mantle in the Paleoproterozoic. Precambrian Research, 102(3/4): 251-262. https://doi.org/10.1016/s0301-9268(00)00067-x
    Liao, F. X., Zhang, L., Wang Q. Y., et al., 2014. Geochronology and Geochemistry of the Dike-Swarm Garnet-Free Amphibolites in the Quanji Massif, NW China: Late Paleoproterozoic Back Arc Magmatism and Links to Amalgamation of the Tarim and North China Cratons and Assembly of the Columbia Supercontinent. Precambrian Research, 249: 33-56 doi: 10.1016/j.precamres.2014.04.015
    Lightfoot, P. C., Hawkesworth, C. J., Hergt, J., et al., 1993. Remobilisation of the Continental Lithosphere by a Mantle Plume: Major-, Trace-Element, and Sr-, Nd-, and Pb-Isotope Evidence from Picritic and Tholeiitic Lavas of the Noril'sk District, Siberian Trap, Russia. Contributions to Mineralogy and Petrology, 114(2): 171-188. https://doi.org/10.1007/bf00307754 doi: 10.1007/BF00307754
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Lu, S. N., 2002. Preliminary Study of Precambrian Geology in the North Tibet-Qinghai Plateau. Geological Publishing House, Beijing. 1-125 (in Chinese with English Abstract)
    Lu, S. N., Yu, H. F., Li, H. K., et al., 2006. Precambrian Key Geological Events in Northwestern China and Global Tectonic Implications: Studies on Key Issues of Precambrian Geology in China. Geological Publishing House, Beijing. 1-206 (in Chinese with English Abstract)
    Lu, S. N., Li, H. K., Zhang, C. L., et al., 2008a. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1/2): 94-107. https://doi.org/10.1016/j.precamres.2007. 04.025
    Lu, S. N., Zhao, G. C., Wang, H. C., et al., 2008b. Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton: a Review. Precambrian Research, 160(1/2): 77-93. https://doi.org/10.1016/j.precamres.2007.04.017
    Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relation-ships and some Implications for Crustal Evolution. Lithos, 79(1/2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048
    Mayborn, K. R., Lesher, C. E., 2004. Paleoproterozoic Mafic Dike Swarms of Northeast Laurentia: Products of Plumes or Ambient Mantle? Earth and Planetary Science Letters, 225(3/4): 305-317. https://doi.org/10.1016/j.epsl.2004.06.014
    Misra, S. N., 1971. Chemical Distinction of High-Grade Ortho- and Para-Metabasics. Norsk Geologisk Tidsskrift, 51: 311-316
    Mustafa, H. A., Wang, Q. Y., Chen, N. S., et al., 2016. Geochemistry of Metamafic Dykes from the Quanji Massif: Petrogenesis and Further Evidence for Oceanic Subduction, Late Paleoproterozoic, NW China. Journal of Earth Science, 27(4): 529-544. https://doi.org/10.1007/s12583-015-0659-z
    O'Neill, C., Lenardic, A., Moresi, L., et al., 2007. Episodic Precambrian Subduction. Earth and Planetary Science Letters, 262(3/4): 552-562. https://doi.org/10.1016/j.epsl.2007.04.056
    Partin, C. A., Bekker, A., Sylvester, P. J., et al., 2014. Filling in the Juvenile Magmatic Gap: Evidence for Uninterrupted Paleoproterozoic Plate Tectonics. Earth and Planetary Science Letters, 388: 123-133. https://doi.org/10.1016/j.epsl.2013.11.041
    Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe R. S., ed., Andesites: Orogenic Andesites and Related Rocks. John Wiley and Sons. 525-547
    Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290-300. https://doi.org/10.1016/0012-821x(73)90129-5 doi: 10.1016/0012-821X(73)90129-5
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
    Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
    Pearce, J. A., 1996. A User's Guide to Basalt Discrimination Diagrams. In: Wyman, D. A., ed., Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration. Geological Association of Canada, 12: 79-113
    Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/bf00375192 doi: 10.1007/BF00375192
    Pearce, T. H., Gorman, B. E., Birkett, T. C., 1977. The Relationship between Major Element Chemistry and Tectonic Environment of Basic and Intermediate Volcanic Rocks. Earth and Planetary Science Letters, 36(1): 121-132. https://doi.org/10.1016/0012-821x(77)90193-5 doi: 10.1016/0012-821X(77)90193-5
    Pehrsson, S. J., Berman, R. G., Eglington, B., et al., 2013. Two Neoarchean Supercontinents Revisited: The Case for a Rae Family of Cratons. Precambrian Research, 232: 27-43. https://doi.org/10.1016/j.precamres.2013.02.005
    Pehrsson, S. J., Buchan, K. L., Eglington, B. M., et al., 2014. Did Plate Tectonics Shutdown in the Palaeoproterozoic? A View from the Siderian Geologic Record. Gondwana Research, 26(3/4): 803-815. https://doi.org/10.1016/j.gr.2014.06.001
    Peng, P., Zhai, M. G., Guo, J. H., et al., 2007. Nature of Mantle Source Contributions and Crystal Differentiation in the Petrogenesis of the 1.78 Ga Mafic Dykes in the Central North China Craton. Gondwana Research, 12(1/2): 29-46. https://doi.org/10.1016/j.gr.2006.10.022
    Rino, S., Komiya, T., Windley, B. F., et al., 2004. Major Episodic Increases of Continental Crustal Growth Determined from Zircon Ages of River Sands; Implications for Mantle Overturns in the Early Precambrian. Physics of the Earth and Planetary Interiors, 146(1/2): 369-394. https://doi.org/10.1016/j.pepi.2003.09.024
    Rino, S., Kon, Y., Sato, W., et al., 2008. The Grenvillian and Pan-African Orogens: World's Largest Orogenies through Geologic Time, and Their Implications on the Origin of Superplume. Gondwana Research, 14(1/2): 51-72. https://doi.org/10.1016/j.gr.2008.01.001
    Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Reviews of Geophysics, 33(3): 267-309. https://doi.org/10.1029/95rg01302 doi: 10.1029/95RG01302
    Safonova, I., Maruyama, S., Hirata, T., et al., 2010. LA-ICP-MS U-Pb Ages of Detrital Zircons from Russia Largest Rivers: Implications for Major Granitoid Events in Eurasia and Global Episodes of Supercontinent Formation. Journal of Geodynamics, 50(3/4): 134-153. https://doi.org/10.1016/j.jog.2010.02.008
    Shellnutt, J. G., Jahn, B. M., 2011. Origin of Late Permian Emeishan Basaltic Rocks from the Panxi Region (SW China): Implications for the Ti-Classification and Spatial-Compositional Distribution of the Emeishan Flood Basalts. Journal of Volcanology and Geothermal Research, 199(1/2): 85-95. https://doi.org/10.1016/j.jvolgeores.2010.10.009
    Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1): 101-118. https://doi.org/10.1016/0012-821x(82)90120-0 doi: 10.1016/0012-821X(82)90120-0
    Silver, P. G., Behn, M. D., 2008. Intermittent Plate Tectonics? Science, 319(5859): 85-88. https://doi.org/10.1126/science.1148397
    Sklyarov, E. V., Gladkochub, D. P., Mazukabzov, A. M., et al., 2003. Neoproterozoic Mafic Dike Swarms of the Sharyzhalgai Metamorphic Massif, Southern Siberian Craton. Precambrian Research, 122(1/2/3/4): 359-376. https://doi.org/10.1016/s0301-9268(02)00219-x
    Sobolev, A. V., Hofmann, A. W., Nikogosian, I. K., 2000. Recycled Oceanic Crust Observed in 'Ghost Plagioclase' within the Source of Mauna Loa Lavas. Nature, 404(6781): 986-990. https://doi.org/10.1038/35010098
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
    Tanaka, T., Togashi, S., Kamioka, H., et al., 2000. JNdi-1: A Neodymium Isotopic Reference in Consistency with LaJolla Neodymium. Chemical Geology, 168(3/4): 279-281. https://doi.org/10.1016/s0009-2541(00)00198-4
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Oxford Press, Blackwell. 1-312
    Thompson, R. N., Morrison, M. A., 1988. Asthenospheric and Lower-Lithospheric Mantle Contributions to Continental Extensional Magmatism: An Example from the British Tertiary Province. Chemical Geology, 68(1/2): 1-15. https://doi.org/10.1016/0009-2541(88)90082-4
    Walker, K. R., Joplin, G. A., Lovering, J. F., et al., 1960. Metamorphic and Metasomatic Convergence of Basic Igneous Rocks and Lime-Magnesia Sediments of the Precambrian of North-Western Queensland. Journal of the Geological Society of Australia, 6(2): 149-177. https://doi.org/10.1080/00167615908728504
    Wan, Y. S., Xu, Z. Q., Yang, J. S., et al., 2001. Ages and Compositions of the Precambrian High-Grade Basement of the Qilian Terrane and Its Adjacent Areas. Acta Geologica Sinica (English Edition), 75(4): 375-384
    Wang, Y. J., Zhao, G. C., Fan, W. M., et al., 2007. LA-ICP-MS U-Pb Zircon Geochronology and Geochemistry of Paleoproterozoic Mafic Dykes from Western Shandong Province: Implications for Back-Arc Basin Magmatism in the Eastern Block, North China Craton. Precambrian Research, 154(1/2): 107-124. https://doi.org/10.1016/j.precamres. 2006.12.010
    Wang, Y. J., Zhao, G. C., Cawood, P. A., et al., 2008. Geochemistry of Paleoproterozoic (~1 770 Ma) Mafic Dikes from the Trans-North China Orogen and Tectonic Implications. Journal of Asian Earth Sciences, 33(1/2): 61-77. https://doi.org/10.1016/j.jseaes.2007.10.018
    Williams, H., Hoffman, P. F., Lewry, J. F., et al., 1991. Anatomy of North America: Thematic Geologic Portrayals of the Continent. Tectonophysics, 187(1/2/3): 117-134. https://doi.org/10.1016/0040-1951(91)90416-p
    Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London. 1-466
    Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
    Xia, L. Q., 2013. Supercontinent Tectonics, Mantle Dynamics and Response of Magmatism and Metallogeny. Northwestern Geology, 46: 1-38 (in Chinese with English Abstract)
    Xu, Z. Q., Yang, J. S., Wu, C. L., et al., 2006. Timing and Mechanism of Formation and Exhumation of the Northern Qaidam Ultrahigh-Pressure Metamorphic Belt. Journal of Asian Earth Sciences, 28(2/3): 160-173. https://doi.org/10.1016/j.jseaes.2005.09.016
    Yang, Q. Y., Santosh, M., 2015. Paleoproterozoic Arc Magmatism in the North China Craton: No Siderian Global Plate Tectonic Shutdown. Gondwana Research, 28(1): 82-105. https://doi.org/10.1016/j.gr.2014.08.005
    Zhang, C. L., Li, Z. X., Li, X. H., et al., 2009. Neoproterozoic Mafic Dyke Swarms at the Northern Margin of the Tarim Block, NW China: Age, Geochemistry, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 35(2): 167-179. https://doi.org/10.1016/j.jseaes.2009.02.003
    Zhang, J. X., Wan, Y. S., Xu, Z. Q., et al., 2001. Discovery of Basic Rock and Its Formation Age in Delingha Area, North Qaidam Mountains. Acta Petrologica Sinica, 17: 453-458 (in Chinese with English Abstract)
    Zhang, H. J., Wang, X. L., Wang, X., et al., 2016. U-Pb Zircon Ages of Tuff Beds from the Hongzaoshan Formation of the Quanji Group in the North Margin of the Qaidam Basin, NW China, and Their Geological Significances. Earth Science Frontiers, 23: 202-218 (in Chinese with English Abstract)
    Zhang, L., 2014. Petrogenesis of the (Meta-) Precambrian Clastic Sedimentary Rocks from the Quanji Massif, Northwestern China, and Tectonic Implications: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)
    Zhang, L., Liao, F.X., Ba, J., et al., 2011. Mineral Evolution and Zircon Geochronology of Mafic Enclave in Granitic Gneiss of the Quanji Block and Implications for Paleoproterozoic Regional Metamorphism. Earth Science Frontiers, 18(2): 79-84 (in Chinese with English Abstract)
    Zhang, L., Wang, Q. Y., Chen, N. S., et al., 2014. Geochemistry and Detrital Zircon U-Pb and Hf Isotopes of the Paragneiss Suite from the Quanji Massif, SE Tarim Craton: Implications for Paleoproterozoic Tectonics in NW China. Journal of Asian Earth Sciences, 95: 33-50. https://doi.org/10.1016/j.jseaes.2014.05.014
    Zhao, J. H., Hu, R. Z., Zhou, M. F., et al., 2007. Elemental and Sr-Nd- Pb Isotopic Geochemistry of Mesozoic Mafic Intrusions in Southern Fujian Province, SE China: Implications for Lithospheric Mantle Evolution. Geological Magazine, 144(6): 937-952. https://doi.org/10.1017/s0016756807003834 doi: 10.1017/S0016756807003834
    Zhao, J. H., Zhou, M. F., Zheng, J. P., 2010. Metasomatic Mantle Source and Crustal Contamination for the Formation of the Neoproterozoic Mafic Dike Swarm in the Northern Yangtze Block, South China. Lithos, 115(1/2/3/4): 177-189. https://doi.org/10.1016/j.lithos.2009.12.001
    Zhao, J. X., McCulloch, M. T., Korsch, R. J., 1994. Characterisation of a Plume-Related ~800 Ma Magmatic Event and Its Implications for Basin Formation in Central-Southern Australia. Earth and Planetary Science Letters, 121(3/4): 349-367. https://doi.org/10.1016/0012-821x(94)90077-9
    Zou, H. B., Zindler, A., Xu, X. S., et al., 2000. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology, 171(1/2): 33-47. https://doi.org/10.1016/s0009-2541(00)00243-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views(12) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return