Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 6
Dec 2021
Turn off MathJax
Article Contents
Ibrahem Yousef, Vladimir Morozov, Vladislav Sudakov, Ilyas Idrisov. Cementation Characteristics and Their Effect on Quality of the Upper Triassic, the Lower Cretaceous, and the Upper Cretaceous Sandstone Reservoirs, Euphrates Graben, Syria. Journal of Earth Science, 2021, 32(6): 1545-1562. doi: 10.1007/s12583-020-1065-8
Citation: Ibrahem Yousef, Vladimir Morozov, Vladislav Sudakov, Ilyas Idrisov. Cementation Characteristics and Their Effect on Quality of the Upper Triassic, the Lower Cretaceous, and the Upper Cretaceous Sandstone Reservoirs, Euphrates Graben, Syria. Journal of Earth Science, 2021, 32(6): 1545-1562. doi: 10.1007/s12583-020-1065-8

Cementation Characteristics and Their Effect on Quality of the Upper Triassic, the Lower Cretaceous, and the Upper Cretaceous Sandstone Reservoirs, Euphrates Graben, Syria

doi: 10.1007/s12583-020-1065-8
More Information
  • Corresponding author: Ibrahem Yousef, ibrahem.youseef@mail.ru
  • Received Date: 22 Jun 2020
  • Accepted Date: 22 Jul 2020
  • Publish Date: 30 Dec 2021
  • This article presents the results of cementation characteristics and their effect on sandstone reservoir quality of the Upper Triassic Mulussa F, the Lower Cretaceous Lower Rutbah, and the Upper Cretaceous Post Judea Sandstone formations in selected fields in the Euphrates Graben area, Syria. This study emphasises the role of cementation in the evaluation of the diagenetic history of the sediments, developing effective porosity, as well as evaluation of reservoirs stimulation procedures and potential for formation damage of the sandstone reservoirs. Quartz cement is present as well developed tabular or pyramidal syntaxial overgrowths. Kaolinite cement is present as vermicular aggregates which are most abundant within sandstones of the Mulussa F Formation. Carbonate cements include siderite and dolomite. Four lithofacies were identified within the studied formations; lithofacies-1 and 2 correspond to fluvial depositional environments, lithofacies-3 and 4 correspond to fluvial to estuarine channel environments. The Post Judea Sandstone and the Lower Rutbah reservoir units are typically lithofacies-3 sequences in which quartz overgrowths are the dominant cement. Because the total cement is more extensive in the Post Judea Sandstone Formation than in the Lower Rutbah Formation, resulting in high porosity (up to 26%) and permeability (6 000 mD), the reservoir quality is predicted to be best in the Post Judea Sandstone Formation. The reservoir units in the Mulussa F Formation contain the highest cement volumes comprised of early siderite and kaolinite, which, with the development of compaction-resisting quartz overgrowths and resultant compactional pore volume loss, has resulted in typically lower porosity being preserved than in the Lower Rutbah and Post Judea Sandstone formations.

     

  • loading
  • Ali, S. A., Clark, W. J., Moore, W. R., et al., 2010. Diagenesis and Reservoir Quality. Oilfield Review, 22(2): 14-27
    Alsdorf, D., Barazaugi, M., Litak, R., et al., 1995. The Intraplate Euphrates Fault System-Palmyrides Mountain Belt Junction and Relationship to Arabian Plate Boundary Tectonics. Annals of Geophysics, 38(3/4): 385-397. https://doi.org/10.4401/ag-4113
    Aung, L. L., Tertre, E., Petit, S., 2015. Effect of the Morphology of Synthetic Kaolinites on Their Sorption Properties. Journal of Colloid and Interface Science, 443: 177-186. https://doi.org/10.1016/j.jcis.2014.12.008
    Berner, Z. A., Puchelt, H., Nöltner, T., et al., 2013. Pyrite Geochemistry in the Toarcian Posidonia Shale of South-West Germany: Evidence for Contrasting Trace-Element Patterns of Diagenetic and Syngenetic Pyrites. Sedimentology, 60(2): 548-573. https://doi.org/10.1111/j.1365-3091.2012.01350.x
    Bjørlykke, K., Egeberg, P. K., 1993. Quartz Cementation in Sedimentary Basins. AAPG Bulletin, 77: 1538-1548. https://doi.org/10.1306/bdff8ee8-1718-11d7-8645000102c1865d
    Bjørlykke, K., Ramm, M., Saigal, G. C., 1989. Sandstone Diagenesis and Porosity Modification during Basin Evolution. Geologische Rundschau, 78(1): 243-268. https://doi.org/10.1007/bf01988363
    Brew, G., Barazangi, M., Sawaf, T., et al., 2000. Tectonic Map and Geologic Evolution of Syria: The Role of GIS. The Leading Edge, 19(2): 176-182. https://doi.org/10.1190/1.1438571
    Burley, S. D., 1993. Burial Diagenesis. In: The Encyclopedia of the Solid Earth Sciences. Blackwell Scientific Publications, Oxford. 72-76
    Burley, S. D., Kantorowicz, J. D., Waugh, B., 1985. Clastic Diagenesis. Geological Society, London, Special Publications, 18(1): 189-226. https://doi.org/10.1144/gsl.sp.1985.018.01.10
    Dalrymple, R. W., Choi, K., 2007. Morphologic and Facies Trends through the Fluvial-Marine Transition in Tide-Dominated Depositional Systems: A Schematic Framework for Environmental and Sequence-Stratigraphic Interpretation. Earth-Science Reviews, 81(3/4): 135-174. https://doi.org/10.1016/j.earscirev.2006.10.002
    Dickson, J. A. D., 1966. Carbonate Identification and Genesis as Revealed by Staining. Journal of Sedimentary Research, 36(4): 135-174. https://doi.org/10.1306/74d714f6-2b21-11d7-8648000102c1865d
    Grimm, R. P., Eriksson, K., Carbaugh, J., 2013. Tectono-Sedimentary Evolution of Early Pennsylvanian Alluvial Systems at the Onset of the Alleghanian Orogeny, Pocahontas Basin, Virginia. Basin Research, 25(4): 450-470. https://doi.org/10.1111/bre.12008
    Horn, J. D., Fielding, C. R., Joeckel, R. M., 2012. Revision of Platte River Alluvial Facies Model through Observations of Extant Channels and Barforms, and Subsurface Alluvial Valley Fills. Journal of Sedimentary Research, 82(2): 72-91. https://doi.org/10.2110/jsr.2012.9
    Houseknecht, D. W., 1984. Influence of Grain Size and Temperature on Intergranular Pressure Solution, Quartz Cementation, and Porosity in a Quartzose Sandstone. Journal of Sedimentary Research, 54(2): 348-361. https://doi.org/10.1306/212f8418-2b24-11d7-8648000102c1865d
    Houseknecht, D. W., 1988. Intergranular Pressure Solution in Four Quartzose Sandstones. SEPM Journal of Sedimentary Research, 58(2): 228-246. https://doi.org/10.1306/212f8d64-2b24-11d7-8648000102c1865d
    Jeans, C. V., 1989. Clay Diagenesis in Sandstones and Shales: An Introduction. Clay Minerals, 24(2): 127-136. https://doi.org/10.1180/claymin.1989.024.2.02
    Jiang, Y. F., Qian, H. D., Zhou, G. Q., 2016. Mineralogy and Geochemistry of Different Morphological Pyrite in Late Permian Coals, South China. Arabian Journal of Geosciences, 9(11): 1-18. https://doi.org/10.1007/s12517-016-2612-6
    Keelan, D. K., 1972. Core Analysis Techniques and Applications. In: SPE Eastern Regional Meeting, Nov. 8-9, 1972, Columbus, Ohio. SPE-4160-MS. https://doi.org/10.2118/4160-ms
    Larsen, G., Chilingar, G. V., 1983. Diagenesis of Sediments and Rocks. Developments in Sedimentology. Elsevier, Amsterdam. 1-29.
    Li, J. Q., Zhang, P. F., Lu, S. F., et al., 2019. Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales: An Investigation by BIB-SEM and X-Ray CT Methods. Journal of Earth Science, 30(4): 823-833. https://doi.org/10.1007/s12583-018-0835-z
    Liang, H. W., Zhao, X. Q., Mu, L. X., et al., 2019. Channel Sandstone Architecture Characterization by Seismic Simulation. Journal of Earth Science, 30(4): 799-808. https://doi.org/10.1007/s12583-017-0971-x
    Litak, R. K., Barazangi, M., Beauchamp, W., et al., 1997. Mesozoic-Cenozoic Evolution of the Intraplate Euphrates Fault System, Syria: Implications for Regional Tectonics. Journal of the Geological Society, 154(4): 653-666. https://doi.org/10.1144/gsjgs.154.4.0653
    Litak, R. K., Barazangi, M., Brew, G., et al., 1998. Structure and Evolution of the Petroliferous Euphrates Graben System, Southeast Syria. AAPG Bulletin, 82(6): 1173-1190. https://doi.org/10.1306/1d9bca2f-172d-11d7-8645000102c1865d
    Lovelock, P. E. R., 1984. A Review of the Tectonics of the Northern Middle East Region. Geological Magazine, 121(6): 577-587. https://doi.org/10.1017/s0016756800030727
    Ma, B. J., Wu, S. G., Mi, L. J., et al., 2018. Mixed Carbonate-Siliciclastic Deposits in a Channel Complex in the Northern South China Sea. Journal of Earth Science, 29(3): 707-720. https://doi.org/10.1007/s12583-018-0830-4
    Machel, H. G., 2005. Investigation of Burial Diagenesis in Carbonate Hydrocarbon Reservoir Rocks. Geoscience Canada, 32(3): 103-128 http://journals.lib.unb.ca/index.php/GC/article/download/2707/3146
    Miall, A. D., 2007. Fluvial Sedimentology. Canadian Society of Petroleum Geologists. 641-668
    Molenaar, N., Cyziene, J., Sliaupa, S., 2007. Quartz Cementation Mechanisms and Porosity Variation in Baltic Cambrian Sandstones. Sedimentary Geology, 195(3/4): 135-159. https://doi.org/10.1016/j.sedgeo.2006.07.009
    Morad, S., 1998. Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution. Carbonate Cementation in Sandstones. Blackwell Publishing Ltd., Oxford. 1-26. https://doi.org/10.1002/9781444304893.ch1
    Ning, W. B., Wang, J. P., Xiao, D., et al., 2019. Electron Probe Microanalysis of Monazite and Its Applications to U-Th-Pb Dating of Geological Samples. Journal of Earth Science, 30(5): 952-963. https://doi.org/10.1007/s12583-019-1020-8
    Pommer, M., Milliken, K., 2015. Pore Types and Pore-Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9): 1713-1744. https://doi.org/10.1306/03051514151
    Pye, K., Dickson, J. A. D., Schiavon, N., et al., 1990. Formation of Siderite-Mg-Calcite-Iron Sulphide Concretions in Intertidal Marsh and Sandflat Sediments, North Norfolk, England. Sedimentology, 37(2): 325-343. https://doi.org/10.1111/j.1365-3091.1990.tb00962.x
    Song, G. Z., Wang, H., Xu, M., et al., 2019. Sedimentary Facies, Sequence Stratigraphic Patterns in Pre-Cenozoic Inland Compressional Basin: Example from Early Yanshanian Succession of Eastern Yihezhuang Salient, Jiyang Depression, Bohai Bay Basin, China. Journal of Earth Science, 30(1): 194-205. https://doi.org/10.1007/s12583-018-0867-4
    Swart, P. K., Melim, L. A., 2000. The Origin of Dolomites in Tertiary Sediments from the Margin of Great Bahama Bank. Journal of Sedimentary Research, 70(3): 738-748. https://doi.org/10.1306/2dc40934-0e47-11d7-8643000102c1865d
    Syrian Petroleum Company (SPC), 1981. On the Status of Hydrocarbon Exploration in Syrian Arab Republic during 1971-1980. Hydrocarbon Exploration Seminar, 91-121. Organization of Arab Petroleum Exporting Countries, Kuwait
    Taylor, K. G., Macquaker, J. H. S., 2000. Early Diagenetic Pyrite Morphology in a Mudstone-Dominated Succession: The Lower Jurassic Cleveland Ironstone Formation, Eastern England. Sedimentary Geology, 131(1/2): 77-86. https://doi.org/10.1016/s0037-0738(00)00002-6
    Wang, X., Xu, X. X., Ye, Y., et al., 2019. In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite: Anharmonic Contribution to the Thermodynamic Properties. Journal of Earth Science, 30(5): 964-976. https://doi.org/10.1007/s12583-019-1236-7
    Warren, J., 2000. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth-Science Reviews, 52(1/2/3): 1-81. https://doi.org/10.1016/s0012-8252(00)00022-2
    Whitaker, F. F., Felce, G. P., Benson, G. S., et al., 2014. Simulating Flow through Forward Sediment Model Stratigraphies: Insights into Climatic Control of Reservoir Quality in Isolated Carbonate Platforms. Petroleum Geoscience, 20(1): 27-40. https://doi.org/10.1144/petgeo2013-026
    Worden, R. H., Morad, S., 2000. Quartz Cementation in Sandstones. 29 International Association of Sedimentologists, Special Publication. Blackwell Science Ltd. 1-20
    Yousef, I., Morozov, V., 2017a. Characteristics of Upper Triasic Sandstone Reservoirs in Syria Using Analysis of Laboratory Methods. Georesursy, 19(4): 356-363. https://doi.org/10.18599/grs.19.4.8
    Yousef, I., Morozov, V., 2017b. Structural and Mineralogical Characteristics of the Clay Minerals in Upper Triassic Sandstone Reservoir, Euphrates Graben, East Syria. Neftyanoe Khozyaystvo, (8): 68-71. https://doi.org/10.24887/0028-2448-2017-8-68-71
    Yousef, I., Morozov, V., El Kadi, M., 2020. Influence and Control of Post-Sedimentation Changes on Sandstone Reservoirs Quality, Example, Upper Triassic (Mulussa F Reservoir), and Lower Cretaceous (Rutbah Reservoir), Euphrates Graben, Syria. Russian Journal of Earth Sciences, 20(2): 1-24. https://doi.org/10.2205/2020es000706
    Yousef, I., Morozov, V., Al-Kadi, M., 2016. Sedimentological Review of Upper Triassic (Mulussa F Formation) in Euphrates-Graben Syria. Journal of Engineering and Applied Sciences 11(14): 3067-3079. https://doi.org/10.3923/jeasci.2016.3067.3079
    Yousef, I., Morozov, V., El Kadi, M., et al., 2021a. Tectonic and Erosion Features, and Their Influence on Zonal Distribution of the Upper Triassic and the Lower Cretaceous Sediments in the Euphrates Graben Area, Syria. Geodynamics and Tectonophysics 12(3): 608-627. https://doi.org/10.5800/gt-2021-12-3-0541
    Yousef, I., Morozov, V., El Kadi, M., et al., 2021b. Porosity Enhancement Potential through Dolomitization of Carbonate Reservoirs, a Case of Study from the Euphrates Graben Fields, East Syria. Petroleum. https://doi.org/10.1016/j.petlm.2021.05.005
    Yousef, I., Morozov, V., Sudakov, V., et al., 2021c. Sedimentary Diagenesis and Pore Characteristics for the Reservoir Evaluation of Domanik Formations (Semiluksk and Mendymsk) in the Central Part of Volga-Ural Petroleum Province. Petroleum Research. https://doi.org/10.1016/j.ptlrs.2021.08.002
    Yousef, I., Shipaeva, M., Morozov, V., et al., 2019. Lithofacies Analysis and Depositional Environments of the Upper Triassic and Lower Cretaceous Sediments in Euphrates Graben Syria. 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. 279-286. https://doi.org/10.5593/sgem2019/1.1
    Yousef, I., Sudakov, V., Morozov, V., et al., 2018a. Diagenetic Clay Minerals and Reservoir Quality of the Upper Triassic Sandstone in Euphrates Graben, East of Syria. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 18(1.4). 397-404. https://doi.org/10.5593/sgem2018/1.4/s06.052
    Yousef, I., Sudakov, V., Morozov, V., et al., 2018b. Structural Setting and Zonal Distribution of Upper Triassic-Lower Cretaceous Reservoirs in the Syrian Euphrates Graben. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 18(1.4). 811-818. https://doi.org/10.5593/sgem2018/1.4
    Yue, L., Jiao, Y. Q., Wu, L. Q., et al., 2020. Evolution and Origins of Pyrite in Sandstone-Type Uranium Deposits, Northern Ordos Basin, North-Central China, Based on Micromorphological and Compositional Analysis. Ore Geology Reviews, 118:103334. https://doi.org/10.1016/j.oregeorev.2020.103334
    Zhou, W. D., Xie, S. Y., Bao, Z. Y., et al., 2019. Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. Journal of Earth Science, 30(5): 879-892. https://doi.org/10.1007/s12583-019-1013-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(120) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return