Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 6
Dec 2020
Turn off MathJax
Article Contents
Songjie Wang, Lu Wang, Yue Ding, Zhuocheng Wang. Origin and Tectonic Implications of Post-Orogenic Lamprophyres in the Sulu Belt of China. Journal of Earth Science, 2020, 31(6): 1200-1215. doi: 10.1007/s12583-020-1070-y
Citation: Songjie Wang, Lu Wang, Yue Ding, Zhuocheng Wang. Origin and Tectonic Implications of Post-Orogenic Lamprophyres in the Sulu Belt of China. Journal of Earth Science, 2020, 31(6): 1200-1215. doi: 10.1007/s12583-020-1070-y

Origin and Tectonic Implications of Post-Orogenic Lamprophyres in the Sulu Belt of China

doi: 10.1007/s12583-020-1070-y
More Information
  • Corresponding author: Wang Lu, wanglu@cug.edu.cn
  • Received Date: 12 Jun 2020
  • Accepted Date: 26 Aug 2020
  • Publish Date: 18 Dec 2020
  • Lamprophyre dykes that crosscut different types of ultrahigh pressure (UHP) metamorphic rocks are widely distributed in the Triassic Sulu UHP orogenic belt. Although abundant studies have been performed on these dykes, their origin and petrogenesis remain topics of controversy. This study presents the results of a detailed field-based study of petrology, whole-rock geochemistry and zircon U-Pb and Lu-Hf isotopes on lamprophyre dykes exposed in the central Sulu UHP zone, aiming at shedding lights on their petrogenesis and providing clues on the geological evolution of eastern continental China during the Cretaceous. The lamprophyres are typically porphyritic, with phenocrysts dominantly composed of amphibole and clinopyroxene set in a lamprophyric matrix. The dykes have moderate SiO2 (47.70 wt.%-60.44 wt.%), variably high MgO (2.58 wt.%-8.28 wt.%) and Fe2O3T (4.88 wt.%-9.26 wt.%) contents with high Mg# of 49-66. Geochemically, they have enriched light rare earth element (REE) and flat heavy REE patterns ((La/Gd)N=5.14-10.56; (Dy/Yb)N=1.43-1.54) with negligible Eu anomalies (Eu/Eu*=0.83-1.10), and they show enrichment in large ion lithophile elements (e.g., Ba and K) but depletion in high-field strength elements (e.g., Nb, Ti and P). In-situ zircon U-Pb geochronology reveals that the lamprophyres have concordant ages of 120-115 Ma, demonstrating that the dykes emplaced in the Early Cretaceous. These zircons have εHf(t) values ranging from -26.0 to -11.0. Inherited zircons that occur in the dykes are dated to be Neoproterozoic, in line with the protolith ages of their host (i.e., the UHP rocks). An integration of these data allows us to propose that the lamprophyres were generated during the Cretaceous, by melting of subcontinental lithospheric mantle-derived metasomatite with enriched chemical compositions underneath the North China Craton. The metasomatite was formed mainly by peridotite-fluid/melt reactions, with the fluids/melts mainly liberated from subducted Yangtze continental crust during the Triassic. Regional extension, lithospheric thinning and mantle upwelling caused by rollback of the subducted paleo-Pacific plate is considered to account for the generation of the lamprophyres as well as the extensive arc-like magmatic rocks in eastern continental China during the Early Cretaceous.

     

  • loading
  • Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1/2/3):51-73. https://doi.org/10.1016/s0024-4937(99)00052-3
    Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1/2):1-24. https://doi.org/10.1016/j.lithos.2004.04.042
    Cai, Y. C., Fan, H. R., Santosh, M., et al., 2015. Subduction-Related Metasomatism of the Lithospheric Mantle beneath the Southeastern North China Craton:Evidence from Mafic to Intermediate Dykes in the Northern Sulu Orogen. Tectonophysics, 659:137-151. https://doi.org/10.1016/j.tecto.2015.07.037
    Corfu, F., Hanchar, J. M., Hoskin, P. W., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469
    Dai, F. Q., Zhao, Z. F., Dai, L. Q., et al., 2016. Slab-Mantle Interaction in the Petrogenesis of Andesitic Magmas:Geochemical Evidence from Postcollisional Intermediate Volcanic Rocks in the Dabie Orogen, China. Journal of Petrology, 57(6):1109-1134. https://doi.org/10.1093/petrology/egw034
    Dai, L. Q., Zhao, Z. F., Zheng, Y. F., et al., 2015. Source and Magma Mixing Processes in Continental Subduction Factory:Geochemical Evidence from Postcollisional Mafic Igneous Rocks in the Dabie Orogen. Geochemistry, Geophysics, Geosystems, 16(3):659-680. https://doi.org/10.1002/2014gc005620
    Deng, J., Liu, X. F., Wang, Q. F., et al., 2017. Isotopic Characterization and Petrogenetic Modeling of Early Cretaceous Mafic Diking-Lithospheric Extension in the North China Craton, Eastern Asia. GSA Bulletin, 129(11/12):1379-1407. https://doi.org/10.1130/b31609.1
    Du, L., Yuan, C., Li, X. P., et al., 2019. Petrogenesis and Geodynamic Implications of the Carboniferous Granitoids in the Dananhu Belt, Eastern Tianshan Orogenic Belt. Journal of Earth Science, 30(6):1243-1252. https://doi.org/10.1007/s12583-019-1256-3
    Duggen, S., Hoernle, K., van den Bogaard, P., et al., 2005. Post-Collisional Transition from Subduction-to Intraplate-Type Magmatism in the Westernmost Mediterranean:Evidence for Continental-Edge Delamination of Subcontinental Lithosphere. Journal of Petrology, 46(6):1155-1201. https://doi.org/10.1093/petrology/egi013
    Ernst, W. G., Tsujimori, T., Zhang, R., et al., 2007. Permo-Triassic Collision, Subduction-Zone Metamorphism, and Tectonic Exhumation along the East Asian Continental Margin. Annual Review of Earth and Planetary Sciences, 35(1):73-110. https://doi.org/10.1146/annurev.earth.35.031306.140146
    Feng, P., Wang, L., Brown, M., et al., 2020. Separating Multiple Episodes of Partial Melting in Polyorogenic Crust:An Example from the Haiyangsuo Complex, Northern Sulu Belt, Eastern China. GSA Bulletin, 132(5/6):1235-1256. https://doi.org/10.1130/b35210.1
    Feng, Q., Xu, Z. S., Zhang, Y., et al., 2019. Zircon U-Pb Geochronology of the Early Cretaceous Xiaozhushan Granite in Qingdao Jiaonan Uplift and Tectonic Evolution of Mesozoic Granite in Jiaodong Peninsula. Journal of Shandong University of Science and Technology (Natural Science), 38(2):1-13. https://doi.org/10.16452/j.cnki.sdkjzk.2019.02.001
    Ferrando, S., Frezzotti, M. L., Dallai, L., et al., 2005. Multiphase Solid Inclusions in UHP Rocks (Su-Lu, China):Remnants of Supercritical Silicate-Rich Aqueous Fluids Released during Continental Subduction. Chemical Geology, 223(1/2/3):68-81. https://doi.org/10.1016/j.chemgeo.2005.01.029
    Foley, S. F., Jackson, S. E., Fryer, B. J., et al., 1996. Trace Element Partition Coefficients for Clinopyroxene and Phlogopite in an Alkaline Lamprophyre from Newfoundland by LAM-ICP-MS. Geochimica et Cosmochimica Acta, 60(4):629-638. https://doi.org/10.1016/0016-7037(95)00422-x
    Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System:Geochemical Evidence from the Kivu Volcanic Province. Lithos, 48(1/2/3/4):237-262. https://doi.org/10.1016/s0024-4937(99)00031-6
    Ganzhorn, A. C., Labrousse, L., Prouteau, G., et al., 2014. Structural, Petrological and Chemical Analysis of Syn-Kinematic Migmatites:Insights from the Western Gneiss Region, Norway. Journal of Metamorphic Geology, 32(6):647-673. https://doi.org/10.1111/jmg.12084
    Gordon, S. M., Whitney, D. L., Teyssier, C., et al., 2013. U-Pb Dates and Trace-Element Geochemistry of Zircon from Migmatite, Western Gneiss Region, Norway:Significance for History of Partial Melting in Continental Subduction. Lithos, 170/171:35-53. https://doi.org/10.1016/j.lithos.2013.02.003
    Griffin, W. L., Andi, Z., O'reilly, S. Y., et al., 1998. Phanerozoic Evolution of the Lithosphere beneath the Sino-Korean Craton. In:Flower, M. F. J., Chung, S.-L., Lo, C.-H., et al., eds., Mantle Dynamics and Plate Interactions in East Asia, 27:107-126. https://doi.org/10.1029/gd027p0107
    Guo, F., Fan, W. M., Wang, Y. J., et al., 2004. Origin of Early Cretaceous Calc-Alkaline Lamprophyres from the Sulu Orogen in Eastern China:Implications for Enrichment Processes beneath Continental Collisional Belt. Lithos, 78(3):291-305. https://doi.org/10.1016/j.lithos.2004.05.001
    Guo, F., Fan, W. M., Wang, Y. J., et al., 2005. Petrogenesis and Tectonic Implications of Early Cretaceous High-K Calc-Alkaline Volcanic Rocks in the Laiyang Basin of the Sulu Belt, Eastern China. The Island Arc, 14(2):69-90. https://doi.org/10.1111/j.1440-1738.2005.00458.x
    Guo, F., Fan, W. M., Li, C. W., et al., 2014. Hf-Nd-O Isotopic Evidence for Melting of Recycled Sediments beneath the Sulu Orogen, North China. Chemical Geology, 381:243-258. https://doi.org/10.1016/j.chemgeo.2014.04.028
    Hacker, B. R., Ratschbacher, L., Webb, L., et al., 2000. Exhumation of Ultrahigh-Pressure Continental Crust in East Central China:Late Triassic-Early Jurassic Tectonic Unroofing. Journal of Geophysical Research:Solid Earth, 105(B6):13339-13364. https://doi.org/10.1029/2000jb900039
    Hacker, B. R., Wallis, S. R., Ratschbacher, L., et al., 2006. High-Temperature Geochronology Constraints on the Tectonic History and Architecture of the Ultrahigh-Pressure Dabie-Sulu Orogen. Tectonics, 25(5):TC5006. https://doi.org/10.1029/2005tc001937
    Hacker, B. R., Wallis, S. R., McWilliams, M. O., et al., 2009. 40Ar/39Ar Constraints on the Tectonic History and Architecture of the Ultrahigh-Pressure Sulu Orogen. Journal of Metamorphic Geology, 27(9):827-844. https://doi.org/10.1111/j.1525-1314.2009.00840.x
    Hegner, E., Kölbl-Ebert, M., Loeschke, J., 1998. Post-Collisional Variscan Lamprophyres (Black Forest, Germany):40Ar/39Ar Phlogopite Dating, Nd, Pb, Sr Isotope, and Trace Element Characteristics. Lithos, 45(1/2/3/4):395-411. https://doi.org/10.1016/s0024-4937(98)00041-3
    Hofmann, A. W., 1988. Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3):297-314. https://doi.org/10.1016/0012-821x(88)90132-x
    Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7):627-630. https://doi.org/10.1130/0091-7613(2000)28 < 627:reecoz > 2.0.co; 2 doi: 10.1130/0091-7613(2000)28<627:reecoz>2.0.co;2
    Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9):1391-1399. https://doi.org/10.1039/c2ja30078h
    Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2):119-146. https://doi.org/10.1016/s0009-2541(98)00197-1
    Ionov, D. A., Griffin, W. L., OʼReilly, S. Y., 1997. Volatile-Bearing Minerals and Lithophile Trace Elements in the Upper Mantle. Chemical Geology, 141(3/4):153-184. https://doi.org/10.1016/s0009-2541(97)00061-2
    Jiang, Y. H., Jiang, S. Y., Ling, H. F., et al., 2010. Petrogenesis and Tectonic Implications of Late Jurassic Shoshonitic Lamprophyre Dikes from the Liaodong Peninsula, NE China. Mineralogy and Petrology, 100(3/4):127-151. https://doi.org/10.1007/s00710-010-0124-8
    Kong, J. J., Niu, Y. L., Sun, P., et al., 2019. The Origin and Geodynamic Significance of the Mesozoic Dykes in Eastern Continental China. Lithos, 332/333:328-339. https://doi.org/10.1016/j.lithos.2019.02.024
    Korsakov, A. V., Hermann, J., 2006. Silicate and Carbonate Melt Inclusions Associated with Diamonds in Deeply Subducted Carbonate Rocks. Earth and Planetary Science Letters, 241(1/2):104-118. https://doi.org/10.1016/j.epsl.2005.10.037
    Kusky, T. M., Windley, B. F., Wang, L., et al., 2014. Flat Slab Subduction, Trench Suction, and Craton Destruction:Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 630:208-221. https://doi.org/10.1016/j.tecto.2014.05.028
    Labrousse, L., Prouteau, G., Ganzhorn, A. C., 2011. Continental Exhumation Triggered by Partial Melting at Ultrahigh Pressure. Geology, 39(12):1171-1174. https://doi.org/10.1130/g32316.1
    Li, X. Y., Li, S. Z., Suo, Y. H., et al., 2018. Early Cretaceous Diabases, Lamprophyres and Andesites-Dacites in Western Shandong, North China Craton:Implications for Local Delamination and Paleo-Pacific Slab Rollback. Journal of Asian Earth Sciences, 160:426-444. https://doi.org/10.1016/j.jseaes.2017.08.005
    Liang, Y. Y., Deng, J., Liu, X. F., et al., 2018. Major and Trace Element, and Sr Isotope Compositions of Clinopyroxene Phenocrysts in Mafic Dykes on Jiaodong Peninsula, Southeastern North China Craton:Insights into Magma Mixing and Source Metasomatism. Lithos, 302/303:480-495. https://doi.org/10.1016/j.lithos.2018.01.031
    Liu, F. L., Xu, Z. Q., Liou, J. G., 2004. Tracing the Boundary between UHP and HP Metamorphic Belts in the Southwestern Sulu Terrane, Eastern China:Evidence from Mineral Inclusions in Zircons from Metamorphic Rocks. International Geology Review, 46(5):409-425. https://doi.org/10.2747/0020-6814.46.5.409
    Liu, F. L., Gerdes, A., Liou, J. G., et al., 2006. SHRIMP U-Pb Zircon Dating from Sulu-Dabie Dolomitic Marble, Eastern China:Constraints on Prograde, Ultrahigh-Pressure and Retrograde Metamorphic Ages. Journal of Metamorphic Geology, 24(7):569-589. https://doi.org/10.1111/j.1525-1314.2006.00655.x
    Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism:A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1):1-39. https://doi.org/10.1016/j.jseaes.2010.08.007
    Liu, S., Zou, H. B., Hu, R. Z., et al., 2006. Mesozoic Mafic Dikes from the Shandong Peninsula, North China Craton:Petrogenesis and Tectonic Implications. Geochemical Journal, 40(2):181-195. https://doi.org/10.2343/geochemj.40.181
    Liu, S., Hu, R. Z., Gao, S., et al., 2008. U-Pb Zircon Age, Geochemical and Sr-Nd-Pb-Hf Isotopic Constraints on Age and Origin of Alkaline Intrusions and Associated Mafic Dikes from Sulu Orogenic Belt, Eastern China. Lithos, 106(3/4):365-379. https://doi.org/10.1016/j.lithos.2008.09.004
    Liu, S., Hu, R. Z., Gao, S., et al., 2009. Petrogenesis of Late Mesozoic Mafic Dykes in the Jiaodong Peninsula, Eastern North China Craton and Implications for the Foundering of Lower Crust. Lithos, 113(3/4):621-639. https://doi.org/10.1016/j.lithos.2009.06.035
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2):537-571. https://doi.org/10.1093/petrology/egp082
    Ma, L., Jiang, S. Y., Hou, M. L., et al., 2014. Geochemistry of Early Cretaceous Calc-Alkaline Lamprophyres in the Jiaodong Peninsula:Implication for Lithospheric Evolution of the Eastern North China Craton. Gondwana Research, 25(2):859-872. https://doi.org/10.1016/j.gr.2013.05.012
    Maruyama, S., Isozaki, Y., Kimura, G., et al., 1997. Paleogeographic Maps of the Japanese Islands:Plate Tectonic Synthesis from 750 Ma to the Present. The Island Arc, 6(1):121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
    Menzies, M. A., Fan, W. M., Zhang, M., 1993. Palaeozoic and Cenozoic Lithoprobes and the Loss of > 120 km of Archaean Lithosphere, Sino-Korean Craton, China. Geological Society, London, Special Publications, 76(1):71-81. https://doi.org/10.1144/gsl.sp.1993.076.01.04
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/igneous Rock System. Earth-Science Reviews, 37(3/4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
    Niu, Y. L., 2018. Geological Understanding of Plate Tectonics:Basic Concepts, Illustrations, Examples and New Perspectives. Global Tectonics and Metallogeny, 10(1):23-46. https://doi.org/10.1127/gtm/2014/0009
    Okay, A. I., Xu, S. T., Sengör, A. M. C., 1989. Coesite from the Dabie Shan Eclogites, Central China. European Journal of Mineralogy, 1(4):595-598. https://doi.org/10.1127/ejm/1/4/0595
    Patiño Douce, A. E., Beard, J. S., 1995. Dehydration-Melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 Kbar. Journal of Petrology, 36(3):707-738. https://doi.org/10.1093/petrology/36.3.707
    Qian, Q., Hermann, J., 2013. Partial Melting of Lower Crust at 10-15 kbar:Constraints on Adakite and TTG Formation. Contributions to Mineralogy and Petrology, 165(6):1195-1224. https://doi.org/10.1007/s00410-013-0854-9
    Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891
    Rock, N. M. S., 1987. The Nature and Origin of Lamprophyres:An Overview. Geological Society, London, Special Publications, 30(1):191-226. https://doi.org/10.1144/gsl.sp.1987.030.01.09
    Rubatto, D., 2017. Zircon:The Metamorphic Mineral. Reviews in Mineralogy and Geochemistry, 83(1):261-295. https://doi.org/10.2138/rmg.2017.83.9
    Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust:A Lower Crustal Perspective. Reviews of Geophysics, 33(3):267-309. https://doi.org/10.1029/95rg01302
    Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3:659. https://doi.org/10.1016/B0-08-043751-6/03016-4
    Schaltegger, U., Brack, P., 2007. Crustal-Scale Magmatic Systems during Intracontinental Strike-Slip Tectonics:U, Pb and Hf Isotopic Constraints from Permian Magmatic Rocks of the Southern Alps. International Journal of Earth Sciences, 96(6):1131-1151. https://doi.org/10.1007/s00531-006-0165-8
    Song, S. G., Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth:A Perspective. Science China Earth Sciences, 58(8):1284-1304. https://doi.org/10.1007/s11430-015-5102-x
    Song, Z. G., Han, C., Liu, H., et al., 2019. Early-Middle Ordovician Intermediate-Mafic and Ultramafic Rocks in Central Jilin Province, NE China:Geochronology, Origin, and Tectonic Implications. Mineralogy and Petrology, 113(3):393-415. https://doi.org/10.1007/s00710-019-00655-1
    Stepanov, A. S., Hermann, J., Rubatto, D., et al., 2016. Melting History of an Ultrahigh-Pressure Paragneiss Revealed by Multiphase Solid Inclusions in Garnet, Kokchetav Massif, Kazakhstan. Journal of Petrology, 167:1531-1554. https://doi.org/10.1093/petrology/egw049
    Stern, R. J., Scholl, D. W., 2010. Yin and Yang of Continental Crust Creation and Destruction by Plate Tectonic Processes. International Geology Review, 52(1):1-31. https://doi.org/10.1080/00206810903332322
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Sun, W. D., Ding, X., Hu, Y. H., et al., 2007. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 262(3/4):533-542. https://doi.org/10.1016/j.epsl.2007.08.021
    Tang, J., Zheng, Y. F., Wu, Y. B., et al., 2007. Geochronology and Geochemistry of Metamorphic Rocks in the Jiaobei Terrane:Constraints on Its Tectonic Affinity in the Sulu Orogen. Precambrian Research, 152(1/2):48-82. https://doi.org/10.1016/j.precamres.2006.09.001
    Tang, J., Zheng, Y. F., Gong, B., et al., 2008. Extreme Oxygen Isotope Signature of Meteoric Water in Magmatic Zircon from Metagranite in the Sulu Orogen, China:Implications for Neoproterozoic Rift Magmatism. Geochimica et Cosmochimica Acta, 72(13):3139-3169. https://doi.org/10.1016/j.gca.2008.04.017
    Tang, Y. J., Zhang, H. F., Deloule, E., et al., 2012. Slab-Derived Lithium Isotopic Signatures in Mantle Xenoliths from Northeastern North China Craton. Lithos, 149:79-90. https://doi.org/10.1016/j.lithos.2011.12.001
    Taylor, S. R., McLennan, S. M., Armstrong, R. L., et al., 1981. The Composition and Evolution of the Continental Crust:Rare Earth Element Evidence from Sedimentary Rocks (and Discussion). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 301(1461):381-399. https://doi.org/10.1098/rsta.1981.0119
    Wan, L., Zeng, Z. X., Kusky, T., et al., 2019. Geochemistry of Middle-Late Mesozoic Mafic Intrusions in the Eastern North China Craton:New Insights on Lithospheric Thinning and Decratonization. Gondwana Research, 73:153-174. https://doi.org/10.1016/j.gr.2019.04.004
    Wan, Y. S., Song, B., Liu, D. Y., et al., 2006. SHRIMP U-Pb Zircon Geochronology of Palaeoproterozoic Metasedimentary Rocks in the North China Craton:Evidence for a Major Late Palaeoproterozoic Tectonothermal Event. Precambrian Research, 149(3/4):249-271. https://doi.org/10.1016/j.precamres.2006.06.006
    Wang, L., Kusky, T. M., Li, S. Z., 2010. Structural Geometry of an Exhumed UHP Terrane in the Eastern Sulu Orogen, China:Implications for Continental Collisional Processes. Journal of Structural Geology, 32(4):423-444. https://doi.org/10.1016/j.jsg.2010.01.012
    Wang, L., Kusky, T. M., Polat, A., et al., 2014. Partial Melting of Deeply Subducted Eclogite from the Sulu Orogen in China. Nature Communications, 5(1):5604-5614. https://doi.org/10.1038/ncomms6604
    Wang, L., Wang, S. J., Brown, M., et al., 2018. On the Survival of Intergranular Coesite in UHP Eclogite. Journal of Metamorphic Geology, 36(2):173-194. https://doi.org/10.1111/jmg.12288
    Wang, S. J., Wang, L., Brown, M., et al., 2016. Multi-Stage Barite Crystallization in Partially Melted UHP Eclogite from the Sulu Belt, China. American Mineralogist, 101(3):564-579. https://doi.org/10.2138/am-2016-5384
    Wang, S. J., Wang, L., Brown, M., et al., 2017. Fluid Generation and Evolution during Exhumation of Deeply Subducted UHP Continental Crust:Petrogenesis of Composite Granite-Quartz Veins in the Sulu Belt, China. Journal of Metamorphic Geology, 35(6):601-629. https://doi.org/10.1111/jmg.12248
    Wang, S. J., Li, X. P., Schertl, H. P., et al., 2019. Petrogenesis of Early Cretaceous Andesite Dykes in the Sulu Orogenic Belt, Eastern China. Mineralogy and Petrology, 113(1):77-97. https://doi.org/10.1007/s00710-018-0636-1
    Wang, S. J., Schertl, H. P., Pang, Y. M., 2020a. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences, 57(2):249-266. https://doi.org/10.1139/cjes-2019-0003
    Wang, S. J., Wang, L., Brown, M., et al., 2020b. Petrogenesis of Leucosome Sheets in Migmatitic UHP Eclogites-Evolution from Silicate-Rich Supercritical Fluid to Hydrous Melt. Lithos, 360/361:105442. https://doi.org/10.1016/j.lithos.2020.105442
    Wang, X., Wang, Z. C., Cheng, H., et al., 2020. Early Cretaceous Lamprophyre Dyke Swarms in Jiaodong Peninsula, Eastern North China Craton, and Implications for Mantle Metasomatism Related to Subduction. Lithos, 368-369:105593. https://doi.org/10.1016/j.lithos.2020.105593
    Wang, X. M., Liou, J. G., 1991. Regional Ultrahigh-Pressure Coesite-Bearing Eclogitic Terrane in Central China:Evidence from Country Rocks, Gneiss, Marble, and Metapelite. Geology, 19(9):933-936. https://doi.org/10.1130/0091-7613(1991)019 < 0933:rupcbe > 2.3.co; 2 doi: 10.1130/0091-7613(1991)019<0933:rupcbe>2.3.co;2
    Wei, G. D., Kong, F. M., Li, X. P., et al., 2020. Metamorphic evolution of ultrahigh-temperature mafic granulites from the Xiwangshan area, Trans-North China Craton. Journal of Shandong University of Science and Technology (Natural Science), 39(2):24-35. https://doi.org/10.16452/j.cnki.sdkjzk.2020.02.003
    Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2
    Windley, B. F., Maruyama, S., Xiao, W. J., 2010. Delamination/thinning of Sub-Continental Lithospheric Mantle under Eastern China:The Role of Water and Multiple Subduction. American Journal of Science, 310(10):1250-1293. https://doi.org/10.2475/10.2010.03
    Wu, F. Y., Lin, J. Q., Wilde, S. A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2):103-119. https://doi.org/10.1016/j.epsl.2005.02.019
    Wu, F. Y., Yang, J. H., Xu, Y. G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47(1):173-195. https://doi.org/10.1146/annurev-earth-053018-060342
    Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15):1554-1569. https://doi.org/10.1007/bf03184122
    Wu, Y. B., Zheng, Y. F., 2013. Tectonic Evolution of a Composite Collision Orogen:An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4):1402-1428. https://doi.org/10.1016/j.gr.2012.09.007
    Xia, B., Brown, M., Wang, L., et al., 2018. Phase Equilibrium Modeling of MT-UHP Eclogite:A Case Study of Coesite Eclogite at Yangkou Bay, Sulu Belt, Eastern China. Journal of Petrology, 59(7):1253-1280. https://doi.org/10.1093/petrology/egy060
    Xiong, F. H., Meng, Y. K., Yang, J. S., et al., 2020. Geochronology and Petrogenesis of the Mafic Dykes from the Purang Ophiolite:Implications for Evolution of the Western Yarlung-Tsangpo Suture Zone, Southwestern Tibet. Geoscience Frontiers, 11(1):277-292. https://doi.org/10.1016/j.gsf.2019.05.006
    Xu, S. T., Su, W., Liu, Y. C., et al., 1992. Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting. Science, 256(5053):80-82. https://doi.org/10.1126/science.256.5053.80
    Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2005. Petrogenesis of Early Cretaceous Intrusions in the Sulu Ultrahigh-Pressure Orogenic Belt, East China and Their Relationship to Lithospheric Thinning. Chemical Geology, 222(3/4):200-231. https://doi.org/10.1016/j.chemgeo.2005.07.006
    Ye, K., Cong, B. L., Ye, D. N., 2000. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 407(6805):734-736. https://doi.org/10.1038/35037566
    Yoshida, D., Hirajima, T., Ishiwatari, A., 2004. Pressure-Temperature Path Recorded in the Yangkou Garnet Peridotite, in Su-Lu Ultrahigh-Pressure Metamorphic Belt, Eastern China. Journal of Petrology, 45(6):1125-1145. https://doi.org/10.1093/petrology/egh008
    Zhang, J., Zhao, Z. F., Zheng, Y. F., et al., 2012. Zircon Hf-O Isotope and Whole-Rock Geochemical Constraints on Origin of Postcollisional Mafic to Felsic Dykes in the Sulu Orogen. Lithos, 136-139:225-245. https://doi.org/10.1016/j.lithos.2011.06.006
    Zhang, R. Y., Liou, J. G., 1997. Partial Transformation of Gabbro to Coesite-Bearing Eclogite from Yangkou, the Sulu Terrane, Eastern China. Journal of Metamorphic Geology, 15(2):183-202. https://doi.org/10.1111/j.1525-1314.1997.00012.x
    Zhang, R. Y., Liou, J. G., Ernst, W. G., 2009. The Dabie-Sulu Continental Collision Zone:A Comprehensive Review. Gondwana Research, 16(1):1-26. https://doi.org/10.1016/j.gr.2009.03.008
    Zhao, D. P., Ohtani, E., 2009. Deep Slab Subduction and Dehydration and Their Geodynamic Consequences:Evidence from Seismology and Mineral Physics. Gondwana Research, 16(3/4):401-413. https://doi.org/10.1016/j.gr.2009.01.005
    Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2005. Zircon U-Pb Age, Element and C-O Isotope Geochemistry of Post-Collisional Mafic-Ultramafic Rocks from the Dabie Orogen in East-Central China. Lithos, 83(1/2):1-28. https://doi.org/10.1016/j.lithos.2004.12.014
    Zhao, Z. F., Zheng, Y. F., Zhang, J., et al., 2012. Syn-Exhumation Magmatism during Continental Collision:Evidence from Alkaline Intrusives of Triassic Age in the Sulu Orogen. Chemical Geology, 328:70-88. https://doi.org/10.1016/j.chemgeo.2011.11.002
    Zhao, Z. F., Dai, L. Q., Zheng, Y. F., 2013. Postcollisional Mafic Igneous Rocks Record Crust-Mantle Interaction during Continental Deep Subduction. Scientific Reports, 3(1):3413. https://doi.org/10.1038/srep03413
    Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
    Zheng, Y. F., Chen, Y. X., Dai, L. Q., et al., 2015. Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Science China Earth Sciences, 58(7):1045-1069. https://doi.org/10.1007/s11430-015-5097-3
    Zheng, Y. F., Xu, Z., Zhao, Z. F., et al., 2018. Mesozoic Mafic Magmatism in North China:Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences, 61(4):353-385. https://doi.org/10.1007/s11430-017-9160-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views(474) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return