Ayalew, L., Yamagishi, H., 2005. The Application of GIS-Based Logistic Regression for Landslide Susceptibility Mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1/2):15-31. https://doi.org/10.1016/j.geomorph.2004.06.010 |
Bakillah, M., Liang, S., Mobasheri, A., et al., 2014. Fine-Resolution Population Mapping Using OpenStreetMap Points-of-Interest. International Journal of Geographical Information Science, 28(9):1940-1963. https://doi.org/10.1080/13658816.2014.909045 |
Breiman, L., 2001. Random Forests. Machine Learning, 45(1):5-32. https://doi.org/10.1023/a:1010933404324 |
Can, A., Dagdelenler, G., Ercanoglu, M., et al., 2017. Landslide Susceptibility Mapping at Ovacık-Karabük (Turkey) Using Different Artificial Neural Network Models:Comparison of Training Algorithms. Bulletin of Engineering Geology and the Environment, 78(1):89-102. https://doi.org/10.1007/s10064-017-1034-3 |
Chen, W., Peng, J. B., Hong, H. Y., et al., 2018a. Landslide Susceptibility Modelling Using GIS-Based Machine Learning Techniques for Chongren County, Jiangxi Province, China. Science of the Total Environment, 626:1121-1135. https://doi.org/10.1016/j.scitotenv.2018.01.124 |
Chen, W., Yan, X. S., Zhao, Z., et al., 2018b. Spatial Prediction of Landslide Susceptibility Using Data Mining-Based Kernel Logistic Regression, Naive Bayes and RBFNetwork Models for the Long County Area (China). Bulletin of Engineering Geology and the Environment, 78(1):247-266. https://doi.org/10.1007/s10064-018-1256-z |
Chen, W., Zhang, S., Li, R. W., et al., 2018c. Performance Evaluation of the GIS-Based Data Mining Techniques of Best-First Decision Tree, Random Forest, and Naïve Bayes Tree for Landslide Susceptibility Modeling. Science of the Total Environment, 644:1006-1018. https://doi.org/10.1016/j.scitotenv.2018.06.389 |
Das, I., Stein, A., Kerle, N., et al., 2012. Landslide Susceptibility Mapping along Road Corridors in the Indian Himalayas Using Bayesian Logistic Regression Models. Geomorphology, 179:116-125. https://doi.org/10.1016/j.geomorph.2012.08.004 |
Dou, J., Yunus, A. P., Bui, D. T., et al., 2019a. Improved Landslide Assessment Using Support Vector Machine with Bagging, Boosting, and Stacking Ensemble Machine Learning Framework in a Mountainous Watershed, Japan. Landslides, 17(3):641-658. https://doi.org/10.1007/s10346-019-01286-5 |
Dou, J., Yunus, A. P., Bui, D. T., et al., 2019b. Assessment of Advanced Random Forest and Decision Tree Algorithms for Modeling Rainfall-Induced Landslide Susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of the Total Environment, 662:332-346. https://doi.org/10.1016/j.scitotenv.2019.01.221 |
Fourniadis, I. G., Liu, J. G., Mason, P. J., 2007. Landslide Hazard Assessment in the Three Gorges Area, China, Using ASTER Imagery:Wushan-Badong. Geomorphology, 84(1/2):126-144. https://doi.org/10.1016/j.geomorph.2006.07.020 |
Han, J. W., Kamber, M., 2006. Data Mining:Concepts and Techniques. Data Mining Concepts Models Methods & Algorithms Second Edition, 5(4):1-18. https://doi.org/10.1002/9781118029145.ch1 |
He, S. W., Pan, P., Dai, L., et al., 2012. Application of Kernel-Based Fisher Discriminant Analysis to Map Landslide Susceptibility in the Qinggan River Delta, Three Gorges, China. Geomorphology, 171/172:30-41. https://doi.org/10.1016/j.geomorph.2012.04.024 |
Heckmann, T., Gegg, K., Gegg, A., et al., 2014. Sample Size Matters:Investigating the Effect of Sample Size on a Logistic Regression Susceptibility Model for Debris Flows. Natural Hazards and Earth System Sciences, 14(2):259-278. https://doi.org/10.5194/nhess-14-259-2014 |
Hong, H. Y., Naghibi, S. A., Pourghasemi, H. R., et al., 2016a. GIS-Based Landslide Spatial Modeling in Ganzhou City, China. Arabian Journal of Geosciences, 9(2):1-26. https://doi.org/10.1007/s12517-015-2094-y |
Hong, H. Y., Pourghasemi, H. R., Pourtaghi, Z. S., 2016b. Landslide Susceptibility Assessment in Lianhua County (China):A Comparison between a Random Forest Data Mining Technique and Bivariate and Multivariate Statistical Models. Geomorphology, 259:105-118. https://doi.org/10.1016/j.geomorph.2016.02.012 |
Huang, F. M., Yin, K. L., Huang, J. S., et al., 2017. Landslide Susceptibility Mapping Based on Self-Organizing-Map Network and Extreme Learning Machine. Engineering Geology, 223:11-22. https://doi.org/10.1016/j.enggeo.2017.04.013 |
Huang, Y., Zhao, L., 2018. Review on Landslide Susceptibility Mapping Using Support Vector Machines. CATENA, 165:520-529. https://doi.org/10.1016/j.catena.2018.03.003 |
Hussin, H. Y., Zumpano, V., Reichenbach, P., et al., 2016. Different Landslide Sampling Strategies in a Grid-Based Bi-Variate Statistical Susceptibility Model. Geomorphology, 253:508-523. https://doi.org/10.1016/j.geomorph.2015.10.030 |
Jiang, P., Chen, J. J., 2016. Displacement Prediction of Landslide Based on Generalized Regression Neural Networks with K-Fold Cross-Validation. Neurocomputing, 198:40-47. https://doi.org/10.1016/j.neucom.2015.08.118 |
Jin, Y. F., Yin, Z. Y., Zhou, W. H., et al., 2019. Bayesian Model Selection for Sand with Generalization Ability Evaluation. International Journal for Numerical and Analytical Methods in Geomechanics, 43(14):2305-2327. https://doi.org/10.1002/nag.2979 |
Kalantar, B., Pradhan, B., Naghibi, S. A., et al., 2017. Assessment of the Effects of Training Data Selection on the Landslide Susceptibility Mapping:A Comparison between Support Vector Machine (SVM), Logistic Regression (LR) and Artificial Neural Networks (ANN). Geomatics, Natural Hazards and Risk, 9(1):49-69. https://doi.org/10.1080/19475705.2017.1407368 |
Lee, S., 2019. Current and Future Status of GIS-Based Landslide Susceptibility Mapping:A Literature Review. Korean Journal of Remote Sensing, 35:179-193. https://doi.org/10.7780/kjrs.2019.35.1.12 |
Li, C. D., Fu, Z. Y., Wang, Y., et al., 2019. Susceptibility of Reservoir-Induced Landslides and Strategies for Increasing the Slope Stability in the Three Gorges Reservoir Area:Zigui Basin as an Example. Engineering Geology, 261:105279. https://doi.org/10.1016/j.enggeo.2019.105279 |
Liu, Z. H., Zhan, W. F., Lai, J. M., et al., 2019. Balancing Prediction Accuracy and Generalization Ability:A Hybrid Framework for Modelling the Annual Dynamics of Satellite-Derived Land Surface Temperatures. ISPRS Journal of Photogrammetry and Remote Sensing, 151:189-206. https://doi.org/10.1016/j.isprsjprs.2019.03.013 |
Moore, I. D., Wilson, J. P., 1992. Length-Slope Factors for the Revised Universal Soil Loss Equation:Simplified Method of Estimation. Journal of Soil and Water Conservation, 47(5):423-428. https://doi.org/10.1073/pnas.91.1.271 |
Pandey, V. K., Pourghasemi, H. R., Sharma, M. C., 2018. Landslide Susceptibility Mapping Using Maximum Entropy and Support Vector Machine Models along the Highway Corridor, Garhwal Himalaya. Geocarto International, 35(2):168-187. https://doi.org/10.1080/10106049.2018.1510038 |
Pham, B. T., Prakash, I., Khosravi, K., et al., 2018. A Comparison of Support Vector Machines and Bayesian Algorithms for Landslide Susceptibility Modelling. Geocarto International, 34(13):1385-1407. https://doi.org/10.1080/10106049.2018.1489422 |
Pourghasemi, H. R., Mohammady, M., Pradhan, B., 2012. Landslide Susceptibility Mapping Using Index of Entropy and Conditional Probability Models in GIS:Safarood Basin, Iran. CATENA, 97:71-84. https://doi.org/10.1016/j.catena.2012.05.005 |
Reichenbach, P., Rossi, M., Malamud, B. D., et al., 2018. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Science Reviews, 180:60-91. https://doi.org/10.1016/j.earscirev.2018.03.001 |
Sahin, E. K., Colkesen, I., Kavzoglu, T., 2018. A Comparative Assessment of Canonical Correlation Forest, Random Forest, Rotation Forest and Logistic Regression Methods for Landslide Susceptibility Mapping. Geocarto International, 35(4):341-363. https://doi.org/10.1080/10106049.2018.1516248 |
Sestraș, P., Bilașco, Ș., Roșca, S., et al., 2019. Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area. Sustainability, 11(5):1362. https://doi.org/10.3390/su11051362 |
Shirzadi, A., Bui, D. T., Pham, B. T., et al., 2017. Shallow Landslide Susceptibility Assessment Using a Novel Hybrid Intelligence Approach. Environmental Earth Sciences, 76(2). https://doi.org/10.1007/s12665-016-6374-y |
Silalahi, F. E. S., Pamela, Arifianti, Y., et al., 2019. Landslide Susceptibility Assessment Using Frequency Ratio Model in Bogor, West Java, Indonesia. Geoscience Letters, 6(1). https://doi.org/10.1186/s40562-019-0140-4 |
Sun, D. L., Wen, H. J., Wang, D. Z., et al., 2020. A Random Forest Model of Landslide Susceptibility Mapping Based on Hyperparameter Optimization Using Bayes Algorithm. Geomorphology, 362:107201. https://doi.org/10.1016/j.geomorph.2020.107201 |
Taalab, K., Cheng, T., Zhang, Y., 2018. Mapping Landslide Susceptibility and Types Using Random Forest. Big Earth Data, 2(2):159-178. https://doi.org/10.1080/20964471.2018.1472392 |
Tian, Y. Y., Xu, C., Hong, H. Y., et al., 2018. Mapping Earthquake-Triggered Landslide Susceptibility by Use of Artificial Neural Network (ANN) Models:An Example of the 2013 Minxian (China) Mw 5.9 Event. Geomatics, Natural Hazards and Risk, 10(1):1-25. https://doi.org/10.1080/19475705.2018.1487471 |
Tian, Y. Y., Xu, C., Ma, S. Y., et al., 2019. Inventory and Spatial Distribution of Landslides Triggered by the 8th August 2017 MW 6.5 Jiuzhaigou Earthquake, China. Journal of Earth Science, 30(1):206-217. https://doi.org/10.1007/s12583-018-0869-2 |
Tsangaratos, P., Ilia, I., Hong, H. Y., et al., 2016. Applying Information Theory and GIS-Based Quantitative Methods to Produce Landslide Susceptibility Maps in Nancheng County, China. Landslides, 14(3):1091-1111. https://doi.org/10.1007/s10346-016-0769-4 |
Wang, Y., Sun, D. L., Wen, H. J., et al., 2020. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China). International Journal of Environmental Research and Public Health, 17(12):4206. https://doi.org/10.3390/ijerph17124206 |
Wang, Y. M., Wu, X. L., Chen, Z. J., et al., 2019. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. International Journal of Environmental Research and Public Health, 16(3):368. https://doi.org/10.3390/ijerph16030368 |
Wen, H. J., Xie, P., Xiao, P., et al., 2016. Rapid Susceptibility Mapping of Earthquake-Triggered Slope Geohazards in Lushan County by Combining Remote Sensing with the AHP Model Developed for the Wenchuan Earthquake. Bulletin of Engineering Geology and the Environment, 76(3):909-921. https://doi.org/10.1007/s10064-016-0957-4 |
Wen, H. J., Wang, G. L., Huang, X. L., 2017. A Preliminary Evaluation Method of Slope Stability Based on Topographic Map and Geological Map. Chinese patent No 2017105719823 (in Chinese) |
Wu, W. Y., Xu, C., Wang, X. Q., et al., 2020. Landslides Triggered by the 3 August 2014 Ludian (China) Mw 6.2 Earthquake:An Updated Inventory and Analysis of Their Spatial Distribution. Journal of Earth Science, 31(4):853-866. https://doi.org/10.1007/s12583-020-1297-7 |
Xie, P., Wen, H. J., Ma, C., et al., 2018. Application and Comparison of Logistic Regression Model and Neural Network Model in Earthquake-Induced Landslides Susceptibility Mapping at Mountainous Region, China. Geomatics, Natural Hazards and Risk, 9(1):501-523. https://doi.org/10.1080/19475705.2018.1451399 |
Xu, C., Xu, X. W., Dai, F. C., et al., 2012. Landslide Hazard Mapping Using GIS and Weight of Evidence Model in Qingshui River Watershed of 2008 Wenchuan Earthquake Struck Region. Journal of Earth Science, 23(1):97-120. https://doi.org/10.1007/s12583-012-0236-7 |
Yao, Y., Liu, X. P., Li, X., et al., 2017. Mapping Fine-Scale Population Distributions at the Building Level by Integrating Multisource Geospatial Big Data. International Journal of Geographical Information Science, 13(1):1-25. https://doi.org/10.1080/13658816.2017.1290252 |
Yu, L. B., Cao, Y., Zhou, C., et al., 2019. Landslide Susceptibility Mapping Combining Information Gain Ratio and Support Vector Machines:A Case Study from Wushan Segment in the Three Gorges Reservoir Area, China. Applied Sciences, 9(22):4756. https://doi.org/10.3390/app9224756 |
Zêzere, J. L., Pereira, S., Melo, R., et al., 2017. Mapping Landslide Susceptibility Using Data-Driven Methods. Science of the Total Environment, 589:250-267. https://doi.org/10.1016/j.scitotenv.2017.02.188 |
Zhang, T. Y., Han, L., Zhang, H., et al., 2019. GIS-Based Landslide Susceptibility Mapping Using Hybrid Integration Approaches of Fractal Dimension with Index of Entropy and Support Vector Machine. Journal of Mountain Science, 16(6):1275-1288. https://doi.org/10.1007/s11629-018-5337-z |
Zhou, Q. F., Zhou, H., Zhou, Q. Q., et al., 2014. Structure Damage Detection Based on Random Forest Recursive Feature Elimination. Mechanical Systems and Signal Processing, 46(1):82-90. https://doi.org/10.1016/j.ymssp.2013.12.013 |
Zhu, A. X., Miao, Y. M., Wang, R. X., et al., 2018. A Comparative Study of an Expert Knowledge-Based Model and Two Data-Driven Models for Landslide Susceptibility Mapping. CATENA, 166:317-327. https://doi.org/10.1016/j.catena.2018.04.003 |