Citation: | Dawei Cheng, Chuanmin Zhou, Zhijie Zhang, Xuanjun Yuan, Yinhe Liu, Xingyu Chen. Paleo-Environment Reconstruction of the Middle Permian Lucaogou Formation, Southeastern Junggar Basin, NW China: Implications for the Mechanism of Organic Matter Enrichment in Ancient Lake. Journal of Earth Science, 2022, 33(4): 963-976. doi: 10.1007/s12583-020-1073-8 |
The Middle Permian Lucaogou Formation is the source rock and the main oil shale producing formation in the southeastern Junggar Basin. This study focused on the Lucaogou Formation exposed in two outcrop sections on the northern flank of the Bogda Mountain, namely the Jingjingzigou and Dalongkou sections. Here, we present integrated analysis of the sedimentology, major and trace elements, mineral components and total organic carbon contents. The paleo-environment was reconstructed including provenance, redox conditions, paleo-salinity, chemical weathering intensity and primary organic matter productivity. The results showed that the upper and lower units were deposited in distinct depositional environments with different organic matter accumulation mechanisms. The lower unit was characterized by low lake level, dry climate, fresh-brackish and well-oxygenated water. While during the deposition of the upper unit the lake level rose, climate turned wetter and the bottom water became less oxidized and much saltier. The mechanism of the organic matter accumulation is different for these two units. The preserved organic matters were mainly controlled by the primary productivity in the lower unit and by the redox conditions in the upper unit.
Algeo, T. J., Hinnov, L., Moser, J., et al., 2010. Changes in Productivity and Redox Conditions in the Panthalassic Ocean during the Latest Permian. Geology, 38(2): 187–190. https://doi.org/10.1130/g30483.1 |
Algeo, T. J., Ingall, E., 2007. Sedimentary Corg: P Ratios, Paleocean Ventilation, and Phanerozoic Atmospheric pO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3/4): 130–155. https://doi.org/10.1016/j.palaeo.2007.02.029 |
Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): PA1016. https://doi.org/10.1029/2004pa001112 |
Algeo, T. J., Rowe, H., 2012. Paleoceanographic Applications of Trace-Metal Concentration Data. Chemical Geology, 324/325: 6–18. https://doi.org/10.1016/j.chemgeo.2011.09.002 |
Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3/4): 211–225. https://doi.org/10.1016/j.chemgeo.2009.09.001 |
Allen, M. B., Sengör, A. M. C., Natal'In, B. A., 1995. Junggar, Turfan and Alakol Basins as Late Permian to?Early Triassic Extensional Structures in a Sinistral Shear Zone in the Altaid Orogenic Collage, Central Asia. Journal of the Geological Society, 152(2): 327–338. https://doi.org/10.1144/gsjgs.152.2.0327 |
Allen, M. B., Windley, B. F., Zhang, C., et al., 1991. Basin Evolution within and Adjacent to the Tien Shan Range, NW China. Journal of the Geological Society, 148(2): 369–378. https://doi.org/10.1144/gsjgs.148.2.0369 |
Arsairai, B., Wannakomol, A., Feng, Q. L., et al., 2016. Paleoproductivity and Paleoredox Condition of the Huai Hin Lat Formation in Northeastern Thailand. Journal of Earth Science, 27(3): 350–364. https://doi.org/10.1007/s12583-016-0666-8 |
Bally, A. W., Chou, I. M., Clayton, R., et al., 1986. Notes on Sedimentary Basins in China―Report of the American Sedimentary Basins Delegation to the Peoples Republic of China. U. S. Geological Survey Open-File Report, 108: 86–327 |
Bordenave, M. L., 1993. Applied Petroleum Geochemistry. Cambridge University Press, Cambridge. 524 |
Bradley, W. H., 1963. Paleolimnology. In: Frey, D. G., ed., Limnology in North America. University of Wisconsin Press, Madison. 621–652 |
Bradley, W. H., 1973. Oil Shale Formed in Desert Environment: Green River Formation, Wyoming. Geological Society of America Bulletin, 84(4): 1121–1123. https://doi.org/10.1130/0016-7606(1973)841121osfide>2.0.co;2 doi: 10.1130/0016-7606(1973)841121osfide>2.0.co;2 |
Bradley, W. H., Eugster, H. P., 1969. Geochemistry and Paleolimnology of the Trona Deposits and Associated Authigenic Minerals of the Green River Formation of Wyoming: Physical Chemistry that Determined Formation of Thick and Extensive Trona and Trona-Halite Beds and Accomp. U. S. Geological Survey Professional Paper, 496-B: 71 |
Calvert, S. E., Bustin, R. M., Pedersen, T. F., 1992. Lack of Evidence for Enhanced Preservation of Sedimentary Organic Matter in the Oxygen Minimum of the Gulf of California. Geology, 20(8): 757–760. https://doi.org/10.1130/0091-7613(1992)0200757:loefep>2.3.co;2 doi: 10.1130/0091-7613(1992)0200757:loefep>2.3.co;2 |
Canfield, D. E., 1994. Factors Influencing Organic Carbon Preservation in Marine Sediments. Chemical Geology, 114(3/4): 315–329. https://doi.org/10.1016/0009-2541(94)90061-2 |
Cao, J. J., Luo, J. L., Mawutihan, M., et al., 2021. Influence Mechanism of Micro-Heterogeneity on Conglomerate Reservoir Densification: A Case Study of Upper Permian Wutonggou Formation in DN8 Area of Dongdaohaizi Sag, Junggar Basin. Earth Science, 46(10): 3435–3452. https://doi.org/10.3799/dqkx.2020.388 (in Chinese with English Abstract) |
Carroll, A. R., 1998. Upper Permian Lacustrine Organic Facies Evolution, Southern Junggar Basin, NW China. Organic Geochemistry, 28(11): 649–667. https://doi.org/10.1016/S0146-6380(98)00040-0 |
Carroll, A. R., Bohacs, K. M., 2001. Lake-Type Controls on Petroleum Source Rock Potential in Nonmarine Basins. AAPG Bulletin, 85(6): 1033–1053. https://doi.org/10.1306/8626ca5f-173b-11d7-8645000102c1865d |
Carroll, A. R., Brassell, S. C., Graham S. A., 1992. Upper Permian Lacustrine Oil Shales, Southern Junggar Basin, Northwest China (1). AAPG Bulletin, 76(12): 1874–1902. https://doi.org/10.1306/bdff8b0a-1718-11d7-8645000102c1865d |
Carroll, A. R., Graham, S. A., Smith, M. E., 2010. Walled Sedimentary Basins of China. Basin Research, 22(1): 17–32. https://doi.org/10.1111/j.1365-2117.2009.00458.x |
Carroll, A. R., Liang, Y. H., Graham, S. A., et al., 1990. Junggar Basin, Northwest China: Trapped Late Paleozoic Ocean. Tectonophysics, 181(1/2/3/4): 1–14. https://doi.org/10.1016/0040-1951(90)90004-r |
Carroll, A. R., Wartes, M. A., 2003. Organic Carbon Burial by Large Permian Lakes, Northwest China. Special Paper of the Geological Society of America, 370: 91–104 |
Chen, Z. Y., Chen, Z. L., Zhang, W. G., 1997. Quaternary Stratigraphy and Trace-Element Indices of the Yangtze Delta, Eastern China, with Special Reference to Marine Transgressions. Quaternary Research, 47(2): 181–191. https://doi.org/10.1006/qres.1996.1878 |
Chester, R., 2000. Marine Geochemistry. Wiley-Blackwell, London. 506 |
Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 145(1/2/3/4): 65–78. https://doi.org/10.1016/s0012-821x(96)00204-x |
Cullers, R. L., Basu, A., Suttner, L. J., 1988. Geochemical Signature of Provenance in Sand-Size Material in Soils and Stream Sediments near the Tobacco Root Batholith, Montana, USA. Chemical Geology, 70(4): 335–348. https://doi.org/10.1016/0009-2541(88)90123-4 |
Dean, W. E., Gorham, E., 1998. Magnitude and Significance of Carbon Burial in Lakes, Reservoirs, and Peatlands. Geology, 26(6): 535–538. https://doi.org/10.1130/0091-7613(1998)0260535:masocb>2.3.co;2 doi: 10.1130/0091-7613(1998)0260535:masocb>2.3.co;2 |
Degens, E. T., Willians, E. G., Keith, M. L., 1957. Environmental Studies of Carboniferous Sediments Part I: Geochemical Criteria for Differentiating Marine from Fresh-Water Shales. AAPG Bulletin, 41(11): 2427–2455. https://doi.org/10.1306/0bda59a5-16bd-11d7-8645000102c1865d |
Demaison, G., Huizinga, B. J., 1991. Genetic Classification of Petroleum Systems (1). AAPG Bulletin, 75(10): 1626–1643. https://doi.org/10.1306/0c9b29bb-1710-11d7-8645000102c1865d |
Dymond, J., Suess, E., Lyle, M., 1992. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography, 7(2): 163–181. https://doi.org/10.1029/92pa00181 |
Einsele, G., Yan, J. P., Hinderer, M., 2001. Atmospheric Carbon Burial in Modern Lake Basins and Its Significance for the Global Carbon Budget. Global and Planetary Change, 30(3/4): 167–195. https://doi.org/10.1016/s0921-8181(01)00105-9 |
Eugster, H. P., Hardie, L. A., 1975. Sedimentation in an Ancient Playa-Lake Complex: The Wilkins Peak Member of the Green River Formation of Wyoming. Geological Society of America Bulletin, 86(3): 319–334. https://doi.org/10.1130/0016-7606(1975)86319:siaapc>2.0.co;2 doi: 10.1130/0016-7606(1975)86319:siaapc>2.0.co;2 |
Eugster, H. P., Surdam, R. C., 1973. Depositional Environment of the Green River Formation of Wyoming: A Preliminary Report. Geological Society of America Bulletin, 84(4): 1115–1120. https://doi.org/10.1130/0016-7606(1973)841115:deotgr>2.0.co;2 doi: 10.1130/0016-7606(1973)841115:deotgr>2.0.co;2 |
Fedo, C. M., Eriksson, K. A., Krogstad, E. J., 1996. Geochemistry of Shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: Implications for Provenance and Source-Area Weathering. Geochimica et Cosmochimica Acta, 60(10): 1751–1763. https://doi.org/10.1016/0016-7037(96)00058-0 |
Fedo, C. M., Wayne Nesbitt, H., Young, G. M., 1995. Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 23(10): 921–924. https://doi.org/10.1130/0091-7613(1995)0230921:uteopm>2.3.co;2 doi: 10.1130/0091-7613(1995)0230921:uteopm>2.3.co;2 |
Gebelein, C. D., Hoffman, P., 1973. Algal Origin of Dolomite Laminations in Stromatolitic Limestone. SEPM Journal of Sedimentary Research, 43: 603–613 |
Graham, S. A., Brassell, S., Carroll, A. R., et al., 1990. Characteristics of Selected Petroleum Source Rocks, Xinjiang Uygur Autonomous Region, China. AAPG Bulletin, 74(4): 493–512 |
Greene, T. J., Carroll, A. R., Hendrix, M. S., et al., 2001. Sedimentary Record of Mesozoic Deformation and Inception of the Turpan-Hami Basin, Northwest China. Memoir of the Geological Society of America, 194: 317–340 |
Hartnett, H. E., Keil, R. G., Hedges, J. I., et al., 1998. Influence of Oxygen Exposure Time on Organic Carbon Preservation in Continental Margin Sediments. Nature, 391(6667): 572–575. https://doi.org/10.1038/35351 |
Hendrix, M. S., Graham, S. A., Carroll, A. R., et al., 1992. Sedimentary Record and Climatic Implications of Recurrent Deformation in the Tian Shan: Evidence from Mesozoic Strata of the North Tarim, South Junggar, and Turpan Basins, Northwest China. Geological Society of America Bulletin, 104(1): 53–79. https://doi.org/10.1130/0016-7606(1992)1040053:sracio>2.3.co;2 doi: 10.1130/0016-7606(1992)1040053:sracio>2.3.co;2 |
Jin, J., Yang, Z., Yilihamu, E., et al., 2018. Nanopore Characteristics and Oil-Bearing Properties of Tight Oil Reservoirs in Jimsar Sag, Junggar Basin. Earth Science, 43(5): 1594–1601 (in Chinese with English Abstract) |
Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1/2/3/4): 111–129. https://doi.org/10.1016/0009-2541(94)90085-x |
Katz, B. J., 1991. Lacustrine Basin Exploration: Case Studies and Modern Analogs. AAPG Memoir, 50: 340. https://doi.org/10.1306/m50523 |
Keil, R., 2017. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments. Annual Review of Marine Science, 9(1): 151–172. https://doi.org/10.1146/annurev-marine-010816-060724 |
Kennedy, M. J., Pevear, D. R., Hill, R. J., 2002. Mineral Surface Control of Organic Carbon in Black Shale. Science, 295(5555): 657–660. https://doi.org/10.1126/science.1066611 |
Li, W., Hu, J. M., Li, D. P., et al., 2007. Analysis of the Late Palaeozoic and Mesozoic Paleocurrents and Its Constructional Significance of the Northern Bogda Shan, Xinjiang. Acta Sedimentologica Sinica, 25(2): 283–292 |
Li, Y., Li, Q., Lu, Y., et al., 1989. Paleomagnetic Monograph in Xinjiang, Study on Palaeomagnetism of Tarim Craton Since Late Palaeozoic. Xinjiang Geology, 7(3): 1–77(in Chinese with English Abstract) |
Li, Y., Sharps, R., McWilliams, M., et al., 1991. Late Paleozoic Paleomagnetic Results from the Junggar Block, Northwestern China. Journal of Geophysical Research: Solid Earth, 96(B10): 16047–16060. https://doi.org/10.1029/91jb01619 |
Little, S. H., Vance, D., Lyons, T. W., et al., 2015. Controls on Trace Metal Authigenic Enrichment in Reducing Sediments: Insights from Modern Oxygen-Deficient Settings. American Journal of Science, 315(2): 77–119. https://doi.org/10.2475/02.2015.01 |
Liu, H. F., 1986. Geodynamic Scenario and Structural Styles of Mesozoic and Cenozoic Basins in China. AAPG Bulletin, 70(4): 377–395. https://doi.org/10.1306/94885719-1704-11d7-8645000102c1865d |
Lundell, L. L., Surdam, R. C., 1975. Playa-Lake Deposition: Green River Formation, Piceance Creek Basin, Colorado. Geology, 3(9): 493–497. https://doi.org/10.1130/0091-7613(1975)3493:pdgrfp>2.0.co;2 doi: 10.1130/0091-7613(1975)3493:pdgrfp>2.0.co;2 |
Mao, Z. G., Zhu, R. K., Wang, J. H., et al., 2021. Characteristics of Diagenesis and Pore Evolution of Volcanic Reservoir: A Case Study of Junggar Basin, Northwest China. Journal of Earth Science, 32(4): 960–971. https://doi.org/10.1007/s12583-020-1366-y |
McLennan, S. M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295–303. https://doi.org/10.1086/648222 |
McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 2000GC000109. https://doi.org/10.1029/2000gc000109 |
Nesbitt, H. W., 1979. Mobility and Fractionation of Rare Earth Elements during Weathering of a Granodiorite. Nature, 279(5710): 206–210. https://doi.org/10.1038/279206a0 |
Nesbitt, H. W., MacRae, N. D., Kronberg, B. I., 1990. Amazon Deep-Sea Fan Muds: Light REE Enriched Products of Extreme Chemical Weathering. Earth and Planetary Science Letters, 100(1/2/3): 118–123. https://doi.org/10.1016/0012-821x(90)90180-6 |
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715–717. https://doi.org/10.1038/299715a0 |
Nie, S. Y., Rowley, D. B., van der Voo, R., et al., 1993. Paleomagnetism of Late Paleozoic Rocks in the Tianshan, Northwestern China. Tectonics, 12(2): 568–579. https://doi.org/10.1029/92tc00657 |
Olariu, C., Zhang, Z. J., Zhou, C. M., et al., 2022. Conglomerate to Mudstone Lacustrine Cycles Revealed in Junggar Basin, Northwest China: Middle Permian Lucaogou and Jingjingzigou Formations. Marine and Petroleum Geology, 136: 105473. https://doi.org/10.1016/j.marpetgeo.2021.105473 |
Parker, A., 1970. An Index of Weathering for Silicate Rocks. Geological Magazine, 107(6): 501–504. https://doi.org/10.1017/s0016756800058581 |
Pedersen, T. F., Calvert, S. E., 1990. Anoxia vs. Productivity: What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary Rocks? (1). AAPG Bulletin, 74(4): 454–466. https://doi.org/10.1306/0c9b232b-1710-11d7-8645000102c1865d |
Peng, X., Zhang, G., 1989. Tectonic Features of the Junggar Basin and Their Relationship with Oil and Gas Distribution, Chinese Sedimentary Basins. Elsevier, Amsterdam. 17–31 |
Potter, P. E., Maynard, J. B., Depetris, P. J., 2005. Mud and Mudstones Introduction and Overview. Springer-Verlag, Heidelberg. 64–66 |
Potter, P. E., Shimp, N. F., Witters, J., 1963. Trace Elements in Marine and Fresh-Water Argillaceous Sediments. Geochimica et Cosmochimica Acta, 27(6): 669–694. https://doi.org/10.1016/0016-7037(63)90019-x |
Sengör, A. M. C., Natal'In, B. A., 1994. Paleotectonics of Asia: Fragments of a Syn Thesis. Cambridge University Press, Cambridge. 486–640 |
Shao, L., Stattegger, K., Li, W. H., et al., 1999. Depositional Style and Subsidence History of the Turpan Basin (NW China). Sedimentary Geology, 128(1/2): 155–169. https://doi.org/10.1016/s0037-0738(99)00066-4 |
Sharps, R., Li, Y., McWilliams, M., et al., 1992. Paleomagnetic Investigation of Upper Permian Sediments in the South Junggar Basin, China. Journal of Geophysical Research: Solid Earth, 97(B2): 1753–1765. https://doi.org/10.1029/91jb02741 |
Shen, J., Schoepfer, S. D., Feng, Q. L., et al., 2015. Marine Productivity Changes during the End-Permian Crisis and Early Triassic Recovery. Earth Science Reviews, 149(2015): 136–162. https://doi: 10.1016/j.earscirev.2014.11.002 |
Shimp, N. F., Witters, J., Potter, P. E., et al., 1969. Distinguishing Marine and Freshwater Muds. The Journal of Geology, 77(5): 566–580. https://doi.org/10.1086/627454 |
Stein, R., 1986. Organic Carbon and Sedimentation Rate—Further Evidence for Anoxic Deep-Water Conditions in the Cenomanian/Turonian Atlantic Ocean. Marine Geology, 72(3/4): 199–209. https://doi.org/10.1016/0025-3227(86)90119-2 |
Surdam, R. C., Wolfbauer, C. A., 1975. Green River Formation, Wyoming: A Playa-Lake Complex. Geological Society of America Bulletin, 86(3): 335–345. https://doi.org/10.1130/0016-7606(1975)86335:grfwap>2.0.co;2 doi: 10.1130/0016-7606(1975)86335:grfwap>2.0.co;2 |
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. The Journal of Geology, 94(4): 57–72 |
Tribovillard, N. P., Desprairies, A., Lallier-Vergès, E., et al., 1994. Geochemical Study of Organic-Matter Rich Cycles from the Kimmeridge Clay Formation of Yorkshire (UK): Productivity versus Anoxia. Palaeogeography, Palaeoclimatology, Palaeoecology, 108(1/2): 165–181. https://doi.org/10.1016/0031-0182(94)90028-0 |
Tribovillard, N., Algeo, T. J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based Onmolybdenum-Uranium Covariation—Applications to Mesozoic Paleoceanography. Chemical Geology, 324/325: 46–58. https://doi.org/10.1016/j.chemgeo.2011.09.009 |
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012 |
Walker, C. T., 1968. Evaluation of Boron as a Paleosalinity Indicator and Its Application to Offshore Prospects. AAPG Bulletin, 52(5): 751–766. https://doi.org/10.1306/5d25c45d-16c1-11d7-8645000102c1865d |
Walker, C. T., Price, N. B., 1963. Departure Curves for Computing Paleosalinity from Boron in Illites and Shales. AAPG Bulletin, 47(5): 833–841. https://doi.org/10.1306/bc743a93-16be-11d7-8645000102c1865d |
Wang, J., Cao, Y. C., Wang, X. T., et al., 2018. Sedimentological Constraints on the Initial Uplift of the West Bogda Mountains in Mid-Permian. Scientific Reports, 8: 1453. https://doi.org/10.1038/s41598-018-19856-3 |
Wartes, M. A., Carroll, A. R., Greene, T. J., 2002. Permian Sedimentary Record of the Turpan-Hami Basin and Adjacent Regions, Northwest China: Constraints on Postamalgamation Tectonic Evolution. Geological Society of America Bulletin, 114(2): 131–152. https://doi.org/10.1130/0016-7606(2002)1140131:psrott>2.0.co;2 doi: 10.1130/0016-7606(2002)1140131:psrott>2.0.co;2 |
Wartes, M. A., Carroll, A. R., Greene, T. J., et al., 2000. Permian Lacustrine Deposits of Northwest China. In: Gierlowski-Kordesch, E. H., Kelts, K. R., eds., Lake Basins Through Space and Time. AAPG. 123–132 |
Watson, M. P., Hayward, A. B., Parkinson, D. N., et al., 1987. Plate Tectonic History, Basin Development and Petroleum Source Rock Deposition Onshore China. Marine and Petroleum Geology, 4(3): 205–225. https://doi.org/10.1016/0264-8172(87)90045-6 |
Wei, H. Y., Shen, J., Schoepfer, S. D., et al., 2015. Environmental Controls on Marine Ecosystem Recovery Following Mass Extinctions, with an Example from the Early Triassic. Earth-Science Reviews, 149: 108–135. https://doi.org/10.1016/j.earscirev.2014.10.007 |
Wei, W., Algeo, T. J., 2020. Elemental Proxies for Paleosalinity Analysis of Ancient Shales and Mudrocks. Geochimica et Cosmochimica Acta, 287: 341–366. https://doi.org/10.1016/j.gca.2019.06.034 |
Wei, W., Algeo, T. J., Lu, Y. B., et al., 2018. Identifying Marine Incursions into the Paleogene Bohai Bay Basin Lake System in Northeastern China. International Journal of Coal Geology, 200(1): 1–17. https://doi.org/10.1016/j.coal.2018.10.001 |
Westermann, S., Stein, M., Matera, V., et al., 2013. Rapid Changes in the Redox Conditions of the Western Tethys Ocean during the Early Aptian Oceanic Anoxic Event. Geochimica et Cosmochimica Acta, 121(5): 467–486. https://doi.org/10.1016/j.gca.2013.07.023 |
Wignall, P. B., Myers, K. J., 1988. Interpreting Benthic Oxygen Levels in Mudrocks: A New Approach. Geology, 16(5): 452–455. https://doi.org/10.1130/0091-7613(1988)0160452:ibolim>2.3.co;2 doi: 10.1130/0091-7613(1988)0160452:ibolim>2.3.co;2 |
Wolfbauer, C. A., Surdam, R. C., 1974. Origin of Nonmarine Dolomite in Eocene Lake Gosiute, Green River Basin, Wyoming. Geological Society of America Bulletin, 85(11): 1733–1740. https://doi.org/10.1130/0016-7606(1974)85<1733:oondie>2.0.co;2 doi: 10.1130/0016-7606(1974)85<1733:oondie>2.0.co;2 |
Xiao, M., Wu, S. T., Yuan, X. J., et al., 2021. Conglomerate Reservoir Pore Evolution Characteristics and Favorable Area Prediction: A Case Study of the Lower Triassic Baikouquan Formation in the Northwest Margin of the Junggar Basin, China. Journal of Earth Science, 32(4): 998–1010. https://doi.org/10.1007/s12583-020-1083-6 |
Xu, Q. L., Liu, B., Ma, Y. S., et al., 2017. Controlling Factors and Dynamical Formation Models of Lacustrine Organic Matter Accumulation for the Jurassic Da'anzhai Member in the Central Sichuan Basin, Southwestern China. Marine and Petroleum Geology, 86: 1391–1405. https://doi.org/10.1016/j.marpetgeo.2017.07.014 |
Ye, C. C., Yang, Y. B., Fang, X. M., et al., 2016. Late Eocene Clay Boron-Derived Paleosalinity in the Qaidam Basin and Its Implications for Regional Tectonics and Climate. Sedimentary Geology, 346(3): 49–59. https://doi.org/10.1016/j.sedgeo.2016.10.006 |
Yu, K. H., Cao, Y. C., Qiu, L. W., et al., 2018. Geochemical Characteristics and Origin of Sodium Carbonates in a Closed Alkaline Basin: The Lower Permian Fengcheng Formation in the Mahu Sag, Northwestern Junggar Basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 511: 506–531. https://doi.org/10.1016/j.palaeo.2018.09.015 |
Yu, K. H., Cao, Y. C., Qiu, L. W., et al., 2019. Depositional Environments in an Arid, Closed Basin and Their Implications for Oil and Gas Exploration: The Lower Permian Fengcheng Formation in the Junggar Basin, China. AAPG Bulletin, 103(9): 2073–2115. https://doi.org/10.1306/01301917414 |
Yuri, Z. N., Eder, V. G., Zamirailova, A. G., 2008. Composition and Formation Environments of the Upper Jurassic–Lower Cretaceous Black Shale Bazhenov Formation (the Central Part of the West Siberian Basin). Marine and Petroleum Geology, 25(3): 289–306. https://doi.org/10.1016/j.marpetgeo.2007.07.009 |
Zhang, M. M., Liu, Z. J., Xu, S. C., et al., 2013. Element Response to the Ancient Lake Information and Its Evolution History of Argillaceous Source Rocks in the Lucaogou Formation in Sangonghe Area of Southern Margin of Junggar Basin. Journal of Earth Science, 24(6): 987–996. https://doi.org/10.1007/s12583-013-0392-4 |
Zhang, X., 1981. Regional Stratigraphic Chart of North-Western China, Branch of Xinjiang Uygur Autonomous Region. Geological Publishing House, Beijing. 496 (in Chinese) |
Zhang, Y. J., Qi, X. F., Cheng, X. S., 1992. On the Depositional Environment and Correlation of Pingdiquan Formation (P2) of Zhangpenggou Area in the Eastern Part of Junggar Basin. Xinjiang Petroleum Geology, 13(3): 217–226 (in Chinese with English Abstract) |
Zhang, Y. J., Qi, X. F., Cheng, X. S., et al., 2007. Late Carboniferous and Permian Sedimentary Environments in Junggar Basin. Xinjiang Petroleum Geology, 28(6): 673–675 (in Chinese with English Abstract) |
Zhang, Y. Z., Zeng, L. B., Luo, Q., et al., 2021. Influence of Natural Fractures on Tight Oil Migration and Production: A Case Study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin, NW China. Journal of Earth Science, 32(4): 927–945. https://doi.org/10.1007/s12583-021-1442-y |
Zhao, Y. S., Song, Z. Y., Wen, J. P., et al., 1998. Quantitative Evaluation of Paleosalinites and Distribution of Trace Elements in the Lacustrine Mudstone of Baoshan Basin. Oceanologia et Limnologia Sinica, 29(4): 409–415 (in Chinese with English Abstract) |
Zhu, W., Wang, R., Lu, X. C., et al., 2021. Yanshanian Tectonic Activities and Their Sedimentary Responses in Northwestern Junggar Basin. Earth Science, 46(5): 1692–1709 (in Chinese with English Abstract) |
Ziegler, A. M., 1990. Phytogeographic Patterns and Continental Configurations during the Permian Period. Geological Society, London, Memoirs, 12(1): 363–379. https://doi.org/10.1144/gsl.mem.1990.012.01.35 |
Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., et al., 2010. Selective Preservation of Organic Matter in Marine Environments; Processes and Impact on the Sedimentary Record. Biogeosciences, 7(2): 483–511. https://doi.org/10.5194/bg-7-483-2010 |