Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 3
Jun 2021
Turn off MathJax
Article Contents
Mao Luo, Jitao Chen, Wenkun Qie, Jinyuan Huang, Qiyue Zhang, Changyong Zhou, Wen Wen. Microbially Induced Carbonate Precipitation in a Middle Triassic Microbial Mat Deposit from Southwestern China: New Implications for the Formational Process of Micrite. Journal of Earth Science, 2021, 32(3): 633-645. doi: 10.1007/s12583-020-1075-6
Citation: Mao Luo, Jitao Chen, Wenkun Qie, Jinyuan Huang, Qiyue Zhang, Changyong Zhou, Wen Wen. Microbially Induced Carbonate Precipitation in a Middle Triassic Microbial Mat Deposit from Southwestern China: New Implications for the Formational Process of Micrite. Journal of Earth Science, 2021, 32(3): 633-645. doi: 10.1007/s12583-020-1075-6

Microbially Induced Carbonate Precipitation in a Middle Triassic Microbial Mat Deposit from Southwestern China: New Implications for the Formational Process of Micrite

doi: 10.1007/s12583-020-1075-6
More Information
  • Corresponding author: Mao Luo, maoluo@nigpas.ac.cn
  • Received Date: 21 Nov 2020
  • Accepted Date: 19 Mar 2021
  • Publish Date: 01 Jun 2021
  • Lime mud (i.e., micrite) is a major component of carbonate deposits. Various mechanisms (biotic versus abiotic) have been proposed for the formation of lime mud in Earth's history. However, the detailed role that microbes play in the nucleation and subsequent precipitation of micrites remains to be resolved. Herein we undertook a detailed geobiological characterization of laminated lime mudstone from the Middle Triassic Guanling Formation in Yunnan Province, southwestern China. Morphological features, together with previous geobiological investigations, suggest that the laminated lime mudstones represent the former presence of microbial mats. These lime mudstones consist mainly of calcite, dolomite and quartz, with clay minerals and pyrites as subordinate components. In particular, micro-analysis shows copious nano-globules (65-878 nm) and capsule-shaped nano-rods in laminations. These low-Mg calcite nano-globule aggregates are closely associated with mucilaginous biofilms resembling extracellular polymeric substances (EPS). Nano-sized globules coalesce to form semi-euhedral micrite crystals. We suggest that a decaying hydrolytic destruction of the EPS by microbial communities within microbial mat leads to the precipitation of the nano-globules by enhancing alkalinity in local micro-environment. As an intermediate, these nano-globules further aggregate to form micrite crystals possibly through a dissolution-reprecipitation process.

     

  • loading
  • Allwood, A. C., Walter, M. R., Kamber, B. S., et al., 2006. Stromatolite Reef from the Early Archaean Era of Australia. Nature, 441(7094): 714-718. https://doi.org/10.1038/nature04764
    Aloisi, G., Gloter, A., Krüger, M., et al., 2006. Nucleation of Calcium Carbonate on Bacterial Nanoglobules. Geology, 34(12): 1017-1020. https://doi.org/10.1130/g22986a.1
    Arp, G., Reimer, A., Reitner, J., 2003. Microbialite Formation in Seawater of Increased Alkalinity, Satonda Crater Lake, Indonesia. Journal of Sedimentary Research, 73(1): 105-127. https://doi.org/10.1306/071002730105
    Bai, J. K., Yin, F. G., Zhang, Q. Y., 2011. Microfacies and Enrichment Pattern of Fossils in the Fossiliferous Beds of Luoping Biota, Yunnan Province. Geology in China, 38: 393-402 (in Chinese with English Abstract)
    Baumgartner, L. K., Reid, R. P., Dupraz, C., et al., 2006. Sulfate Reducing Bacteria in Microbial Mats: Changing Paradigms, New Discoveries. Sedimentary Geology, 185(3/4): 131-145. https://doi.org/10.1016/j.sedgeo.2005.12.008
    Benton, M. J., Zhang, Q. Y., Hu, S. X., et al., 2013. Exceptional Vertebrate Biotas from the Triassic of China, and the Expansion of Marine Ecosystems after the Permo-Triassic Mass Extinction. Earth-Science Reviews, 125: 199-243. https://doi.org/10.1016/j.earscirev.2013.05.014
    Berkyová, S., Munnecke, A., 2010. "Calcispheres" as a Source of Lime Mud and Peloids Evidence from the Early Middle Devonian of the Prague Basin, the Czech Republic. Bulletin of Geosciences, 85(4): 585-602. https://doi.org/10.3140/bull.geosci.1206
    Blue, C. R., Giuffre, A., Mergelsberg, S., et al., 2017. Chemical and Physical Controls on the Transformation of Amorphous Calcium Carbonate into Crystalline CaCO3 Polymorphs. Geochimica et Cosmochimica Acta, 196: 179-196. https://doi.org/10.1016/j.gca.2016.09.004
    Bontognali, T. R. R., Vasconcelos, C., Warthmann, R. J., et al., 2008. Microbes Produce Nanobacteria-Like Structures, Avoiding Cell Entombment. Geology, 36(8): 663-666. https://doi.org/10.1130/g24755a.1
    Bosak, T., Newman, D. K., 2003. Microbial Nucleation of Calcium Carbonate in the Precambrian. Geology, 31(7): 577-580. https://doi.org/10.1130/0091-7613(2003)031<0577:mnocci>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0577:mnocci>2.0.co;2
    Braissant, O., Cailleau, G., Dupraz, C., et al., 2003. Bacterially Induced Mineralization of Calcium Carbonate in Terrestrial Environments: The Role of Exopolysaccharides and Amino-Acids. Journal of Sedimentary Research, 73(3): 483-488. https://doi.org/10.1306/111302730485
    Braissant, O., Decho, A. W., Dupraz, C., et al., 2007. Exopolymeric Substances of Sulfate-Reducing Bacteria: Interactions with Calcium at Alkaline pH and Implication for Formation of Carbonate Minerals. Geobiology, 5(4): 401-411. https://doi.org/10.1111/j.1472-4669.2007.00117.x
    Bradley, J. P., Harvey, R. P., McSween, H. Y. Jr., 1997. No 'Nanofossils' in Martian Meteorite. Nature, 390: 454-456. https://doi.org/10.1038/37257
    Branda, S. S., Vik, A., Friedman, L., et al., 2005. Biofilm: The Matrix Revisited. Trends in Microbiology, 13(1): 20-26. https://doi.org/10.1016/j.tim.2004.11.006
    Broecker, S. W., Sanyal, A., Takahashi, T., 2000. The Origin of Bahamian Whitings Revisited. Geophysical Research Letters, 27: 3759-3760. https://doi.org/10.1029/2000gl011872
    Buczynski, C., Chafetz, H. S., 1991. Habit of Bacterially Induced Precipitates of Calcium Carbonate and the Influence of Medium Viscosity on Mineralogy. Journal of Sedimentary Petrology, 61(2): 226-233 doi: 10.1306/D42676DB-2B26-11D7-8648000102C1865D
    Cai, Y. P., Xiao, S. H., Li, G. X., et al., 2019. Diverse Biomineralizing Animals in the Terminal Ediacaran Period Herald the Cambrian Explosion. Geology, 47: 380-384. https://doi.org/10.1130/g45949.1
    Cantine, M. D., Knoll, A. H., Bergmann, K. D., 2019. Carbonate before Skeletons: A Database Approach. Earth-Science Reviews, 201: 103065. https://doi.org/10.1016/j.earscirev.2019.103065
    Chafetz, H. S., Buczynski, C., 1992. Bacterially Induced Lithification of Microbialmats. Palaios, 7: 277-293. https://doi.org/10.2307/3514973
    Chen, Z. -Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction. Nature Geoscience, 5: 375-383. https://doi.org/10.1038/ngeo1475
    Chen, Z. -Q., Wang, Y. B., Kershaw, S., et al., 2014. Early Triassic Stromatolites in a Siliciclastic Nearshore Setting in Northern Perth Basin, Western Australia: Geobiologic Features and Implications for Post-Extinction Microbial Proliferation. Global and Planetary Change, 121: 89-100. https://doi.org/10.1016/j.gloplacha.2014.07.004
    Cuadrado, D. G., Pan, J., 2018. Field Observations on the Evolution of Reticulate Patterns in Microbial Mats in a Modern Siliciclastic Coastal Environment. Journal of Sedimentary Research, 88(1): 24-37. https://doi.org/10.2110/jsr.2017.79
    Debenay, J. P., Andre, J. P., Lesourd, M., 1999. Production of Lime Mud by Breakdown of Foraminiferal Tests. Marine Geology, 157: 159-170. https://doi.org/10.1016/s0025-3227(98)00151-0
    Dimasi, E., Kwak, S. Y., Amos, F. F., 2006. Complementary Control by Additives of the Kinetics of Amorphous CaCO3 Mineralization at an Organic Interface: In-situ Synchrotron X-Ray Observations. Physical Review Letters, 97(4): 045503. https://doi.org/10.1103/physrevlett.97.045503
    Dupraz, C., Reid, R. P., Braissant, O., et al., 2009. Process of Carbonate Precipitation in Modern Microbial Mats. Earth-Science Reviews, 96(3): 141-162. https://doi.org/10.1016/j.earscirev.2008.10.005
    Dupraz, C., Visscher, P. T., 2005. Microbial Lithification in Marine Stromatolites and Hypersaline Mats. Trends in Microbiology, 13(9): 429-438. https://doi.org/10.1016/j.tim.2005.07.008
    Dupraz, C., Visscher, P. T., Baumgartner, L. K., et al., 2004. Microbe-Mineral Interaction: Early Carbonate Precipitation in a Hypersaline Lake (Eleuthera Island, Bahamas). Sedimentology, 51(4): 745-765. https://doi.org/10.1111/j.1365-3091.2004.00649.x
    Enos, P., Lehrmann, D. J., Wei, J. Y., et al., 2006. Triassic Evolution of the Yangtze Platform in Guizhou Province, People's Republic of China. Geological Society of America Special Papers, 417: 1-105. https://doi.org/10.1130/spe417
    Enríquez, S., Schubert, N., 2014. Direct Contribution of the Seagrass Thalassiatestudinum to Lime Mud Production. Nature Communications, 5: e3835. https://doi.org/10.1038/ncomms4835
    Ercole, C., Cacchio, P., Botta, A. L., et al., 2007. Bacterially Induced Mineralization of Calcium Carbonate: The Role of Exopolysaccharides and Capsular Polysaccharides. Microscopy and Microanalysis, 13(1): 42-50. https://doi.org/10.1017/s1431927607070122
    Fang, Y. H., Chen, Z. Q., Kershaw, S., et al., 2017. Permian-Triassic Boundary Microbialites at Zuodeng Section, Guangxi Province, South China: Geobiology and Palaeoceanographic Implications. Global and Planetary Change, 152: 115-128. https://doi.org/10.1016/j.gloplacha.2017.02.011
    Feldmann, R. M., Schweitzer, C. E., Hu, S. X., et al., 2012. Macrurous Decapoda from the Luoping Biota (Middle Triassic) of China. Journal of Paleontology, 86(3): 425-441. https://doi.org/10.1666/11-113.1
    Feldmann, R. M., Schweitzer, C. E., Hu, S. X., et al., 2015. Spatial Distribution of Crustacea and Associated Organisms in the Luoping Biota (Anisian, Middle Triassic), Yunnan Province, China: Evidence of Periodic Mass Kills. Journal of Paleontology, 89(6): 1022-1037. https://doi.org/10.1017/jpa.2015.60
    Feldmann, R. M., Schweitzer, C. E., Hu, S. X., et al., 2017. A New Middle Triassic (Anisian) Cyclidan Crustacean from the Luoping Biota, Yunnan Province, China: Morphologic and Phylogenetic Insights. Journal of Crustacean Biology, 37(4): 406-412. https://doi.org/10.1093/jcbiol/rux052
    Feng, X. Q., Chen, Z. Q., Bottjer, D. J., et al., 2018. Additional Records of Ichnogenus Rhizocorallium from the Lower and Middle Triassic, South China: Implications for Biotic Recovery after the End-Permian Mass Extinction. GSA Bulletin, 130(7/8): 1197-1215. https://doi.org/10.1130/b31715.1
    Feng, X. Q., Chen, Z. Q., Woods, A., et al., 2017. Anisian (Middle Triassic) Marine Ichnocoenoses from the Eastern and Western Margins of the Kamdian Continent, Yunnan Province, SW China: Implications for the Triassic Biotic Recovery. Global and Planetary Change, 157: 194-213. https://doi.org/10.1016/j.gloplacha.2017.09.004
    Folk, R. L., Robles, R., 1964. Carbonate Sands of Isla Perez, Alacran Reef Complex, Yucatán. The Journal of Geology, 72(3): 255-292. https://doi.org/10.1086/626986
    Folk, R. L., 1993. SEM Imaging of Bacteria and Nannobacteria in Carbonate Sediments and Rocks. Journal of Sedimentary Petrology, 63: 990-999
    González-Muñoz, M. T., Rodriguez-Navarro, C., Martínez-Ruiz, F., et al., 2010. Bacterial Biomineralization: New Insights from Myxococcus-Induced Mineral Precipitation. Geological Society, London, Special Publications, 336(1): 31-50. https://doi.org/10.1144/sp336.3
    Grotzinger, J. P., Knoll, A. H., 1999. Stromatolites in Precambrian Carbonates: Evolutionary Mileposts or Environmental Dipsticks? Annual Review of Earth and Planetary Sciences, 27(1): 313-358. https://doi.org/10.1146/annurev.earth.27.1.313
    Hagadorn, J. W., Bottjer, D. J., 1997. Wrinkle Structures: Microbially Mediated Sedimentary Structures Common in Subtidal Siliciclastic Settings at the Proterozoic-Phanerozoic Transition. Geology, 25(11): 1047-1050. https://doi.org/10.1130/0091-7613(1997)025<1047:wsmmss>2.3.co;2 doi: 10.1130/0091-7613(1997)025<1047:wsmmss>2.3.co;2
    Han, Z. Z., Zhao, Y. Y., Yan, H. X., et al., 2017. The Characterization of Intracellular and Extracellular Biomineralization Induced by Synechocystis sp. PCC6803 Cultured under Low Mg/Ca Ratios Conditions. Geomicrobiology Journal, 34: 362-373. https://doi.org/10.1080/01490451.2016.1197986
    Hu, S. L., Li, Y. J., Dai, M., et al., 1996. The Laser Mass-Spectrometer 40Ar-49Ar Age of Green Pisolites of Guizhou Province. Acta Petrologica Sinica, 12: 409-415 (in Chinese with English Abstract)
    Hu, S. X., Zhang, Q. Y., Chen, Z. -Q., et al., 2011. The Luoping Biota: Exceptional Preservation, and New Evidence on the Triassic Recovery from End-Permian Mass Extinction. Proceedings of the Royal Society B: Biological Sciences, 278(1716): 2274-2282. https://doi.org/10.1098/rspb.2010.2235
    Hu, S. X., Zhang, Q. Y., Feldmann, R. M., et al., 2017. Exceptional Appendage and Soft-Tissue Preservation in a Middle Triassic Horseshoe Crab from SW China. Scientific Reports, 7(1): 14112. https://doi.org/10.1038/s41598-017-13319-x
    Hu, S. X., Zhang, Q. Y., Zhou, C. Y., 2010. Fossil Coprolites from the Middle Triassic Luoping Biota and Ecological Implication. Journal of Earth Science, 21(1): 191-193. https://doi.org/10.1007/s12583-010-0209-7
    Huang, J. Y., Hu, S. X., Zhang, Q. Y., et al., 2019a. Gondolelloid Multielement Conodont Apparatus (Nicoraella) from the Middle Triassic of Yunnan Province, Southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 522: 98-110. https://doi.org/10.1016/j.palaeo.2018.07.015
    Huang, J. Y., Martínez-Pérez, C., Hu, S. X., et al., 2019b. Apparatus Architecture of the Conodont Nicoraella kockeli (Gondolelloidea, Prioniodinina) Constrains Functional Interpretations. Palaeontology, 62(5): 823-835. https://doi.org/10.1111/pala.12429
    Huang, J. Y., Martínez-Pérez, C., Hu, S. X., et al., 2019c. Middle Triassic Conodont Apparatus Architecture Revealed by Synchrotron X-Ray Microtomography. Palaeoworld, 28(4): 429-440. https://doi.org/10.1016/j.palwor.2018.08.003
    Huang, J. Y., Zhang, K. X., Zhang, Q. Y., et al., 2009. Conodonts Stratigraphy and Sedimentary Environment of the Middle Triassic at Daaozi Section of Luoping County, Yunnan Province, South China. Acta Micropalaeontologica Sinica, 26(3): 211-224 (in Chinese with English Abstract)
    Kawaguchi, T., Decho, A. W., 2002. Isolation and Biochemical Characterization of Extracellular Polymeric Secretions (EPS) from Modern Soft Marine Stromatolites (Bahamas) and Its Inhibitory Effect on CaCO3 Precipitation. Preparative Biochemistry & Biotechnology, 32(1): 51-63. https://doi.org/10.1081/pb-120013161
    Kaźmierczak, J., Coleman, M. L., Gruszczyński, M., et al., 1996. Cyanobacterial Key to the Genesis of Micritic and Peloidal Limestones in Ancient Seas. Acta Palaeontologica Polonica, 41(4): 319-338
    Kaźmierczak, J., Fenchel, T., Kühl, M., et al., 2015. CaCO3 Precipitation in Multilayered Cyanobacterial Mats: Clues to Explain the Alternation of Micrite and Sparite Layers in Calcareous Stromatolites. Life (Basel), 5(1): 744-769. https://doi.org/10.3390/life5010744
    Kirkland, B. L., Lynch, F. L., Rahnis, M. A., et al., 1999. Alternative Origins for Nannobacteria-Like Objects in Calcite. Geology, 27(4): 347-350. https://doi.org/10.1130/0091-7613(1999)0270347:aofnlo>2.3.co;2 doi: 10.1130/0091-7613(1999)0270347:aofnlo>2.3.co;2
    Knoll, A. H., Fairchild, I. J., Swett, K., 1993. Calcified Microbes in Neoproterozoic Carbonates: Implications for Our Understanding of the Proterozoic/Cambrian Transition. Palaios, 8: 512-525 doi: 10.2307/3515029
    Kremer, B., Kazmierczak, J., Stal, L. J., 2008. Calcium Carbonate Precipitation in Cyanobacterial Mats from Sandy Tidal Flats of the North Sea. Geobiology, 6(1): 46-56. https://doi.org/10.1111/j.1472-4669.2007.00128.x
    Li, H., Yao, Q. Z., Wang, F. P., et al., 2019. Insights into the Formation Mechanism of Vaterite Mediated by a Deep-Sea Bacterium Shewanella piezotolerans WP3. Geochimica et Cosmochimica Acta, 256: 35-48. https://doi.org/10.1016/j.gca.2018.06.011
    Littlewood, J. L., Shaw, S., Peacock, C. L., et al., 2017. Mechanism of Enhanced Strontium Uptake into Calcite via an Amorphous Calcium Carbonate Crystallization Pathway. Crystal Growth & Design, 17(3): 1214-1223. https://doi.org/10.1021/acs.cgd.6b01599
    Lowenstam, H. A., 1955. Aragonite Needles Secreted by Algae and Some Sedimentary Implications. SEPM Journal of Sedimentary Research, 25: 270-272
    Luo, M., Chen, Z. -Q., Hu, S. X., et al., 2013. Carbonate Reticulated Ridge Structures from the Lower Middle Triassic of the Luoping Area, Yunnan, Southwestern China: Geobiologic Features and Implications for Exceptional Preservation of the Luoping Biota. PALAIOS, 28(8): 541-551. https://doi.org/10.2110/palo.2012.p12-122r
    Luo, M., Chen, Z. -Q., Shi, G. -R., et al., 2016a. Upper Lower Triassic Stromatolite from Anhui, South China: Geobiologic Features and Paleoenvironmental Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 452: 40-54. https://doi.org/10.1016/j.palaeo.2016.04.008
    Luo, M., Chen, Z. -Q., Zhao, L. S., et al., 2014. Early Middle Triassic Stromatolites from the Luoping Area, Yunnan Province, Southwest China: Geobiologic Features and Environmental Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 412: 124-140. https://doi.org/10.1016/j.palaeo.2014.07.028
    Luo, M., George, A. D., Chen, Z. -Q., 2016b. Sedimentology and Ichnology of Two Lower Triassic Sections in South China: Implications for the Biotic Recovery Following the End-Permian Mass Extinction. Global and Planetary Change, 144: 198-212. https://doi.org/10.1016/j.gloplacha.2016.07.007
    Luo, M., Gong, Y. M., Shi, G. -R., et al., 2018. Palaeoecological Analysis of Trace Fossil Sinusichnus Sinuosus from the Middle Triassic Guanling Formation in Southwestern China. Journal of Earth Science, 29(4): 854-863. https://doi.org/10.1007/s12583-018-0794-4
    Luo, M., Hu, S. X., Benton, M. J., et al., 2017. Taphonomy and Palaeobiology of Early Middle Triassic Coprolites from the Luoping Biota, Southwest China: Implications for Reconstruction of Fossil Food Webs. Palaeogeography, Palaeoclimatology, Palaeoecology, 474: 232-246. https://doi.org/10.1016/j.palaeo.2016.06.001
    Luo, M., Shi, G. -R., Hu, S. X., et al., 2019. Early Middle Triassic Trace Fossils from the Luoping Biota, Southwestern China: Evidence of Recovery from Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 515: 6-22. https://doi.org/10.1016/j.palaeo.2017.11.028
    Nealson, K. H., Stahl, D. A., 1997. Microorganisms and Biogeochemical Cycles: What can we Learn from Layered Microbial Communities?. In: Banfield, J. F., Nealson, K. H., eds., Geomicrobiology, Interactions between Microbes and Minerals. Mineralogical Society of America, Washington, D.C. 35: 5-34. https: //doi.org/10.1515/9781501509247-003
    Nealson, K., 1999. Discussion. In: Steering, G., eds., Size Limit of Very Small Microorganisms: Proceedings of a Workshop. National Academy Press, National Research Council, Space studies Board, Washington, D.C. 39-42
    Pacton, M., Gorin, G., Vasconcelos, C., et al., 2010. Structural Arrangement of Sedimentary Organic Matter: Nanometer-Scale Spheroids as Evidence of a Microbial Signature in Early Diagenetic Processes. Journal of Sedimentary Research, 80(10): 919-932. https://doi.org/10.2110/jsr.2010.082
    Pratt, B. R., 2001. Calcification of Cyanobacterial Filaments: Girvanella and the Origin of Lower Paleozoic Lime Mud. Geology, 29(9): 763-766. https://doi.org/10.1130/0091-7613(2001)0290763:cocfga>2.0.co;2 doi: 10.1130/0091-7613(2001)0290763:cocfga>2.0.co;2
    Reid, R. P., Macintyre, I. G., 1992. Micritized Skeletal Grains in Northern Belize Lagoon: A Major Source of Mg-Calcite Mud. SEPM Journal of Sedimentary Research, 62: 145-156
    Riding, R., 2006. Cyanobacterial Calcification, Carbon Dioxide Concentrating Mechanisms, and Proterozoic-Cambrian Changes in Atmospheric Composition. Geobiology, 4(4): 299-316. https://doi.org/10.1111/j.1472-4669.2006.00087.x
    Robbins, L. L., Blackwelder, P. L., 1992. Biochemical and Ultrastructural Evidence for the Origin of Whitings: A Biologically Induced Calcium Carbonate Precipitation Mechanism. Geology, 20(5): 464-468. https://doi.org/10.1130/0091-7613(1992)0200464:baueft>2.3.co;2 doi: 10.1130/0091-7613(1992)0200464:baueft>2.3.co;2
    Robbins, L. L., Tao, Y., Evans, C. A., 1997. Temporal and Spatial Distribution of Whitings on Great Bahama Bank and a New Lime Mud Budget. Geology, 25(10): 947-950. https://doi.org/10.1130/0091-7613(1997) 0250947:tasdow>2.3.co;2 doi: 10.1130/0091-7613(1997)0250947:tasdow>2.3.co;2
    Rodriguez-Blanco, J. D., Sand, K. K., Benning, L. G., 2017. ACC and Vaterite as Intermediates in the Solution-Based Crystallization of CaCO3. New Perspectives on Mineral Nucleation and Growth. Springer International Publishing, Cham. 93-111. https: //doi.org/10.1007/978-3-319-45669-0_5
    Rodriguez-Navarro, C., Jimenez-Lopez, C., Rodriguez-Navarro, A., et al., 2007. Bacterially Mediated Mineralization of Vaterite. Geochimica et Cosmochimica Acta, 71(5): 1197-1213. https://doi.org/10.1016/j.gca.2006.11.031
    Rule, R. G., Pratt, B. R., 2019. The Pseudofossil Horodyskia: Flocs and Flakes on Microbial Mats in a Shallow Mesoproterozoic Sea (Appekunny Formation, Belt Supergroup, Western North America). Precambrian Research, 333: 105439. https://doi.org/10.1016/j.precamres.2019.105439
    Sánchez-Román, M., Vasconcelos, C., Schmid, T., et al., 2008. Aerobic Microbial Dolomite at the Nanometer Scale: Implications for the Geological Record. Geology, 36(11): 879-882. https://doi.org/10.1130/g25013a.1
    Schieber, J., Arnott, H. J., 2003. Nannobacteria as a By-Product of Enzyme-Driven Tissue Decay. Geology, 31(8): 717-720. https://doi.org/10.1130/g19663.1
    Seong-Joo, L., Golubic, S., 1999. Microfossil Populations in the Context of Synsedimentary Micrite Deposition and Acicular Carbonate Precipitation: Mesoproterozoic Gaoyuzhuang Formation, China. Precambrian Research, 96(3/4): 183-208. https://doi.org/10.1016/s0301-9268(99)00004-2
    Spadafora, A., Perri, E., McKenzie, J. A., et al., 2010. Microbial Biomineralization Processes Forming Modern Ca: Mg Carbonate Stromatolites. Sedimentology, 57(1): 27-40. https://doi.org/10.1111/j.1365-3091.2009.01083.x
    Stieglitz, R. D., 1972. Scanning Electron Microscopy of the Fine Fraction of Recent Carbonate Sediments from Bimini, Bahamas. Journal of Sedimentary Petrology, 37: 211-227
    Stockman, K. W., Ginsburg, R. N., Shinn, E. A., 1967. The Production of Lime Mud by Algae in South Florida. Journal of Sedimentary Petrology, 37: 633-648
    Sutherland, I. W., 2001. Microbial Polysaccharides from Gram-Negative Bacteria. International Dairy Journal, 11(9): 663-674. https://doi.org/10.1016/s0958-6946(01)00112-1
    Tang, D. J., Shi, X. Y., Jiang, G. Q., 2013. Mesoproterozoic Biogenic Thrombolites from the North China Platform. International Journal of Earth Sciences, 102(2): 401-413. https://doi.org/10.1007/s00531-012-0817-9
    Thompson, J. B., 2000. Microbial Whitings. In: Riding, R. E., Awramik, S. M., eds., Microbial Sediments. Springer, Berlin Heidelberg, New York. 250-260
    Tosti, F., Riding, R., 2017. Fine-Grained Agglutinated Elongate Columnar Stromatolites: Tieling Formation, ca. 1 420 Ma, North China. Sedimentology, 64(4): 871-902. https://doi.org/10.1111/sed.12336
    Trichet, J., Défarge, C., 1995. Non-Biologically Supported Organomineralization. I'Institut Océanographique de Monaco, Monaco. 203-236
    Trower, E. J., Lamb, M. P., Fischer, W. W., 2019. The Origin of Carbonate Mud. Geophysical Research Letters, 46(5): 2696-2703. https://doi.org/10.1029/2018gl081620
    Tucker, M. E., 2001. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks. Blackwell Science. 262
    Visscher, P. T., Reid, R. P., Bebout, B. M., et al., 1998. Formation of Lithified Micritic Laminae in Modern Marine Stromatolites (Bahamas); The Role of Sulfur Cycling. American Mineralogist, 83(11/12): 1482-1493. https://doi.org/10.2138/am-1998-11-1236
    Wen, W., Hu, S. X., Zhang, Q. Y., et al., 2019. A New Species of Platysiagum from the Luoping Biota (Anisian, Middle Triassic, Yunnan, South China) Reveals the Relationship between Platysiagidae and Neopterygii. Geological Magazine, 156(4): 669-682. https://doi.org/10.1017/s0016756818000079
    Wen, W., Zhang, Q. Y., Hu, S. X., et al., 2012. A New Basal Actinopterygian Fish from the Anisian (Middle Triassic) of Luoping, Yunnan Province, Southwest China. Acta Palaeontologica Polonica, 57(1): 149-160. https://doi.org/10.4202/app.2010.0089
    Wen, W., Zhang, Q. Y., Hu, S. X., et al., 2013. Coelacanths from the Middle Triassic Luoping Biota, Yunnan, South China, with the Earliest Evidence of Ovoviviparity. Acta Palaeontologica Polonica, 58(1): 175-193. https://doi.org/10.4202/app.2011.0066
    You, X. L., Sun, S., Zhu, J. Q., et al., 2013. Microbially Mediated Dolomite in Cambrian Stromatolites from the Tarim Basin, North-West China: Implications for the Role of Organic Substrate on Dolomite Precipitation. Terra Nova, 25(5): 387-395. https://doi.org/10.1111/ter.12048
    Zhang, Q. Y., Zhou, C. Y., Lu, T., et al., 2009. A Conodont-Based Middle Triassic Age Assignment for the Luoping Biota of Yunnan, China. Science in China Series D: Earth Sciences, 52(10): 1673-1678. https://doi.org/10.1007/s11430-009-0114-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(400) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return