Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 4
Aug 2021
Turn off MathJax
Article Contents
You Zhou, Songtao Wu, Zhiping Li, Rukai Zhu, Shuyun Xie, Xiufen Zhai, Lei Lei. Investigation of Microscopic Pore Structure and Permeability Prediction in Sand-Conglomerate Reservoirs. Journal of Earth Science, 2021, 32(4): 818-827. doi: 10.1007/s12583-020-1082-7
Citation: You Zhou, Songtao Wu, Zhiping Li, Rukai Zhu, Shuyun Xie, Xiufen Zhai, Lei Lei. Investigation of Microscopic Pore Structure and Permeability Prediction in Sand-Conglomerate Reservoirs. Journal of Earth Science, 2021, 32(4): 818-827. doi: 10.1007/s12583-020-1082-7

Investigation of Microscopic Pore Structure and Permeability Prediction in Sand-Conglomerate Reservoirs

doi: 10.1007/s12583-020-1082-7
More Information
  • Corresponding author: Songtao Wu, wust@petrochina.com.cn
  • Received Date: 22 Mar 2020
  • Accepted Date: 19 Aug 2020
  • Publish Date: 16 Aug 2021
  • The microscopic pore structure of sand-conglomerate rocks plays a decisive role in its exploration and development of such reservoirs. Due to complex gravels-cements configurations and resultant high heterogeneity in sand-conglomerate rocks, the conventional fractal dimensions are inadequate to fully characterize the pore space. Based on the Pia Intermingled Fractal Units (IFU) model, this paper presents a new variable-ratio factor IFU model, which takes tortuosity and boundary layer thickness into consideration, to characterize the Triassic Karamay Formation conglomerate reservoirs in the Mahu region of the Junggar Basin, Northwest China. The modified model has a more powerful and flexible ability to simulate pore structures of porous media, and the simulation results are closer to the real conditions of pore space in low-porosity and low-permeability reservoirs than the conventional Pia IFU model. The geometric construction of the model is simplified to allow for an easing of computation. Porosity and spectral distribution of pore diameter, constructed using the modified model, are generally consistent with actual core data. Also, the model-computed permeability correlates well with experimental results, with a relative error of less than 15%. The modified IFU model performs well in quantitatively characterizing the heterogeneity of sand-conglomerate pore structures, and provides a methodology for the study of other similar types of heterogeneous reservoirs.

     

  • loading
  • Atzeni, C., Pia, G., Sanna, U., 2008. Fractal Modelling of Medium-High Porosity SiC Ceramics. Journal of the European Ceramic Society, 28(14): 2809-2814. https://doi.org/10.1016/j.jeurceramsoc.2008.03.039
    Chen, H. Q., Liang, S. X., Shu, Z. R., et al., 2015. Characteristics of Conglomerate Reservoir Architecture of Alluvial Fan and Its Controlling Effects to Reservoir Development: Taking Alluvial Fan Reservoir in Some Area of Northwest Margin of Junggar Basin as an Example. Journal of Jilin University (Earth Science Edition), 45(1): 13-24. https://doi.org/10.13278/j.cnki.jjuese.201501102 (in Chinese with English Abstract)
    Erol, S., Fowler, S. J., Harcouët-Menou, V., et al., 2017. An Analytical Model of Porosity-Permeability for Porous and Fractured Media. Transport in Porous Media, 120(2): 327-358. https://doi.org/10.1007/s11242-017-0923-z
    Gao, S. S., 2012. Research on Seepage Theory and Use of Petroleum Reservoir Engineering of Sang-Conglomerate Reservoir Formation in Mobei Oilfield, Xinjiang: [Dissertation]. China University of Geosciences, Beijing (in Chinese with English Abstract)
    He, C. Z., Hua, M. Q., 1998. Fractal Geometry Description of Reservoir Pore Structure. Oil and Gas Geology, 19(1): 15-23. https://doi.org/10.11743/ogg19980103 (in Chinese with English Abstract)
    Ju, Y., Zheng, J. T., Epstein, M., et al., 2014.3D Numerical Reconstruction of Well-Connected Porous Structure of Rock Using Fractal Algorithms. Computer Methods in Applied Mechanics and Engineering, 279: 212-226. https://doi.org/10.1016/j.cma.2014.06.035
    Kuang, Y., Sima, L. Q., Qu, J. H., et al., 2017. Influencing Factors and Quantitative Evaluation for Pore Structure of Tight Glutenite Reservoir: A Case of the Triassic Baikouquan Formation in Ma 131 Well Field, Mahu Sag. Lithologic Reservoirs, 29(4): 91-100. https://doi.org/10.3969/j.issn.1673-8926.2017.04.011 (in Chinese with English Abstract)
    Li, C. X., Lin, M., Ji, L. L., et al., 2017. Investigation of Intermingled Fractal Model for Organic-Rich Shale. Energy & Fuels, 31(9): 8896-8909. https://doi.org/10.1021/acs.energyfuels.7b00834
    Li, C. X., Lin, M., Ji, L. L., et al., 2018. Rapid Evaluation of the Permeability of Organic-Rich Shale Using the 3D Intermingled-Fractal Model. SPE Journal, 23(6): 2175-2187. https://doi.org/10.2118/191358-pa
    Liu, Z. X., Yan, D. T., Niu, X., 2020. Insights into Pore Structure and Fractal Characteristics of the Lower Cambrian Niutitang Formation Shale on the Yangtze Platform, South China. Journal of Earth Science, 31(1): 169-180. https://doi.org/10.1007/s12583-020-1259-0
    Lou, Y., Zhu, W. Y., Song, H. Q., et al., 2014. Apparent Permeability Model for Fractal Porous Media Considering the Effect of Solid-Liquid Interface. Journal of Northeast Petroleum University, 38(2): 69-73. https://doi.org/10.3969/j.issn.2095-4107.2014.02.010 (in Chinese with English Abstract)
    Lyu, C., Cheng, Q. M., Zuo, R. G., et al., 2017. Mapping Spatial Distribution Characteristics of Lineaments Extracted from Remote Sensing Image Using Fractal and Multifractal Models. Journal of Earth Science, 28(3): 507-515. https://doi.org/10.1007/s12583-016-0914-x
    Meng, Q. B., Liu, H. Q., Wang, J., 2017. A Critical Review on Fundamental Mechanisms of Spontaneous Imbibition and the Impact of Boundary Condition, Fluid Viscosity and Wettability. Advances in Geo-Energy Research, 1(1): 1-17. https://doi.org/10.26804/ager.2017.01.01
    Pia, G., 2016. High Porous Yttria-Stabilized Zirconia with Aligned Pore Channels: Morphology Directionality Influence on Heat Transfer. Ceramics International, 42(10): 11674-11681. https://doi.org/10.1016/j.ceramint.2016.04.078
    Pia, G., Casnedi, L., 2017. Heat Transfer in High Porous Alumina: Experimental Data Interpretation by Different Modelling Approaches. Ceramics International, 43(12): 9184-9190. https://doi.org/10.1016/j.ceramint.2017.04.071
    Pia, G., Casnedi, L., Ionta, M., et al., 2015. On the Elastic Deformation Properties of Porous Ceramic Materials Obtained by Pore-Forming Agent Method. Ceramics International, 41(9): 11097-11105. https://doi.org/10.1016/j.ceramint.2015.05.057
    Pia, G., Casnedi, L., Sanna, U., 2016a. Porosity and Pore Size Distribution Influence on Thermal Conductivity of Yttria-Stabilized Zirconia: Experimental Findings and Model Predictions. Ceramics International, 42(5): 5802-5809. https://doi.org/10.1016/j.ceramint.2015.12.122
    Pia, G., Siligardi, C., Casnedi, L., et al., 2016b. Pore Size Distribution and Porosity Influence on Sorptivity of Ceramic Tiles: From Experimental Data to Fractal Modelling. Ceramics International, 42(8): 9583-9590. https://doi.org/10.1016/j.ceramint.2016.03.041
    Pia, G., Sanna, U., 2014a. An Intermingled Fractal Units Model and Method to Predict Permeability in Porous Rock. International Journal of Engineering Science, 75: 31-39. https://doi.org/10.1016/j.ijengsci.2013.11.002
    Pia, G., Sanna, U., 2014b. An Intermingled Fractal Units Model to Evaluate Pore Size Distribution Influence on Thermal Conductivity Values in Porous Materials. Applied Thermal Engineering, 65(1/2): 330-336. https://doi.org/10.1016/j.applthermaleng.2014.01.037
    Pia, G., Sanna, U., 2013. A Geometrical Fractal Model for the Porosity and Thermal Conductivity of Insulating Concrete. Construction and Building Materials, 44: 551-556. https://doi.org/10.1016/j.conbuildmat.2013.03.049
    Qian, G. B., Xu, C. F., Chen, Y. K., et al., 2016. Microscopic Mechanism of Polymer Flooding in Glutenite Reservoir of Lower Karamay Formation in East District-7(1), Karamay Oilfield. Xinjiang Petroleum Geology, 37(1): 56-61. https://doi.org/10.7657/xjpg20160111 (in Chinese with English Abstract)
    Sergeyev, Y. D., 2009. Evaluating the Exact Infinitesimal Values of Area of Sierpinski's Carpet and Volume of Menger's Sponge. Chaos, Solitons & Fractals, 42(5): 3042-3046. https://doi.org/10.1016/j.chaos.2009.04.013
    Shan, X., Zou, Z. W., Meng, X. C., et al., 2016. Provenance Analysis of Triassic Baikouquan Formation in the Area around Mahu Depression, Junggar Basin. Acta Sedimentologica Sinica, 34(5): 930-939. https://doi.org/10.14027/j.cnki.cjxb.2016.05.012 (in Chinese with English Abstract)
    Shi, Y., Yang, Z. M., Yang, W. Y., 2011. Study of Non-Linear Relative Permeability in Low Permeability Reservoir. Journal of Southwest Petroleum University (Science & Technology Edition), 33(1): 78-82. https://doi.org/10.1631/jzus.a1000105 (in Chinese with English Abstract)
    Tian, X. F., Cheng, L. S., Li, X. L., et al., 2014. A New Method to Calculate Relative Permeability Considering the Effect of Pore-Throat Distribution. Journal of Shaanxi University of Science and Technology (Natural Science Edition), 32(6): 100-104. https://doi.org/10.3969/j.issn.1000-5811.2014.06.022 (in Chinese with English Abstract)
    Vita, M. C., De Bartolo, S., Fallico, C., et al., 2012. Usage of Infinitesimals in the Menger's Sponge Model of Porosity. Applied Mathematics and Computation, 218(16): 8187-8195. https://doi.org/10.1016/j.amc.2011.06.013
    Wan, L., Dai, L. M., Tang, G. M., et al., 2020. Multi-Scale Characterization and Evaluation of Pore-Throat Combination Characteristics of Lacustrine Mixed Rock Reservoir. Earth Science, 45(10): 3841-3852. https://doi.org/10.3799/dqkx.2020.144 (in Chinese with English Abstract)
    Wu, Z. X., Yang, Z. C., Ding, C., et al., 2011. Characteristics of Fan Delta in Triassic Karamay Formation, Northwest Margin of Junggar Basin: Taking W16 Well Area as an Example. Natural Gas Geoscience, 22(4): 602-609 (in Chinese with English Abstract)
    Xu, Y. H., Yang, X. H., Mei, L. F., 2020. Reservoir Characteristics and Main Control Factors of Conglomerate Reservoir of El3 in the Northwest Steep Slope Zone of Weixinan Depression. Earth Science, 45(5): 1706-1721. https://doi.org/10.3799/dqkx.2019.174 (in Chinese with English Abstract)
    Xu, Z. H., Hu, S. Y., Wang, L., et al., 2019. Seismic Sedimentologic Study of Facies and Reservoir in Middle Triassic Karamay Formation of the Mahu Sag, Junggar Basin, China. Marine and Petroleum Geology, 107: 222-236. https://doi.org/10.1016/j.marpetgeo.2019.05.012
    Yang, Y. Q., Qiu, L. W., Cao, Y. C., et al., 2017. Reservoir Quality and Diagenesis of the Permian Lucaogou Formation Tight Carbonates in Jimsar Sag, Junggar Basin, West China. Journal of Earth Science, 28(6): 1032-1046. https://doi.org/10.1007/s12583-016-0931-6
    Yu, B. M., Li, J. H., 2004. A Geometry Model for Tortuosity of Flow Path in Porous Media. Chinese Physics Letters, 21(8): 1569-1571. https://doi.org/10.1088/0256-307x/21/8/044
    Yun, M. J., Yu, B. M., Xu, P., et al., 2008. Geometrical Models for Tortuosity of Streamlines in Three-Dimensional Porous Media. The Canadian Journal of Chemical Engineering, 84(3): 301-309. https://doi.org/10.1002/cjce.5450840305
    Zhang, J. Z., 2011. Fractal: 2nd Edition. Tsinghua University Press, Beijing. 262-263 (in Chinese)
    Zhou, Y., Wu, S. T., Li, Z. P., et al., 2018. Multifractal Study of Three-Dimensional Pore Structure of Sand-Conglomerate Reservoir Based on CT Images. Energy and Fuels, 32(4): 4797-4807. https://doi.org/10.1021/acs.energyfuels.8b00057
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(294) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return