Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 1
Mar 2021
Turn off MathJax
Article Contents
Junjie Wu, Xiaodong Chen, Yi Yang, Qingquan Zhi, Xingchun Wang, Jie Zhang, Xiaohong Deng, Yi Zhao, Yue Huang. Application of TEM Based on HTS SQUID Magnetometer in Deep Geological Structure Exploration in the Baiyun Gold Deposit, NE China. Journal of Earth Science, 2021, 32(1): 1-7. doi: 10.1007/s12583-020-1086-3
Citation: Junjie Wu, Xiaodong Chen, Yi Yang, Qingquan Zhi, Xingchun Wang, Jie Zhang, Xiaohong Deng, Yi Zhao, Yue Huang. Application of TEM Based on HTS SQUID Magnetometer in Deep Geological Structure Exploration in the Baiyun Gold Deposit, NE China. Journal of Earth Science, 2021, 32(1): 1-7. doi: 10.1007/s12583-020-1086-3

Application of TEM Based on HTS SQUID Magnetometer in Deep Geological Structure Exploration in the Baiyun Gold Deposit, NE China

doi: 10.1007/s12583-020-1086-3
More Information
  • Corresponding author: Xiaodong Chen, 13803225801@139.com
  • Received Date: 07 May 2020
  • Accepted Date: 01 Sep 2020
  • Publish Date: 01 Feb 2021
  • Exploration of deep mineralization, particularly where the mineralization of interest is covered by a conductive overburden, is still a challenge for the conventional transient electromagnetic (TEM) method, which measures TEM response using induction coils as the sensor. However, sensors such as fluxgate and superconductive quantum interfere device (SQUID) magnetometers can measure the B-field directly, which can provide more reliable deep information for mineralization exploration. In this paper, we report on the research and development of our newly developed high-temperature superconductor (HTS) SQUID magnetometer, which is cooled by liquid nitrogen at 77 K, and its application in TEM measurement for deep exploration in a gold deposit in China. This improved SQUID magnetometer version has a good performance with noise (60 fT/$\sqrt {{{\rm{H}}_{\rm{Z}}}} $), slew rate (0.8 mT/S), dynamic range (100 dB), sensitivity (6.25 mV/nT), and bandwidth (DC-20 kHz). To find deep and peripheral ore in the Baiyun gold deposit located in Liaoning Province, NE China, both the SQUID magnetometer and induction coil were used for TEM data acquisition. Results show that TEM can detect the distribution of local strata and the faults contained within them. Results also indicate that the SQUID magnetometer has superior response performance for response over geological targets with slower decay time when compared to the induction coil signals. The SQUID magnetometer is more sensitive at observing the induced-polarization effect which is closely related to the ore-controlling faults.

     

  • loading
  • Arai, E., Katamama, H., Hart, J., 2007. Application of a New TEM Data Acquisition System Based on a HTS SQUID Magnetometer (SQUITEM) to Metal Exploration in Broken Hill Area. ASEG Extended Abstracts, 2007(1): 1-5. https://doi.org/10.1071/aseg2007ab005
    Asten, M. W., Duncan, A. C., 2012. The Quantitative Advantages of Using B-Field Sensors in Time-Domain EM Measurement for Mineral Exploration and Unexploded Ordnance Search. Geophysics, 77(4): WB137-WB148. https://doi.org/10.1190/geo2011-0385.1
    Bick, M., Panaitov. G., Wolters, N., et al., 1999. A HTS rf SQUID Vector Magnetometer for Geophysical Exploration. IEEE Transactions on Appiled Superconductivity, 9(2): 3780-3785. https://doi.org/10.1109/77.783851
    Chen, X. D., Zhao, Y., Deng, X. H., et al., 2006. The Development of the HTc SQUID Magnetometer and Its Application to TEM. Geophysical and Geochemical Exploration, 30 (3): 229-232 (in Chinese with English Abstract)
    Chen, X. D., Zhao, Y., Lin, T. L., et al., 2012b. The Applications of HTc SQUID Magnetometer to LOTEM. Geophysical and Geochemical Exploration, 36 (1): 65-68. https://doi.org/10.11720/wtyht.2012.1.13 (in Chinese with English Abstract)
    Chen, X. D., Zhao, Y., Wang, C. J., et al., 2002. The Development of HTc RF SQUID Magnetometer and Its Field Test in TEM. Acta Geoscientia Sinica, 23(2): 179-182 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200202016.htm
    Chen, X. D., Zhao, Y., Zhang, J., et al., 2007. Influence of Frequency Characteristics of Nonmagnetic Dewar on High Temperature Superconducting Magnetometer. Computing Techniques for Geophysical and Geochemical Exploration, 29(Suppl): 292-303(in Chinese with English Abstract)
    Chen, X. D., Zhao, Y., Zhang, J., et al., 2012a. The Applications of HTc SQUID Magnetometer to TEM. Chinese Journal of Geophysics, 55 (2): 702-708. https://doi.org/10.6038/j.issn.0001-5733.2012.02.034 (in Chinese with English Abstract)
    Chwala, A., Stolz, R., IJsselsteijn, R., et al., 2010. "JESSY DEEP": Jena SQUID Systems for Deep Earth Exploration. 80th Annual International Meeting, SEG, Expanded Abstracts. 779-783. https://doi.org/10.1190/1.3513897
    Chwala, A., Stolz, R., Schmelz, M., et al., 2015. SQUID Systems for Geophysical Time Domain Electromagnetics (TEM) at IPHT Jena. IEICE Transactions on Electronics, E98. C(3): 167-173. https://doi.org/10.1587/transele.e98.c.167 doi: 10.1587/transele.E98.C.167
    Di, Q. Y., Xue, G. Q., Zeng, Q. D., et al., 2020. Magnetotelluric Exploration of Deep-Seated Gold Deposits in the Qingchengzi Orefield, Eastern Liaoning (China), Using a SEP System. Ore Geology Reviews, 122: 103501. https://doi.org/10.1016/j.oregeorev.2020.103501
    Di, Q. Y., Zhu, R. X., Xue, G. Q., et al., 2019. New Development of the Electromagnetic (EM) Methods for Deep Exploration. Chinese Journal of Geophysics, 62(6): 2128-2138. https://doi.org/10.6038/cjg2019M0633 (in Chinese with English Abstract)
    Foley, C. P., Leslie, K. E., Binks, R. A., 2006. A History of the CSIRO's Development of High Temperature Superconducting Rf SQUIDs for TEM Prospecting. . ASEG Extended Abstracts, 2006(1): 1-5. https://doi.org/10.1071/aseg2006ab094
    Foley, C. P., Leslie, K. E., Binks, R., et al., 1999. Field Trials Using HTS SQUID Magnetometers for Ground-Based and Airborne Geophysical Applications. IEEE Transactions on Appiled Superconductivity, 9(2): 3786-3792. https://doi.org/10.1109/77.783852
    Ji, Y. J., Du, S. Y., Xie, L. J., et al., 2016. TEM Measurement in a Low Resistivity Overburden Performed by Using Low Temperature SQUID. Journal of Applied Geophysics, 135: 243-248. https://doi.org/10.1016/j.jappgeo.2016.09.027
    Lang, F. Q., Chen, H., Liu, H. G., 2007. Geologic Characteristics and Ore Prospecting Orientation of Baiyun Gold Deposit in Liaoning Province. Gold, 28(11): 16-20 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJZZ200711006.htm
    Le Roux, C., Macnae, J., 2007. SQUID Sensors for EM Systems. Proceedings of Exploration 7: Fifth Decennial International Conference on Mineral Exploration. 417-423
    Lee, J. B., Turner, R. J., Downey, M. A., et al., 2001. Experience with SQUID Magnetometers in Airborne TEM Surveying. Exploration Geophysics, 32(1): 9-13. https://doi.org/10.1071/eg01009 doi: 10.1071/EG01009
    Li, D. D., W, Y. W., Zhang, Z. C., et al., 2019. Characteristics of Metallotectonics and Ore-Forming Structural Plane in Baiyun Gold Deposit, Liaoning. Journal of Geomechanics, 25 (S1): 10-20. https://doi.org/10.12090/j.issn.1006-6616.2019.25.S1.003
    Liu, Y. J., Han, X. T., Liu, Z. H., et al., 2020. Zircon U-Pb Ages, Geochemical Characteristics and Geological Significance of Early Cretaceous Granites in Fengcheng Area, Eastern Liaoning Province. Earth Science, 45(1): 145-155. https://doi.org/10.3799/dqkx.2018.278 (in Chinese with English abstract)
    Nagendran, R., Thanikai Arasu A. V., Mohanty, I., et al., 2017. Development of SQUID Based TDEM System for Geophysical Applications. DAE Solid State Physics Symposium 2016. American Institute of Physics Conference Proceedings, 1832: 060018-1-060018-3. https://doi.org/10.1063/1.4980423
    Panaitov, G., Bick, M., Zhang, Y., et al., 2002. Peculiarities of SQUID Magnetometer Application in TEM. Geophysics, 67(3): 739-745. https://doi.org/10.1190/1.1484516
    Smith, R., Annan, P., 1998. The Use of B-Field Measurements in an Airborne Time-Domain System: Part Ⅰ. Benefits of B-Field Versus dB/dt data. Exploration Geophysics, 29(1/2): 24-29. https://doi.org/10.1071/eg998024
    Spies, B. R., 1989. Depth of Investigation in Electromagnetic Sounding Methods. Geophysics, 54(7): 872-888. https://doi.org/10.1190/1.1442716
    Spies, B. R., 2004. Discussion on "Peculiarities of SQUID Magnetometer Application in TEM" (Geophysics, 67: 739-745). Geophysics, 69(2): 624-625. https://doi.org/10.1190/1.1736824
    Wang, C. J., Chen, X. D., Zhao, Y., et al. 1999. Application of 77K SQUID magnetometer in TEM, Chinese. Journal of Geophysics, 42(Suppl): 161-166 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX1999S1021.htm
    Wang, C. J., Chen, X. D., Zhao, Y., et al., 1995. Problems and Solutions of HTS RF-SQUID Magnetometer in LOTEM. Chinese Journal of Low Temperature Physics, 17(Suppl): 426-428 (in Chinese with English Abstract)
    Wang, C. J., Wang, B. Z., 2002. Prospect of Application of HTS Superconducting Technology. Geology and Prospecting, 38(Suppl): 15-17 (in Chinese with English Abstract)
    Wolfgram, P., Thomson, S., 1998. The Use of B-Field Measurements in an Airborne Time-Domain System——Part Ⅱ: Examples in Conductive Regimes. Exploration Geophysics, 29(1/2): 225-229. https://doi.org/10.1071/eg998225
    Xue, G. Q., Gelius, L. J., Sakyi, P. A., et al., 2014. Discovery of a Hidden BIF Deposit in Anhui Province, China by Integrated Geological and Geophysical Investigations. Ore Geology Reviews, 63: 470-477. https://doi.org/10.1016/j.oregeorev.2014.05.007
    Xue, G. Q., Zhang, L. B., Hou, D. Y., et al., 2020b. Integrated Geological and Geophysical Investigations for the Discovery of Deeply Buried Gold-polymetallic Deposits in China. Geological Journal, 55(3): 1771-1780. https://doi.org/10.1002/gj.3574
    Xue, G. Q., Zhang, L. B., Zhou, N. N., et al., 2020a. Developments Measurements of TEM Sounding in China. Geological Journal, 55(3): 1636-1643. https://doi.org/10.1002/gj.3544
    Yin, C. C., Ren, X. Y., Liu, Y. H., et al., 2016. The Effect of Induced Polarization on Time-Domain Airborne EM Diffusion. Chinese Journal of Geophysics, 58(9): 3370-3379. https://doi.org/10.6038/cjg20150929 (in Chinese with English Abstract)
    Zeng, Q. D., Chen, R. Y., Yang, J. H., et al., 2019. The Metallogenic Characteristics and Exploring Ore Potential of the Gold Deposits in Eastern Liaoning Province. Acta Petrologica Sinica, 35(7): 1939-1963. https://doi.org/10.18654/1000-0569/2019.07.01
    Zhang, J., Lü, G. Y., Guo, B. L., et al., 2010. Pseudo-2D Inversion of TEM Transient Magnetic Field and Its Application Effect. Geophysical and Geochemical Exploration, 34(2): 205-208 (in Chinese with English Abstract)
    Zhang, P., Zhao, Y., Kou, L., et al., 2019. Zircon U-Pb Ages, Hf Isotopes and Geological Significance of Mesozoic Granites in Dandong Area, Liaodong Peninsula. Earth Science, 44(10): 3297-3313. https://doi.org/10.3799/dqkx.2019.129 (in Chinese with English Abstract)
    Zhao, P. D., Chen, Q. M., Xia, Q. L., 2008. Quantitative Prediction for Deep Mineral Exploration. Journal of Earth Science, 19(4): 309-318 http://en.earth-science.net/en/article/id/328
    Zhao, Y, Chen, X. D., Wang, C. J., 2002. The Intelligence Control System of rf SQUID Magnetometer. Geology and Prospecting, 38(Suppl): 22-24 (in Chinese with English Abstract)
    Zhi, Q. Q., Wu, J. J., Deng, X. H., et al., 2015. The One-Dimension Inversion of Underground Transient Electromagnetic Data. Computing Techniques for Geophysical and Geochemical Exploration, 37(5): 566-570 (in Chinese with English Abstract) http://www.researchgate.net/publication/285813075_The_one-dimension_inversion_of_underground_transient_electromagnetic_data
    Zhi, Q. Q., Wu, J. J., Yang, Y., et al., 2020. Superiority of Bz-Based Transient Electromagnetic Method and Verification Test in Coastal Tidal Regious. Progress in Geophysics, 35(1): 379-385. https://doi.org/10.6038/pg2020CC0552 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(906) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return