Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 1
Mar 2021
Turn off MathJax
Article Contents
Yixing Ma, Junhua Hu, Yanjun Chang, Zujian Liu. Study on the Coincident-Loop Transient Electromagnetic Method in Seafloor Exploration-Taking Jiaodong Polymetallic Mine as a Model. Journal of Earth Science, 2021, 32(1): 25-41. doi: 10.1007/s12583-020-1087-2
Citation: Yixing Ma, Junhua Hu, Yanjun Chang, Zujian Liu. Study on the Coincident-Loop Transient Electromagnetic Method in Seafloor Exploration-Taking Jiaodong Polymetallic Mine as a Model. Journal of Earth Science, 2021, 32(1): 25-41. doi: 10.1007/s12583-020-1087-2

Study on the Coincident-Loop Transient Electromagnetic Method in Seafloor Exploration-Taking Jiaodong Polymetallic Mine as a Model

doi: 10.1007/s12583-020-1087-2
More Information
  • Corresponding author: Junhua Hu, junhuahu_cas@163.com
  • Received Date: 18 May 2020
  • Accepted Date: 26 Sep 2020
  • Publish Date: 01 Feb 2021
  • The transient electromagnetic (TEM) method becomes more urgent than ever for marine exploration due to abundant resource reserves and the increasing undersea engineering construction activities, especially in the offshore exploration of mineral deposits such as Sanshandao gold mine. However, the research and application of TEM method in marine environment are still challenged by many problems. Such contradiction motivates our study on the coincident-loop TEM in seafloor exploration. The TEM response of coincident loops is firstly derived in the integral form, based on the potential functions in Helmholtz equations for a magnetic source locating in the whole-space layered model. The frequency-domain vertical magnetic field is described as the Hankel integral with double first-order Bessel functions of first kind. Secondly, the time-domain induced voltage is obtained by transforming the frequency-domain response through the cosine transform and then taking the derivative of time. To simultaneously solve the Hankel transform and the cosine transform, a novel algorithm is introduced by adapting the fixed-point quadrature and extrapolation via the Shanks transformation. Finally, a typical conductivity model for marine polymetallic deposit is designed to investigate the characteristic of TEM response under various conditions. Numerical results demonstrate that existence of conductive seawater causes the TEM response to increase significantly and decay slower. The air-sea reflected electromagnetic waves lead to a significantly large fake negative response (NR) in shallower seawater with depth less than 300 m. Increase in the height of loops will weaken and delay the anomaly response and shorten the observation time-window. The height of configuration should be no more than 100 m for shallower targets and 50 m for deeper targets, respectively. The observation time-window should cover 10-1 000 ms. Increase in the radius of loops only enhances the TEM response proportionally but hardly improves the relative anomaly. The vertical resolution on the low-resistivity target approximates 20 m for the configuration considered in the study. Decreases in D.C. resistivity and chargeability cause the positive response (PR) to increase significantly and decay more rapidly. Meanwhile, the NR is advanced and enlarged significantly and decays slower compared with the PR. The influence of time constant is not monotony and there exists an optimal value for producing the maximum NR. As the frequency parameter increases, the PR is caused to decay more rapidly without magnitude change and the NR is advanced and decays more rapidly with significant increase in magnitude. The influence of frequency parameter is more pronounced than that of time constant.

     

  • loading
  • Anderson, W. L., 1984. Computation of Green's Tensor Integrals for Three-Dimensional Electromagnetic Problems Using Fast Hankel Transforms. Exploration Geophysics, 15(3): 195-195. https://doi.org/10.1071/eg984195b
    Anderson, W. L., 1989. A Hybrid Fast Hankel Transform Algorithm for Electromagnetic Modeling. Geophysics, 54(2): 263-266. https://doi.org/10.1190/1.1442650
    Chang, Y., Xiao, M., Wu, Y., 2010. One-Dimensional Inversion Strategies for Transient Electromagnetic Data Based on Apparent Vertical Conductance. Oil Geophysical Prospecting, 45(2): 295-298 (in Chinese with English Abstract) http://www.researchgate.net/publication/287003739_Studies_on_initial_parameter_selection_of_one-dimensional_inversion_for_Transient_Electromagnetic_Data
    Chang, Y., Zhang, G., 1995. Comparison among Three Transformation Algorithms of Electromagnetic Field from Frequency Domain to Time Domain. Computing Techniques for Geophysics and Geochemical Exploration, 3(17): 25-29 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTHT503.003.htm
    Chave, A. D., 1983. Numerical Integration of Related Hankel Transforms by Quadrature and Continued Fraction Expansion. Geophysics, 48(12): 1671-1686. https://doi.org/10.1190/1.1441448
    Chave, A. D., Cox, C. S., 1982. Controlled Electromagnetic Sources for Measuring Electrical Conductivity beneath the Oceans: 1. Forward Problem and Model Study. Journal of Geophysical Research: Solid Earth, 87(B7): 5327-5338. https://doi.org/10.1029/jb087ib07p05327 doi: 10.1029/JB087iB07p05327
    Cheesman, S. J., Edwards, R. N., Chave, A. D., 1987. On the Theory of Sea-Floor Conductivity Mapping Using Transient Electromagnetic Systems. Geophysics, 52(2): 204-217. https://doi.org/10.1190/1.1442296
    Chen, S., Li, X., Duan, W., et al., 2018. Petrological and Geochronological Study of Amphibolite from Jiaobei Terrane. Journal of Earth Science, 43(3): 716-732. https://doi.org/10.3799/dqkx.2018.903 (in Chinese with English Abstract)
    Commer, M., Newman, G. A., 2008. New Advances in Three-Dimensional Controlled-Source Electromagnetic Inversion. Geophysical Journal International, 172(2): 513-535. https://doi.org/10.1111/j.1365-246x.2007.03663.x doi: 10.1111/j.1365-246X.2007.03663.x
    Constable, S. C., 1990. Marine Electromagnetic Induction Studies. Surveys in Geophysics, 11(2/3): 303-327. https://doi.org/10.1007/bf01901663 doi: 10.1007/BF01901663
    Constable, S. C., Orange, A. S., Hoversten, G. M., et al., 1998. Marine Magnetotellurics for Petroleum Exploration Part Ⅰ: A Sea-floor Equipment System. Geophysics, 63(3): 816-825. https://doi.org/10.1190/1.1444393
    Constable, S., Srnka, L. J., et al., 2007. An Introduction to Marine Controlled- Source Electromagnetic Methods for Hydrocarbon Exploration. Geophysics, 72(2): WA3-WA12. https://doi.org/10.1190/1.2432483
    Descloitres, M., Guérin, R., Albouy, Y., et al., 2000. Improvement in TDEM Sounding Interpretation in Presence of Induced Polarization. a Case Study in Resistive Rocks of the Fogo Volcano, Cape Verde Islands. Journal of Applied Geophysics, 45(1): 1-18. https://doi.org/10.1016/s0926-9851(00)00015-x doi: 10.1016/S0926-9851(00)00015-X
    El-Kaliouby, H. M., Hussain, S. A., Bayoumi, A. E. R., et al., 1995. Effect of Clayey Media Parameters on the Negative Response of a Coincident Loop1. Geophysical Prospecting, 43(5): 595-603. https://doi.org/10.1111/j.1365-2478.1995.tb00269.x
    Ellis, M., Evans, R. L., Hutchinson, D., et al., 2008. Electromagnetic Surveying of Seafloor Mounds in the Northern Gulf of Mexico. Marine and Petroleum Geology, 25(9): 960-968. https://doi.org/10.1016/j.marpetgeo.2007.12.006
    Evans, R. L., Everett, M. E., 1994. Discrimination of Hydrothermal Mound Structures Using Transient Electromagnetic Methods. Geophysical Research Letters, 21(6): 501-504. https://doi.org/10.1029/94gl00418 doi: 10.1029/94GL00418
    Everett, M. E., 2009. Transient Electromagnetic Response of a Loop Source over a Rough Geological Medium. Geophysical Journal International, 177(2): 421-429. https://doi.org/10.1111/j.1365-246X.2008.04011.x
    Fiandaca, G., Ramm, J., Binley, A., et al., 2012. Resolving Spectral Information from Time Domain Induced Polarization Data through 2-D Inversion. Geophysical Journal International, 192(2): 631-646. https://doi.org/10.1093/gji/ggs060
    Flis, M. F., Newman, G. A., Hohmann, G. W., 1989. Induced-Polarization Effects in Time-Domain Electromagnetic Measurements. Geophysics, 54(4): 514-523. https://doi.org/10.1190/1.1442678
    Flosadóttir, Á. H., Constable, S., 1996. Marine Controlled-Source Electromagnetic Sounding: 1. Modeling and Experimental Design. Journal of Geophysical Research: Solid Earth, 101(B3): 5507-5517. https://doi.org/10.1029/95jb03739 doi: 10.1029/95JB03739
    Ghosh, D. P., 1971. The Application of Linear Filter Theory to the Direct Interpretation of Geoelectrical Resistivity Sounding Measurements. Geophysical Prospecting, 19(2): 192-217. https://doi.org/10.1111/j.1365-2478.1971.tb00593.x
    Goldfarb, R. J., Santosh, M., 2014. The Dilemma of the Jiaodong Gold Deposits: Are They Unique?. Geoscience Frontiers, 5(2): 139-153. https://doi.org/10.1016/j.gsf.2013.11.001
    Guo, T., Lü, G. X., 2018. Measurement of Metallogenic Depth and Deep Second Enrichment Belt Forecasting in Jiaodong Gold Deposit. Earth Science——Journal of China University of Geosciences, 6(2): 102-107 (in Chinese with English Abstract)
    Guptasarma, D., 1982. Computation of the Time-Domain Response of a Polarizable Ground. Geophysics, 47(11): 1574-1576. https://doi.org/10.1190/1.1441307
    Guptasarma, D., Singh, B., 1997. New Digital Linear Filters for Hankel J0 and J1 Transforms. Geophysical Prospecting, 45(5): 745-762. https://doi.org/10.1046/j.1365-2478.1997.500292.x
    Hohmann, G. W., Kintzinger, P. R., Van Voorhis, G. D., et al., 1970. Evaluation of the Measurement of Induced Electrical Polarization with an Inductive System. Geophysics, 35(5): 901-915. https://doi.org/10.1190/1.1440136
    Hohmann, G. W., Newman, G. A., 1990. Transient Electromagnetic Responses of Surficial, Polarizable Patches. Geophysics, 55(8): 1098-1100. https://doi.org/10.1190/1.1442921
    Hu, H. L., Liu, S. L., Fan, H. R., et al., 2020. Structural Networks Constraints on Alteration and Mineralization Processes in the Jiaojia Gold Deposit, Jiaodong Peninsula, China. Journal of Earth Science, 31(3): 500-513. https://doi.org/10.1007/s12583-020-1276-z
    Hu, J., Chang, Y., Lei, S., et al., 2013. 1D forward of TEM of Central Loop Configuration on Seafloor and Calculation of All-Time Apparent Resistivity. Geophysical & Geochemical Exploration, 37(6): 1137-1140 (in Chinese with English Abstract)
    Hu, J., Chang, Y., Zuo, q., et al., 2015. The application of Hankel Transform Based on QWE in Electromagnetic Modeling. Oil Geophysical Prospecting, 50(2): 370-375(in Chinese)
    Jang, H., Kim, H. J., 2015. Mapping Deep-Sea Hydrothermal Deposits with an In-Loop Transient Electromagnetic Method: Insights from 1D Forward and Inverse Modeling. Journal of Applied Geophysics, 123: 170-176. https://doi.org/10.1016/j.jappgeo.2015.10.003
    Johansen, H., Sørensen, K., 1979. Fast Hankel Transforms. Geophysical Prospecting, 27(4): 876-901 doi: 10.1111/j.1365-2478.1979.tb01005.x
    Keller, G. V., Kaufman, A. A., 1987. Frequency and Transient Sounding. Geology Press, Beijing. 134-167
    Key, K., 2009. 1D Inversion of Multicomponent, Multifrequency Marine CSEM Data: Methodology and Synthetic Studies for Resolving Thin Resistive Layers. Geophysics, 74(2): F9-F20. https://doi.org/10.1190/1.3058434
    Key, K., 2012. Is the Fast Hankel Transform Faster than Quadrature?. Geophysics, 77(3): F21-F30. https://doi.org/10.1190/geo2011-0237.1
    Knight, J. H., Raiche, A. P., 1982. Transient Electromagnetic Calculations Using the Gaver-Stehfest Inverse Laplace Transform Method. Geophysics, 47(1), 47-50. https://doi.org/10.1190/1.1441280
    Kong, F. N., 2007. Hankel Transform Filters for Dipole Antenna Radiation in a Conductive Medium. Geophysical Prospecting, 55(1): 83-89. https://doi.org/10.1111/j.1365-2478.2006.00585.x
    Kozhevnikov, N. O., Antonov, E. Y., 2006. Fast-Decaying IP in Frozen Unconsolidated Rocks and Potentialities for Its Use in Permafrost-Related TEM Studies. Geophysical Prospecting, 54(4): 383-397. https://doi.org/10.1111/j.1365-2478.2006.00540.x
    Lee, T., 1981. Transient Electromagnetic Response of a Polarizable Ground. Geophysics, 46(7): 1037-1041. https://doi.org/10.1190/1.1441241
    Li, R. X., Wang, H., Xi, Z. Z., et al., 2016. The 3d Transient Electromagnetic forward Modeling of Volcanogenic Massive Sulfide Ore Deposits. Chinese Journal of Geophysics, 59(6): 725-733. https://doi.org/10.1002/cjg2.30020
    Li, Y. G., Key, K., 2007. 2D Marine Controlled-Source Electromagnetic Modeling: Part 1-An Adaptive Finite-Element Algorithm. Geophysics, 72(2): WA51-WA62. https://doi.org/10.1190/1.2432262
    Li, Y., Constable, S., 2010. Transient Electromagnetic in Shallow Water: Insights from 1D Modeling. Chinese Journal of Geophysics, 3(53): 737-742. https://doi.org/10.3969/j.issn.0001-5733.2010.03.029 (in Chinese with English Abstract) http://www.oalib.com/paper/1568501
    Liu, C. S., Lin, J., 2006. Transient Electromagnetic Response Modeling of Magnetic Source on Seafloor and the Analysis of Seawater Effect. Chinese Journal of Geophysics, 49(6): 1726-1736. https://doi.org/10.1002/cjg2.1001
    Liu, C. S., Lin, J., Zhou, F. D., 2010. Transient Response Characteristics of Central Loop Configuration on Seafloor. Dianbo Kexue Xuebao/ Chinese Journal of Radio Science, 25: 195-200 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DBKX201001038.htm
    Løseth, L. O., Pedersen, H. M., Ursin, B., et al., 2006. Low-Frequency Electromagnetic Fields in Applied Geophysics: Waves or Diffusion?. Geophysics, 71(4): W29-W40. https://doi.org/10.1190/1.2208275
    Lucas, S. K., Stone, H. A., 1995. Evaluating Infinite Integrals Involving Bessel Functions of Arbitrary Order. Journal of Computational and Applied Mathematics, 64(3): 217-231. https://doi.org/10.1016/0377-0427(95)00142-5
    Luo, Y. Z., Chang, Y. J., 2000. A Rapid Algorithm for G-S Transform. Chinese Journal of Geophysics, 43(5): 724-730 (in Chinese with English Abstract) doi: 10.1002/cjg2.87
    Michalski, K. A., 1998. Extrapolation Methods for Sommerfeld Integral Tails. IEEE Transactions on Antennas and Propagation, 46(10): 1405-1418. https://doi.org/10.1109/8.725271
    Newman, G. A., Alumbaugh, D. L., 1995. Frequency-Domain Modelling of Airborne Electromagnetic Responses Using Staggered Finite Differences. Geophysical Prospecting, 43(8): 1021-1042. https://doi.org/10.1111/j.1365-2478.1995.tb00294.x
    Newman, G. A., Hohmann, G. W., Anderson, W. L., 1986. Transient Electromagnetic Response of a Three-Dimensional Body in a Layered Earth. Geophysics, 51(8): 1608-1627. https://doi.org/10.1190/1.1442212
    Nie, J. Z., Liu, Y. C., Yang, Y., 2018. Phase Equilibria Modeling and P-T Evolution of the Mafic Lower-Crustal Xenoliths from the Southeastern Margin of the North China Craton. Journal of Earth Science, 29(5): 1236-1253. https://doi.org/10.1007/s12583-018-0849-6
    Orange, A., Key, K., Constable, S., 2009. The Feasibility of Reservoir Monitoring Using Time-Lapse Marine CSEM. Geophysics, 74(2): F21-F29. https://doi.org/10.1190/1.3059600
    Pelton, W. H., Ward, S. H., Hallof, P. G., et al., 1978. Mineral Discrimination and Removal of Inductive Coupling with Multifrequency IP. Geophysics, 43(3): 588-609. https://doi.org/10.1190/1.1440839
    Qi, Y. Z., El-Kaliouby, H., Revil, A., et al., 2019. Three-Dimensional Modeling of Frequency- and Time-Domain Electromagnetic Methods with Induced Polarization Effects. Computers & Geosciences, 124: 85-92. https://doi.org/10.1016/j.cageo.2018.12.011
    Qi, Y. Z., Huang, L., Wu, X., et al., 2014. Effect of Loop Geometry on TEM Response over Layered Earth. Pure and Applied Geophysics, 171(9): 2407-2415. https://doi.org/10.1007/s00024-014-0841-8
    Raiche, A. P., 1987. Transient Electromagnetic Field Computations for Polygonal Loops on Layered Earths. Geophysics, 52(6), 785-793. https://doi.org/10.1190/1.1442345
    Raiche, A. P., Bennett, L. A., Clark, P. J., et al., 1985. The Use of Cole-Cole Impedances to Interpret the TEM Response of Layered Earths. Exploration Geophysics, 16(2/3): 271-273. https://doi.org/10.1071/eg985271
    Raiche, A., 1999. A Flow-through Hankel Transform Technique for Rapid, Accurate Green's Function Computation. Radio Science, 34(2): 549-555. https://doi.org/10.1029/1998rs900037 doi: 10.1029/1998RS900037
    Seidel, M., Tezkan, B., 2017. 1D Cole-Cole Inversion of TEM Transients Influenced by Induced Polarization. Journal of Applied Geophysics, 138: 220-232. https://doi.org/10.1016/j.jappgeo.2017.01.011
    Shanks, D., 1955. Non-Linear Transformations of Divergent and Slowly Convergent Sequences. Journal of Mathematics and Physics, 34(1/2/3/4): 1-42. https://doi.org/10.1002/sapm19553411
    Singh, S., Singh, R., 1991. On the Use of Shank's Transform to Accelerate the Summation of Slowly Converging Series. IEEE Transactions on Microwave Theory and Techniques, 39(3): 608-610. https://doi.org/10.1109/22.75314
    Smith, R. S., Klein, J., 1996. A Special Circumstance of Airborne Induced-Polarization Measurements. Geophysics, 61(1): 66-73. https://doi.org/10.1190/1.1443957
    Smith, R. S., West, G. F., 1988. An Explanation of Abnormal TEM Responses: Coincident-Loop Negatives, and the Loop Effect. Exploration Geophysics, 19(3): 435-446. https://doi.org/10.1071/eg988435 doi: 10.1071/EG988435
    Song, M. C., Li, S. Z., Santosh, M., et al., 2015. Types, Characteristics and Metallogenesis of Gold Deposits in the Jiaodong Peninsula, Eastern North China Craton. Ore Geology Reviews, 65: 612-625. https://doi.org/10.1016/j.oregeorev.2014.06.019
    Song, Z. J., Liu, H. M., Meng, F. X., et al., 2019. Zircon U-Pb Ages and Hf Isotopes of Neoproterozoic Meta-Igneous Rocks in the Liansandao Area, Northern Sulu Orogen, Eastern China, and the Tectonic Implications. Journal of Earth Science, 30(6): 1230-1242. https://doi.org/10.1007/s12583-019-1252-7
    Spies, B. R., 1980. A Field Occurrence of Sign Reversals with the Transient Electromagnetic Method. Geophysical Prospecting, 28(4): 620-632. https://doi.org/10.1111/j.1365-2478.1980.tb01247.x
    Stoyer, C., 1977. Electromagnetic Fields of Dipoles in Stratified Media. IEEE Transactions on Antennas and Propagation, 25(4): 547-552. https://doi.org/10.1109/tap.1977.1141618 doi: 10.1109/TAP.1977.1141618
    Swidinsky, A., Hölz, S., Jegen, M., 2012. On Mapping Seafloor Mineral Deposits with Central Loop Transient Electromagnetics. Geophysics, 77(3): E171-E184. https://doi.org/10.1190/geo2011-0242.1
    Ward, S. H., Hohmann, G. W., 1988. Electromagnetic Theory for Geophysical Applications. In: Nabighian, M. N., ed., Electromagnetic Methods in Applied Geophysics. Society of Exploration Geophysicist, Huston. 131-311
    Weidelt, P., 1982. Response Characteristics of Coincident Loop Transient Electromagnetic Systems. Geophysics, 47(9): 1325-1330. https://doi.org/10.1190/1.1441393
    Weiss, C. J., 2007. The Fallacy of the "Shallow-Water Problem" in Marine CSEM Exploration. Geophysics, 72(6): A93-A97. https://doi.org/10.1190/1.2786868
    Weitemeyer, K. A., Constable, S. C., Key, K. W., et al., 2006. First Results from a Marine Controlled-Source Electromagnetic Survey to Detect Gas Hydrates Offshore Oregon. Geophysical Research Letters, 33(3): L03304. https://doi.org/10.1029/2005gl024896
    Weniger, E. J., 1989. Nonlinear Sequence Transformations for the Acceleration of Convergence and the Summation of Divergent Series. Computer Physics Reports, 10(5/6): 189-371. https://doi.org/10.1016/0167-7977(89)90011-7
    Xiong, Z. H., 1989. Electromagnetic Fields of Electric Dipoles Embedded in a Stratified Anisotropic Earth. Geophysics, 54(12): 1643-1646. https://doi.org/10.1190/1.1442633
    Yang, Q. Y., Santosh, M., 2015. Early Cretaceous Magma Flare-up and Its Implications on Gold Mineralization in the Jiaodong Peninsula, China. Ore Geology Reviews, 65: 626-642. https://doi.org/10.1016/j.oregeorev.2014.01.004
    Zach, J. J., Brauti, K., 2009. Methane Hydrates in Controlled-Source Electromagnetic Surveys——Analysis of a Recent Data Example. Geophysical Prospecting, 57(4): 601-614. https://doi.org/10.1111/j.1365-2478.2009.00809.x
    Zeng, Q. D., Liu, T. B., Shen, Y. C., 2001. The Tanlu Fault Zone and Gold Ore Metallogenesis in Eastern China. International Geology Review, 43(2): 176-190. https://doi.org/10.1080/00206810109465006
    Zhang, Y., Ling, W., Zhang, J., et al., 2019. Zircon U-Pb Geochronology of the Mesozoic Volcanic Rocks from Qingshan Group in the Eastern Shandong. Earth Science, 44(1): 344-354. https://doi.org/10.3799/dqkx.2018.337 (in Chinese with English Abstract)
    Zhao, Y. W., Zhu, Z. Q., Lu, G. Y., et al., 2018. The Optimal Digital Filters of Sine and Cosine Transforms for Geophysical Transient Electromagnetic Method. Journal of Applied Geophysics, 150: 267-277. https://doi.org/10.1016/j.jappgeo.2018.01.008
    Zhou, S., Song, G., Huang, L., et al., 2017. Marine Towed Transient Electromagnetic System Working in Deep-Sea below 6 000 Meters and Its Application. Chinese Journal of Geophysics, 60(11): 4294-4301. https://doi.org/10.6038/cjg20171117
    Zhou, S., Xi, Z. Z., Song, G., et al., 2012. Responses of the Towed Transient Electromagnetic Sounding on Deep Seafloor. Journal of Central South University (Science and Technology), 43(2): 605-610 http://en.cnki.com.cn/Article_en/CJFDTotal-ZNGD201202034.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article Metrics

    Article views(921) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return