Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 6
Dec 2023
Turn off MathJax
Article Contents
Yun Zhou, Yongshan Zhao, Yongfeng Cai, Qiaofan Hu, Ce Wang. Permian-Triassic Magmatism in the Qin-Fang Tectonic Belt, SW China: New Insights into Tectonic Evolution of the Eastern Paleo-Tethys. Journal of Earth Science, 2023, 34(6): 1704-1716. doi: 10.1007/s12583-020-1111-6
Citation: Yun Zhou, Yongshan Zhao, Yongfeng Cai, Qiaofan Hu, Ce Wang. Permian-Triassic Magmatism in the Qin-Fang Tectonic Belt, SW China: New Insights into Tectonic Evolution of the Eastern Paleo-Tethys. Journal of Earth Science, 2023, 34(6): 1704-1716. doi: 10.1007/s12583-020-1111-6

Permian-Triassic Magmatism in the Qin-Fang Tectonic Belt, SW China: New Insights into Tectonic Evolution of the Eastern Paleo-Tethys

doi: 10.1007/s12583-020-1111-6
More Information
  • Corresponding author: Yongfeng Cai, caiyongfeng@glut.edu.cn
  • Received Date: 15 Aug 2020
  • Accepted Date: 20 Oct 2020
  • Available Online: 08 Dec 2023
  • Issue Publish Date: 30 Dec 2023
  • The granites of ambiguous geodynamic mechanism in the Qin-Fang tectonic belt (SW China) were studied in detail based on petrological, element geochemical, zircon U-Pb geochronological, and Hf isotopic data. LA-ICPMS U-Pb analyses on zircon yield ages of 248–245 Ma for the granites from the Qin-Fang tectonic belt. The geochemical data show that they are high-K, calc-alkaline, and peraluminous series. Their εHf(t) values are from -14.01 to -7.75 with two-stage model ages of 1.74–1.43 Ga. These data, integrated with low Al2O3/TiO2, Rb/Sr, Rb/Ba, and (Na2O + K2O)/(FeOT + MgO + TiO2) ratios, and high CaO/Na2O ratios for the granite, suggest an origin from psammite source which was contaminated by mantle-derived components. These observations, in combination with the age data and stratigraphic records in the Jinshajiang, Ailaoshan, and Hainan Island areas suggest that the granites were formed in a post-collision tectonic setting. The Qin-Fang tectonic belt was likely a branched ocean basin of the eastern Paleo-Tethys.

     

  • Electronic Supplementary Materials: Supplementary materials (ESM I Figs. S1–S4, ESM II Tables S1–S2) are available in the online version of this article at https://doi.org/10.1007/s12583-020-1111-6.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Allen, M. B., Song, S. G., Wang, C., et al., 2023. An Oblique Subduction Model for Closure of the Proto-Tethys and Palaeo-Tethys Oceans and Creation of the Central China Orogenic Belt. Earth-Science Reviews, 240: 104385. https://doi.org/10.1016/j.earscirev.2023.104385
    Cai, Y. F., Liu, H. C., Feng, Z. H., et al., 2020. Neoproterozoic Active Margin of the SW South China Block: Constraints from U-Pb Ages, Sr-Nd Isotopes and Geochemical Data for the Gabbro and Granodiorite along the Ailaoshan Tectonic Belt. Lithos, 358/359: 105387. https://doi.org/10.1016/j.lithos.2020.105387
    Cai, Y. F., Wang, Y. J., Cawood, P. A., et al., 2014. Neoproterozoic Subduction along the Ailaoshan Zone, South China: Geochronological and Geochemical Evidence from Amphibolite. Precambrian Research, 245: 13–28. https://doi.org/10.1016/j.precamres.2014.01.009
    Champion, D. C., Bultitude, R. J., 2013. The Geochemical and Sr-Nd Isotopic Characteristics of Paleozoic Fractionated S-Types Granites of North Queensland: Implications for S-Type Granite Petrogenesis. Lithos, 162/163: 37–56. https://doi.org/10.1016/j.lithos.2012.11.022
    Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173–174
    Chappell, B. W., Wyborn, D., 2012. Origin of Enclaves in S-Type Granites of the Lachlan Fold Belt. Lithos, 154: 235–247. https://doi.org/10.1016/j.lithos.2012.07.012
    Charoy, B., Barbey, P., 2008. Ferromagnesian Silicate Association in S-Type Granites: The Darongshan Granitic Complex (Guangxi, South China). Bulletin Geological Society of France, 179: 13–27. https://doi.10.2113/gssgfbull.179.1.13 doi: 10.2113/gssgfbull.179.1.13
    Chen, C. H., Hsieh, P. S., Lee, C. Y., et al., 2011. Two Episodes of the Indosinian Thermal Event on the South China Block: Constraints from LA-ICPMS U-Pb Zircon and Electron Microprobe Monazite Ages of the Darongshan S-Type Granitic Suite. Gondwana Research, 19(4): 1008–1023. https://doi.org/10.1016/j.gr.2010.10.009
    Clemens, J. D., 2003. S-Type Granitic Magmas—Petrogenetic Issues, Models and Evidence. Earth-Science Reviews, 61(1/2): 1–18. https://doi.org/10.1016/s0012-8252(02)00107-1
    Deng, X. G., Chen, Z. G., Li, X. H., et al., 2004. SHRIMP U-Pb Zircon Dating of the Darongshan—Shiwandashan Granitoid Belt in Southeastern Guangxi, China. Geological Review, 50: 426–432 (in Chinese with English Abstract) doi: 10.3321/j.issn:0371-5736.2004.04.014
    Fan, W. M., Wang, Y. J., Zhang, Y. H., et al., 2015. Paleotethyan Subduction Process Revealed from Triassic Blueschists in the Lancang Tectonic Belt of Southwest China. Tectonophysics, 662: 95–108. https://doi.org/10.1016/j.tecto.2014.12.021
    Feng, K., Li, R. B., Pei, X. Z., et al., 2022. Zircon U-Pb Chronology, Geochemistry and Geological Significance of Late Triassic Intermediate-Acid Volcanic Rocks in Boluositai Area, East Kunlun Orogenic Belt. Earth Science, 47(4): 1194–1216. https://doi.org/10.3799/dqkx.2021.116 (in Chinese with English Abstract)
    He, W. Y., Yang, L. Q., Lu, Y. J., et al., 2018. Zircon U-Pb Dating, Geochemistry and Sr-Nd-Hf-O Isotopes for the Baimaxueshan Granodiorites and Mafic Microgranulars Enclaves in the Sanjiang Orogen: Evidence for Westward Subduction of Paleo-Tethys. Gondwana Research, 62: 112–126. https://doi.org/10.1016/j.gr.2018.03.011
    Jian, P., Liu, D. Y., Kröner, A., et al., 2009. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (Ⅱ): Insights from Zircon Ages of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks and Generation of the Emeishan CFB Province. Lithos, 113(3/4): 767–784. https://doi.org/10.1016/j.lithos.2009.04.006
    Jiao, S. J., Li, X. H., Huang, H. Q., et al., 2015. Metasedimentary Melting in the Formation of Charnockite: Petrological and Zircon U-Pb-Hf-O Isotope Evidence from the Darongshan S-Type Granitic Complex in Southern China. Lithos, 239: 217–233. https://doi.org/10.1016/j.lithos.2015.10.004
    Kalsbeek, F., Jepsen, H. F., Jones, K. A., 2001. Geochemistry and Petrogenesis of S-Type Granites in the East Greenland Caledonides. Lithos, 57(2/3): 91–109. https://doi.org/10.1016/s0024-4937(01)00038-x
    Kamei, A., 2002. Petrogenesis of Cretaceous Peraluminous Granite Suites with Low Initial Sr Isotopic Ratios, Kyushu Island, Southwest Japan Arc. Gondwana Research, 5(4): 813–822. https://doi.org/10.1016/s1342-937x(05)70915-1
    Lai, C. K., Meffre, S., Crawford, A. J., et al., 2014. The Western Ailaoshan Volcanic Belts and Their SE Asia Connection: A New Tectonic Model for the Eastern Indochina Block. Gondwana Research, 26(1): 52–74. https://doi.org/10.1016/j.gr.2013.03.003
    Li, S. B., He, H. Y., Qian, X., et al., 2018. Carboniferous Arc Setting in Central Hainan: Geochronological and Geochemical Evidences on the Andesitic and Dacitic Rocks. Journal of Earth Science, 29(2): 265–279. https://doi: 10.1007/s12583-017-0936-0
    Li, Y. J., Wei, J. H., Santosh, M., et al., 2016. Geochronology and Petrogenesis of Middle Permian S-Type Granitoid in Southeastern Guangxi Province, South China: Implications for Closure of the Eastern Paleo-Tethys. Tectonophysics, 682: 1–16. https://doi.org/10.1016/j.tecto.2016.05.048
    Liu, F., Lin, W., Wang, Y., et al., 2023. Heterogeneity of the Ailaoshan-Song Ma Ophiolitic Mélange and Its Palaeogeographic Implications for the Evolution of Eastern Palaeo-Tethys. Tectonophysics, 858: 229848. https://doi.org/10.1016/j.tecto.2023.229848
    Liu, H. C., Wang, Y. J., Cawood, P. A., et al., 2015. Record of Tethyan Ocean Closure and Indosinian Collision along the Ailaoshan Suture Zone (SW China). Gondwana Research, 27(3): 1292–1306. https://doi.org/10.1016/j.gr.2013.12.013
    Ma, Y. C., Cai, Y. F., Ma, L. Y., et al., 2021. Genesis of Neoproterozoic Amphibolite in Diancangshan, West Yunnan: Evidence from Zircon U-Pb Age and Whole-Rock Geochemistry. Earth Science, 46(8): 2860–2872. https://doi.org/10.3799/dqkx.2020.288 (in Chinese with English Abstract)
    Metcalfe, I., 1996. Gondwanaland Dispersion, Asian Accretion and Evolution of Eastern Tethys. Australian Journal of Earth Sciences, 43(6): 605–623. https://doi.org/10.1080/08120099608728282
    Miller, C. F., 1985. Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources? The Journal of Geology, 93(6): 673–689. https://doi.org/10.1086/628995
    Patiño Douce, A. E., Beard, J. S., 1995. Dehydration-Melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 Kbar. Journal of Petrology, 36(3): 707–738. https://doi.org/10.1093/petrology/36.3.707
    Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120–125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956
    Peng, T. P., Wilde, S. A., Wang, Y. J., et al., 2013. Mid-Triassic Felsic Igneous Rocks from the Southern Lancangjiang Zone, SW China: Petrogenesis and Implications for the Evolution of Paleo-Tethys. Lithos, 168/169: 15–32. https://doi.org/10.1016/j.lithos.2013.01.015
    Qian, X., Wang, Y. J., Zhang, Y. Z., et al., 2019. Petrogenesis of Permian-Triassic Felsic Igneous Rocks along the Truong Son Zone in Northern Laos and Their Paleotethyan Assembly. Lithos, 328/329: 101–114. https://doi.org/10.1016/j.lithos.2019.01.006
    Qin, X. F., Wang, Z. Q., Cao, J., et al., 2013. Petrogenesis of Early Indosinian Granites from the Southwestern Segment of Qinfang Tectonic Belt, Southern Guangxi: Constraints from Zircon U-Pb Chronology and Geochemistry. Journal of Jilin University (Earth Science Edition), 43: 1471–1488 (in Chinese with English Abstract)
    Qiu, X., Wang, Y. J., Qian, X., et al., 2021. Detrital Zircon U-Pb Geochronology and Geochemical Characteristics of Permian Sandstones in NW Laos and Its Tectonic Implications. Earth Science, 46(11): 3910–3925. https://doi.org/10.3799/dqkx.2020.379 (in Chinese with English Abstract)
    Şengör, A. M. C., 1979. Mid-Mesozoic Closure of Permo-Triassic Tethys and Its Implications. Nature, 279(5714): 590–593. https://doi.org/10.1038/279590a0
    Shi, M. F., Wu, Z. B., Liu, S. S., et al., 2019. Geochronology and Petrochemistry of Volcanic Rocks in the Xaignabouli Area, NW Laos. Journal of Earth Science, 30(1): 37–51. https://doi: 10.1007/s12583-018-0863-8
    Simons, B., Shail, R. K., Andersen, J. C. Ø., 2016. The Petrogenesis of the Early Permian Variscan Granites of the Cornubian Batholith: Lower Plate Post-Collisional Peraluminous Magmatism in the Rhenohercynian Zone of SW England. Lithos, 260: 76–94. https://doi.org/10.1016/j.lithos.2016.05.010
    Sone, M., Metcalfe, I., 2008. Parallel Tethyan Sutures in Mainland Southeast Asia: New Insights for Palaeo-Tethys Closure and Implications for the Indosinian Orogeny. Comptes Rendus Geoscience, 340(2/3): 166–179. https://doi.org/10.1016/j.crte.2007.09.008
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1/2/3/4): 29–44. https://doi.org/10.1016/s0024-4937(98)00024-3
    Trung, N. M., Tsujimori, T., Itaya, T., 2006. Honvang Serpentinite Body of the Song Ma Fault Zone, Northern Vietnam: A Remnant of Oceanic Lithosphere within the Indochina-South China Suture. Gondwana Research, 9(1/2): 225–230. https://doi.org/10.1016/j.gr.2005.06.012
    Wang, F., Liu, F. L., Schertl, H. P., et al., 2019. Paleo-Tethyan Tectonic Evolution of Lancangjiang Metamorphic Complex: Evidence from SHRIMP U-Pb Zircon Dating and 40Ar/39Ar Isotope Geochronology of Blueschists in Xiaoheijiang-Xiayun Area, Southeastern Tibetan Plateau. Gondwana Research, 65: 142–155. https://doi.org/10.1016/j.gr.2018.08.007
    Wang, Y., Lin, W., Faure, M., et al., 2022. Correlation among the Ailaoshan-Song Ma-Song Chay Orogenic Belts and Implications for the Evolution of the Eastern Paleo-Tethys Ocean. Tectonophysics, 843: 229618. https://doi.org/10.1016/j.tecto.2022.229618
    Wang, Y. J., Kuang, G. D., 1993. Early Carboniferous Radiolarians from Qinzhou, Southeastern Guangxi. Acta Micropalaeontologica Sinica, 10: 275–287 (in Chinese with English Abstract)
    Wu, G. Y., Li, Y. J., 2011. The Mashan Indosinian Oceanic Island Basalt Outcropping along the Lingshan Fracture in Southeast Guangxi and Its Tectonic Implications. Geoscience, 25: 682–689 (in Chinese with English Abstract)
    Xu, X. S., O'Reilly, S. Y., Griffin, W. L., et al., 2005. Relict Proterozoic Basement in the Nanling Mountains (SE China) and Its Tectonothermal Overprinting. Tectonics, 24(2): TC2003. https://doi.org/10.1029/2004tc001652
    Xu, H., Huang, B. C., Ni, Z. X., et al., 2015. LA-ICP-MS Zircon U-Pb Ages, Petrogeochemistry and Tectonic Significance of the Indosinian Basic Intrusive Rocks in the Tengxian Region, Southeastern Guangxi. Sedimentary Geology and Tethyan Geology, 35: 76–87 (in Chinese with English Abstract)
    Xu, J., 2019. Subduction and Closure of the Paleotethys Ailaoshan Ocean: Constraints from Sedimentation and Magmatism: [Dissertation]. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English Abstract)
    Xu, W. C., Luo, B. J., Xu, Y. J., et al., 2018. Geochronology, Geochemistry, and Petrogenesis of Late Permian to Early Triassic Mafic Rocks from Darongshan, South China: Implications for Ultrahigh-Temperature Metamorphism and S-Type Granite Generation. Lithos, 308/309: 168–180. https://doi.org/10.1016/j.lithos.2018.03.004
    Yan, Q. S., Metcalfe, I., Shi, X. F., 2017. U-Pb Isotope Geochronology and Geochemistry of Granites from Hainan Island (Northern South China Sea Margin): Constraints on Late Paleozoic-Mesozoic Tectonic Evolution. Gondwana Research, 49: 333–349. https://doi.org/10.1016/j.gr.2017.06.007
    Yang, L., Yuan, W. M., Zhu, X. Y., et al., 2019. Late Triassic-Cenozoic Thermochronology in the Southern Sanjiang Tethys, SW China, New Insights from Zircon Fission Track Analysis. Journal of Earth Science, 30(5): 996–1004. https://doi: 10.1007/s12583-019-1014-6
    Yin, S. P., Zhang, H. R., Bian, Y. K., 2023. Petrogenesis of Middle Triassic Andesitic Rocks in the Weixi Area, Southwest China: Implications for the Tectonic Evolution of the Paleo-Tethys. Lithos, 450/451: 107194. https://doi.org/10.1016/j.lithos.2023.107194
    Yu, J. H., O'Reilly, S. Y., Wang, L. J., et al., 2010. Components and Episodic Growth of Precambrian Crust in the Cathaysia Block, South China: Evidence from U-Pb Ages and Hf Isotopes of Zircons in Neoproterozoic Sediments. Precambrian Research, 181(1/2/3/4): 97–114. https://doi.org/10.1016/j.precamres.2010.05.016
    Zhai, Q. G., Chung, S. L., Tang, Y., et al., 2019. Late Carboniferous Ophiolites from the Southern Lancangjiang Belt, SW China: Implication for the Arc-Back-Arc System in the Eastern Paleo-Tethys. Lithos, 344/345: 134–146. https://doi.org/10.1016/j.lithos.2019.06.020
    Zhang, B. Y., Zhang, H. X., Zhao, Z. H., et al., 2003. Permian Island-Arc Basalt in West Guangdong and East Guangxi Tectonic Belt, South China: Implications for the Paleotethys. Journal of Nanjing University (Natural Sciences), 39: 46–54 (in Chinese with English Abstract)
    Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222/223: 13–54. https://doi.org/10.1016/j.precamres.2012.09.017
    Zhao, G. Y., Qin, X. F., Wang, Z. Q., et al., 2016. Geochronology, Geochemistry and Geological Significance of Gabbros from Xindi-Anping Area, Southeastern Guangxi. Acta Petrologica et Mineralogica, 35: 791–803 (in Chinese with English Abstract)
    Zhao, L., Guo, F., Fan, W. M., et al., 2012. Origin of the Granulite Enclaves in Indo-Sinian Peraluminous Granites, South China and Its Implication for Crustal Anatexis. Lithos, 150: 209–226. https://doi.org/10.1016/j.lithos.2012.02.015
    Zhao, T. Y., Algeo, T. J., Feng, Q. L., et al., 2019. Tracing the Provenance of Volcanic Ash in Permian-Triassic Boundary Strata, South China: Constraints from Inherited and Syn-Depositional Magmatic Zircons. Palaeogeography, Palaeoclimatology, Palaeoecology, 516: 190–202. https://doi.org/10.1016/j.palaeo.2018.12.002
    Zhao, Y. S., Zhou, Y., Xu, C., et al., 2023. Geochemical Characteristics and Rare Earth Metallogenic Indication of Yanshanian Granite in Southeast Guangxi. Chinese Journal of Geology, 58(3): 890–909 (in Chinese with English Abstract)
    Zhong, D. L., 1998. Paleotethysides in Western Yunnan and Sichuan, China. Science Press, Beijing. 9–215 (in Chinese with English Abstract)
    Zhou, G. Y., 2018. The Nature of Late Archean to Paleoproterozoic Basement in the Northern Yangtze and Its Geological Implication: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)
    Zhou, Y., Liang, X. Q., Liang, X. R., et al., 2015. U-Pb Geochronology and Hf-Isotopes on Detrital Zircons of Lower Paleozoic Strata from Hainan Island: New Clues for the Early Crustal Evolution of Southeastern South China. Gondwana Research, 27(4): 1586–1598. https://doi.org/10.1016/j.gr.2014.01.015
    Zhu, J. J., Hu, R. Z., Bi, X. W., et al., 2011. Zircon U-Pb Ages, Hf-O Isotopes and Whole-Rock Sr-Nd-Pb Isotopic Geochemistry of Granitoids in the Jinshajiang Suture Zone, SW China: Constraints on Petrogenesis and Tectonic Evolution of the Paleo-Tethys Ocean. Lithos, 126(3/4): 248–264. https://doi.org/10.1016/j.lithos.2011.07.003
    Zi, J. W., Cawood, P. A., Fan, W. M., et al., 2012. Generation of Early Indosinian Enriched Mantle-Derived Granitoid Pluton in the Sanjiang Orogen (SW China) in Response to Closure of the Paleo-Tethys. Lithos, 140/141: 166–182. https://doi.org/10.1016/j.lithos.2012.02.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(302) PDF downloads(153) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return