Aguilar, P., Dorador, C., Vila, I., et al., 2018. Bacterioplankton Composition in Tropical High-Elevation Lakes of the Andean Plateau. FEMS Microbiology Ecology, 94(3): fiy004. https://doi.org/10.1093/femsec/fiy004 |
Altamirano Rua, T., 2014. Refugiados Ambientales: Cambio Climático y Migración Forzada. Fondo Editorial, Ponteficia Universidad Católica del Peru, Lima |
ANA, 2012. Inventario Nacional de Glaciares y Lagunas: Inventario de Lagunas de las Cordillera Blanca (Resumen). ANA, Lima |
Anacona, P. I., 2016. Hazardous Geomorphic Processes in the Extratropical Andes with a Focus on Glacial Lake Outburst Floods: [Dissertation]. Victoria University of Wellington, Wellington, New Zealand |
Anacona, P. I., Norton, K. P., Mackintosh, A., 2014. Moraine-Dammed Lake Failures in Patagonia and Assessment of Outburst Susceptibility in the Baker Basin. Natural Hazards and Earth System Sciences, 14: 3243-3259. https://doi.org/10.5194/nhess-14-3243-2014 |
Anacona, P. I., Mackintosh, A., Norton, K., 2015a. Reconstruction of a Glacial Lake Outburst Flood (GLOF) in the Engaño Valley, Chilean Patagonia: Lessons for GLOF Risk Management. Science of the Total Environment, 527/528(1): 1-11. https://doi.org/10.1016/j.scitotenv.2015.04.096 |
Anacona, P. I., Mackintosh, A., Norton, K. P., 2015b. Hazardous Processes and Events from Glacier and Permafrost Areas: Lessons from the Chilean and Argentinean Andes. Earth Surface Processes and Landforms, 40(1): 2-21. https://doi.org/10.1002/esp.3524 |
Anacona, P. I., Norton, K., Mackintosh, A., et al., 2018. Dynamics of an Outburst Flood Originating from a Small and High-Altitude Glacier in the Arid Andes of Chile. Natural Hazards, 94(1): 93-119. https://doi.org/10.1007/s11069-018-3376-y |
Balseiro, E., Modenutti, B., Queimaliños, C., et al., 2007. Daphnia Distribution in Andean Patagonian Lakes: Effect of Low Food Quality and Fish Predation. Aquatic Ecology, 41(4): 599-609. https://doi.org/10.1007/s10452-007-9113-3 |
Barcaza, G., Nussbaumer, S. U., Tapia, G., et al., 2017. Glacier Inventory and Recent Glacier Variations in the Andes of Chile, South America. Annals of Glaciology, 58: 166-180. https://doi.org/10.1017/aog.2017.28 |
Barry, R. G., 2006. The Status of Research on Glaciers and Global Glacier Recession: A Review. Progress in Physical Geography: Earth and Environment, 30(3): 285-306. https://doi.org/10.1191/0309133306pp478ra |
Barta, B., Mouillet, C., Espinosa, R., et al., 2018. Glacial-Fed and Páramo Lake Ecosystems in the Tropical High Andes. Hydrobiologia, 813(1): 19-32. https://doi.org/10.1007/s10750-017-3428-4 |
Bastgianon, E., Bertoldi, W., Dussaillant, A., 2012. Glacial-Lake Outburst Flood Effects on Colonia River Morphology, Chilean Patagonia. In: Murillo Munoz, R. E., ed., River Flow. Taylor and Francis, London. 573-579 |
Bastidas Navarro, M., Martyniuk, N., Balseiro, E., et al., 2018. Effect of Glacial Lake Outburst Floods on the Light Climate in an Andean Patagonian Lake: Implications for Planktonic Phototrophs. Hydrobiologia, 816(1): 39-48. https://doi.org/10.1007/s10750-016-3080-4 |
Benn, D. I., Evans, D. J. A., 1998. Glaciers and Glaciation. Hodder Education, London |
Bhardwaj, A., Sam, L., Akanksha, et al., 2016. UAVs as Remote Sensing Platform in Glaciology: Present Applications and Future Prospects. Remote Sensing of Environment, 175(23): 196-204. https://doi.org/10.1016/j.rse.2015.12.029 |
Bianchi, V. A., Castro, J. M., Rocchetta, I., et al., 2014. Health Status and Bioremediation Capacity of Wild Freshwater Mussels (Diplodon Chilensis) Exposed to Sewage Water Pollution in a Glacial Patagonian Lake. Fish & Shellfish Immunology, 37(2): 268-277. https://doi.org/10.1016/j.fsi.2014.02.013 |
Bown, F., Rivera, A., 2006. Climate Changes and Recent Glacier Behaviour in the Chilean Lake District. Global and Planetary Change, 59(1/2/3/4): 79-86. https://doi.org/10.1016/j.gloplacha.2006.11.015 |
Bown, F., Rivera, A., Acuña, C., 2008. Recent Glacier Variations at the Aconcagua Basin, Central Chilean Andes. Annals of Glaciology, 48: 43-48. https://doi.org/10.3189/172756408784700572 |
Bradley, R. S., Keinig, F. T., Diaz, H. F., 2004. Projected Temperature Changes along the American Cordillera and the Planned GCOS Network. Geophysical Research Letters, 31(16): L16210. https://doi.org/10.1029/2004gl020229 |
Bradley, R. S., Vuille, M., Diaz, H. F., et al., 2006. Climate Change: Threats to Water Supplies in the Tropical Andes. Science, 312(5781): 1755-1756. https://doi.org/10.1126/science.1128087 |
Bravo, C., Loriaux, T., Rivera, A., et al., 2017. Assessing Glacier Melt Contribution to Streamflow at Universidad Glacier, Central Andes of Chile. Hydrology and Earth System Sciences, 21(7): 3249-3266. https://doi.org/10.5194/hess-21-3249-2017 |
Broggi, J. A., 1942. Informe Preliminar Sobre la Exploración y Estudio de las Condiciones de Estabilidad de las Lagunas de la Cordillera Blanca. Lima, Julio. Doc #I-GEOL-001, Biblioteca, Unidad de Glaciología y Recursos Hídricos, Huaraz |
Bury, J. T., Mark, B. G., McKenzie, J. M., et al., 2011. Glacier Recession and Human Vulnerability in the Yanamarey Watershed of the Cordillera Blanca, Peru. Climatic Change, 105(1/2): 179-206. https://doi.org/10.1007/s10584-010-9870-1 |
Carey, M., 2005. Living and Dying with Glaciers: Peopleʼs Historical Vulnerability to Avalanches and Outburst Floods in Peru. Global and Planetary Change, 47(2/3/4): 122-134. https://doi.org/10.1016/j.gloplacha.2004.10.007 |
Carey, M., Huggel, C., Bury, J., et al., 2012. An Integrated Socio-Environmental Framework for Glacier Hazard Management and Climate Change Adaptation: Lessons from Lake 513, Cordillera Blanca, Peru. Climatic Change, 112(3/4): 733-767. https://doi.org/10.1007/s10584-011-0249-8 |
Carrivick, J. L., Quincey, D. J., 2014. Progressive Increase in Number and Volume of Ice-Marginal Lakes on the Western Margin of the Greenland Ice Sheet. Global and Planetary Change, 116(Suppl. 2): 156-163. https://doi.org/10.1016/j.gloplacha.2014.02.009 |
Cartuche, A., Guan, Z. Y., Ibelings, B. W., et al., 2019. Phytoplankton Diversity Relates Negatively with Productivity in Tropical High-Altitude Lakes from Southern Ecuador. Sustainability, 11(19): 5235. https://doi.org/10.3390/su11195235 |
Che, T., Xiao, L., Liou, Y. A., 2014. Changes in Glaciers and Glacial Lakes and the Identification of Dangerous Glacial Lakes in the Pumqu River Basin, Xizang (Tibet). Advances in Meteorology, (6): 1-8. https://doi.org/10.1155/2014/903709 |
Chevallier, P., Pouyaud, B., Suarez, W., et al., 2011. Climate Change Threats to Environment in the Tropical Andes: Glaciers and Water Resources. Regional Environmental Change, 11(S1): 179-187. https://doi.org/10.1007/s10113-010-0177-6 |
Chisolm, R. E., McKinney, D. C., 2018. Dynamics of Avalanche-Generated Impulse Waves: Three-Dimensional Hydrodynamic Simulations and Sensitivity Analysis. Natural Hazards and Earth System Sciences, 18(5): 1373-1393. https://doi.org/10.5194/nhess-18-1373-2018 |
Colonia, D., Torres, J., Haeberli, W., et al., 2017. Compiling an Inventory of Glacier-Bed Overdeepenings and Potential New Lakes in De-Glaciating Areas of the Peruvian Andes: Approach, First Results, and Perspectives for Adaptation to Climate Change. Water, 9(5): 336. https://doi.org/10.3390/w9050336 |
Concha, F. J., Hoempler, A., 1953. Índice de Lagunas y Glaciares de la Cordillera Blanca. Estudio, Comisión de Control de Las Lagunas de la Cordillera Blanca, Ministerio de Fomento, Lima, Mayo. Doc # I-INVEN-011 at Biblioteca, Unidad de Glaciología y Recursos Hídricos, Huaraz |
Cook, S. J., Quincey, D. J., 2015. Estimating the Volume of Alpine Glacial Lakes. Earth Surface Dynamics, 3(4): 559-575. https://doi.org/10.5194/esurf-3-559-2015 |
Cook, S. J., Kougkoulos, I., Edwards, L. A., et al., 2016. Glacier Change and Glacial Lake Outburst Flood Risk In the Bolivian Andes. The Cryosphere, 10(5): 2399-2413. https://doi.org/10.5194/tc-10-2399-2016 |
Costa, J. E., Schuster, R. L., 1988. The Formation and Failure of Natural Dams. Geological Society of America Bulletin, 100: 1054-1068. https://doi.org/10.1130/0016-7606(1988)100<1054:tfafon>2.3.co;2 doi: 10.1130/0016-7606(1988)100<1054:tfafon>2.3.co;2 |
Davies, B. J., Glasser, N. F., 2012. Accelerating Shrinkage of Patagonian Glaciers from the Little Ice Age (~AD 1870) to 2011. Journal of Glaciology, 58(212): 1063-1084. https://doi.org/10.3189/2012jog12j026 |
De los Ríos Escalante, P., Acevedo, P., 2016. First Observations on Zooplankton and Optical Properties in a Glacial North Patagonian Lake (Tagua Tagua Lake, 41°S Chile). Polish Journal of Environmental Studies, 25(1): 453-457. https://doi.org/10.15244/pjoes/59369 |
Drenkhan, F., Guardamino, L., Huggel, C., et al., 2018. Current and Future Glacier and Lake Assessment in the Deglaciating Vilcanota-Urubamba Basin, Peruvian Andes. Global and Planetary Change, 169: 105-118. https://doi.org/10.1016/j.gloplacha.2018.07.005 |
Dussaillant, A., Benito, G., Buytaert, W., et al., 2010. Repeated Glacial-Lake Outburst Floods in Patagonia: An Increasing Hazard?. Natural Hazards, 54(2): 469-481. https://doi.org/10.1007/s11069-009-9479-8 |
Dussaillant, I., Berthier, E., Brun, F., et al., 2019. Two Decades of Glacier Mass Loss along the Andes. Nature Geoscience, 12: 802-808. https://doi.org/10.1038/s41561-019-0432-5 |
Emmer, A., 2017. Geomorphologically Effective Floods from Moraine-Dammed Lakes in the Cordillera Blanca, Peru. Quaternary Science Reviews, 177: 220-234. https://doi.org/10.1016/j.quascirev.2017.10.028 |
Emmer, A., Vilímek, V., 2013. Lake and Breach Hazard Assessment for Moraine-Dammed Lakes: An Example from the Cordillera Blanca (Peru). Natural Hazards and Earth System Sciences, 13: 1551-1565. https://doi.org/10.5194/nhess-13-1551-2013 |
Emmer, A., Klimeš, J., Mergili, M., et al., 2016. 882 Lakes of the Cordillera Blanca: An Inventory, Classification, Evolution and Assessment of Susceptibility to Outburst Floods. Catena, 147: 269-279. https://doi.org/10.1016/j.catena.2016.07.032 |
Faeh, R., Mueller, R., Rousselot, P., et al., 2011. BASEMENT-Basic Simulation Environment for Computation of Environmental Flow and Natural Hazard Simulation. VAW, ETH Zurich. http://www.basement.ethz.ch |
Falaschi, D., Bolch, T., Lenzano, M. G., et al., 2018. New Evidence of Glacier Surges in the Central Andes of Argentina and Chile. Progress in Physical Geography: Earth and Environment, 42(6): 792-825. https://doi.org/10.1177/0309133318803014 |
Farías-Barahona, D., Vivero, S., Casassa, G., et al., 2019. Geodetic Mass Balances and Area Changes of Echaurren Norte Glacier (Central Andes, Chile) between 1955 and 2015. Remote Sensing, 11(3): 260. https://doi.org/10.3390/rs11030260 |
Favier, V., Wagnon, P., Ribstein, P., 2004. Glaciers of the Outer and Inner Tropics: A Different Behaviour but a Common Response to Climatic Forcing. Geophysical Research Letters, 31(16): L16403. https://doi.org/10.1029/2004gl020654 |
Foresta, L., Gourmelen, N., Weissgerber, F., et al., 2018. Heterogeneous and Rapid Ice Loss over the Patagonian Ice Fields Revealed by CryoSat-2 Swath Radar Altimetry. Remote Sensing of Environment, 211(2): 441-455. https://doi.org/10.1016/j.rse.2018.03.041 |
Francou, B., Ribstein, P., Semiond, H., et al., 1995. Balances de Glaciares y Clima en Bolivia y Peru: Impacto de los Eventos ENSO. Bulletin de lʼInstitut Français dʼÉtudes Andines, 24: 661-670 http://www.ifeanet.org/biblioteca/envio_pdf.php?url=../publicaciones/boletines/24(3)/661.pdf&peso=509530§or=Biblioteca |
Frey, H., Haeberli, W., Linsbauer, A., et al., 2010. A Multi-Level Strategy for Anticipating Future Glacier Lake Formation and Associated Hazard Potentials. Natural Hazards and Earth System Sciences, 10(2): 339-352. https://doi.org/10.5194/nhess-10-339-2010 |
Frey, H., García-Hernández, J., Huggel, C., et al., 2014. An Early Warning System for Lake Outburst Floods of the Laguna 513, Cordillera Blanca, Peru. In: International Conference on the Analysis and Management of Changing Risks for Natural Hazards. Nov. 18-19, 2014, Padua |
Frey, H., Huggel, C., Chisolm, R. E., et al., 2018. Multi-Source Glacial Lake Outburst Flood Hazard Assessment and Mapping for Huaraz, Cordillera Blanca, Peru. Frontiers in Earth Science, 6: 210. https://doi.org/10.3389/feart.2018.00210 |
Glasser, N. F., Holt, T. O., Evans, Z. D., et al., 2016. Recent Spatial and Temporal Variations in Debris Cover on Patagonian Glaciers. Geomorphology, 273(2): 202-216. https://doi.org/10.1016/j.geomorph.2016.07.036 |
Gradstein, R., Vanderpoorten, A., Van Reenen, G., et al., 2018. Mass Occurrence of the Liverwort Herbertus Sendtneri in a Glacial Lake in the Andes of Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 42(164): 221-229. https://doi.org/10.18257/raccefyn.666 |
Guardamino, L., Drenkhan, F., 2016. Evolución y Potencial Amenaza de Lagunas Glaciares En La Cordillera de Vilcabamba (Cusco y Apurímac, Perú) Entre 1991 y 2014. Revista de Glaciares y Ecosistemas de Montaña, (1): 21-36. https://doi.org/10.36580/rgem.i1.21-36 |
Haeberli, W., 1980. Morphodynamische Aspekte Aktueller Gletscherhochwasser in den Schweizer Alpen. Regio Basiliensis, 21: 58-78 http://www.mendeley.com/research/morphodynamische-aspekte-aktueller-gletscherhochwasser-in-den-schweizer-alpen/ |
Haeberli, W., 1983. Frequency and Characteristics of Glacier Floods in the Swiss Alps. Annals of Glaciology, 4: 85-90. https://doi.org/10.1017/s0260305500005280 |
Hanshaw, M. N., Bookhagen, B., 2014. Glacial Areas, Lake Areas, and Snow Lines from 1975 to 2012: Status of the Cordillera Vilcanota, Including the Quelccaya Ice Cap, Northern Central Andes, Peru. The Cryosphere, 8(2): 359-376. https://doi.org/10.5194/tc-8-359-2014 |
Harrison, S., Glasser, N., Winchester, V., et al., 2006. A Glacial Lake Outburst Flood Associated with Recent Mountain Glacier Retreat, Patagonian Andes. The Holocene, 16(4): 611-620. https://doi.org/10.1191/0959683606hl957rr |
Hoffmann, D., 2013. Comparison of Recently Formed Glacial Lakes in the Bolivian Andes and the Southern Alps of New Zealand: Differences and Similarities. Proceedings of High Mountains Adaptation Partnership Workshop, Huaraz, Peru |
Hoffmann, D., Weggenmann, D., 2013. Climate Change Induced Glacier Retreat and Risk Management: Glacial Lake Outburst Floods (GLOFs) in the Apolobamba Mountain Range, Bolivia. In: Filho, W. H., ed., Climate Change and Disaster Risk Management. Springer, Berlin. 71-87. https://doi.org/10.1007/978-3-642-31110-9_5 |
Huggel, C., Kääb, A., Haeberli, W., et al., 2002. Remote Sensing Based Assessment of Hazards from Glacier Lake Outbursts: A Case Study in the Swiss Alps. Canadian Geotechnical Journal, 39(2): 316-330. https://doi.org/10.1139/t01-099 |
Huggel, C., Kääb, A., Haeberli, W., et al., 2003. Regional-Scale GIS-Models for Assessment of Hazards from Glacier Lake Outbursts: Evaluation and Application in the Swiss Alps. Natural Hazards and Earth System Sciences, 3(6): 647-662. https://doi.org/10.5194/nhess-3-647-2003 |
ICIMOD, 2011. Glacial Lakes and Glacial Lake Outburst Floods in Nepal. International Centre for Integrated Mountain Development, Kathmandu |
Iturrizaga, L., 2014. Glacial and Glacially Conditioned Lake Types in the Cordillera Blanca, Peru. Progress in Physical Geography: Earth and Environment, 38(5): 602-636. https://doi.org/10.1177/0309133314546344 |
Iturrizaga, L., Charrier, R., 2013. Glacialmorphological Reconstruction of Glacier Advances and Glacial Lake Outburst Floods at the Cachapoal Glacier in the Dry Central Andes of Chile (34°S). EGU General Assembly. Apr. 7-12, 2013, Vienna. EGU2013-2320 |
Ives, J. D., Shrestha, R. B., Mool, P. K., 2010. Formation of Glacial Lakes in the Hindu Kush-Himalayas and GLOF Risk Assessment. International Centre for Integrated Mountain Development, Kathmandu |
Izurieta, R., Campana, A., Calles, J., et al., 2019. Calidad del agua en Ecuador. In: Roldan, G., Tundisi, J., Jimenez, B., et al., eds., Calidad del Agua en las Americas: Riesgos y Oportunidades. IANAS, Tlalpan, Mexico. 661 |
Jacquet, J., McCoy, S. W., McGrath, D., et al., 2017. Hydrologic and Geomorphic Changes Resulting from Episodic Glacial Lake Outburst Floods: Rio Colonia, Patagonia, Chile. Geophysical Research Letters, 44(2): 854-864. https://doi.org/10.1002/2016gl071374 |
Kääb, A., Huggel, C., Fischer, L., et al., 2005. Remote Sensing of Glacier-and Permafrost-Related Hazards in High Mountains: A Review. Natural Hazards and Earth System Sciences, 5: 527-554. https://doi.org/10.5194/nhess-5-527-2005 |
Khanal, N. R., Hu, J. M., Mool, P., 2015. Glacial Lake Outburst Flood Risk in the Poiqu/Bhote Koshi/Sun Koshi River Basin in the Central Himalayas. Mountain Research and Development, 35(4): 351-364. https://doi.org/10.1659/mrd-journal-d-15-00009 |
King, W. D. V. O., 1934. The Mendoza River Flood of 10-11 January 1934, Argentina. The Geographical Journal, 84(4): 321-326. https://doi.org/10.2307/1786696 |
Klimeš, J., Benesova, M., Vilímek, M., et al., 2014. The Construction of a Glacial Lake Outburst Flood Using HEC-RAS and Its Significance for Future Hazard Assessments: An Example from Lake 513 in the Cordillera Blanca, Peru. Natural Hazards, 71: 1617-1638. https://doi.org/10.1007/s11069-013-0968-4 |
Klimeš, J., Novotný, J., Novotná, I., et al., 2016. Landslides in Moraines as Triggers of Glacial Lake Outburst Floods: Example from Palcacocha Lake (Cordillera Blanca, Peru). Landslides, 13(6): 1461-1477. https://doi.org/10.1007/s10346-016-0724-4 |
Kougkoulos, I., 2019. Glacial Lake Outburst Flood Risk in the Bolivian Andes: [Dissertation]. Manchester Metropolitan University, Manchester |
Kougkoulos, I., Cook, S. J., Jomelli, V., et al., 2018a. Use of Multi-Criteria Decision Analysis to Identify Potentially Dangerous Glacial Lakes. Science of the Total Environment, 621: 1453-1466. https://doi.org/10.1016/j.scitotenv.2017.10.083 |
Kougkoulos, I., Cook, S. J., Edwards, L. A., et al., 2018b. Modelling Glacial Lake Outburst Flood Impacts in the Bolivian Andes. Natural Hazards, 94(3): 1415-1438. https://doi.org/10.1007/s11069-018-3486-6 |
Liversedge, L. K., 2007. Turbidity Mapping and Prediction in Ice Marginal Lakes at the Bering Glacier System, Alaska: [Dissertation]. University of Michigan, Ann Arbor |
Lizaga, I., Gaspar, L., Quijano, L., et al., 2019. NDVI, 137Cs and Nutrients for Tracking Soil and Vegetation Development on Glacial Landforms in the Lake Parón Catchment (Cordillera Blanca, Perú). Science of the Total Environment, 651(3): 250-260. https://doi.org/10.1016/j.scitotenv.2018.09.075 |
Lliboutry, L., 1956. Nieves y Glaciares de Chile. Universidad de Chile, Santiago |
López-Moreno, J. I., Fontaneda, S., Bazo, J., et al., 2014. Recent Glacier Retreat and Climate Trends in Cordillera Huaytapallana, Peru. Global and Planetary Change, 112: 1-11. https://doi.org/10.1016/j.gloplacha.2013.10.010 |
López-Moreno, J. I., Valero-Garcés, B., Mark, B., et al., 2017. Hydrological and Depositional Processes Associated with Recent Glacier Recession in Yanamarey Catchment, Cordillera Blanca (Peru). Science of the Total Environment, 579(22): 272-282. https://doi.org/10.1016/j.scitotenv.2016.11.107 |
Loriaux, T., Casassa, G., 2013. Evolution of Glacial Lakes from the Northern Patagonia Icefield and Terrestrial Water Storage in a Sea-Level Rise Context. Global and Planetary Change, 102(2): 33-40. https://doi.org/10.1016/j.gloplacha.2012.12.012 |
Maas, H. G., Mulsow, C., Wendt, A., et al., 2012. Pilot Studies with Photogrammetric Glacier Lake Outburst Flood Early Warning System. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 39-B5, 22nd ISPRS Congress. Aug. 25-Sept. 1 2012, Melbourne. 523-527 |
Malmros, J. K., Mernild, S. H., Wilson, R., et al., 2016. Glacier Area Changes in the Central Chilean and Argentinean Andes 1955-2013/14. Journal of Glaciology, 62(232): 391-401. https://doi.org/10.1017/jog.2016.43 |
Marín, V. H., Tironi, A., Paredes, M. A., et al., 2013. Modeling Suspended Solids in a Northern Chilean Patagonia Glacier-Fed Fjord: GLOF Scenarios under Climate Change Conditions. Ecological Modelling, 264(3/4): 7-16. https://doi.org/10.1016/j.ecolmodel.2012.06.017 |
Martin, S. W., 1965. Glacial Lakes in the Bolivian Andes. The Geographical Journal, 131(4): 519-526. https://doi.org/10.2307/1792721 |
Masiokas, M. H., Christie, D. A., Le-Quesne, C., et al., 2016. Reconstructing the Annual Mass Balance of the Echaurren Norte Glacier (Central Andes, 33.5°S) Using Local and Regional Hydroclimatic Data. The Cryosphere, 10(2): 927-940. https://doi.org/10.5194/tc-10-927-2016 |
Matta, E., Giardino, C., Boggero, A., et al., 2017. Use of Satellite and in situ Reflectance Data for Lake Water Color Characterization in the Everest Himalayan Region. Mountain Research and Development, 37(1): 16-23. https://doi.org/10.1659/mrd-journal-d-15-00052.1 |
McKillop, R. J., Clague, J. J., 2007. Statistical, Remote Sensing-Based Approach for Estimating the Probability of Catastrophic Drainage from Moraine-Dammed Lakes in Southwestern British Columbia. Global and Planetary Change, 56(1/2): 153-171. https://doi.org/10.1016/j.gloplacha.2006.07.004 |
Meerhoff, E., Castro, L. R., Tapia, F. J., et al., 2019. Hydrographic and Biological Impacts of a Glacial Lake Outburst Flood (GLOF) in a Patagonian Fjord. Estuaries and Coasts, 42(1): 132-143. https://doi.org/10.1007/s12237-018-0449-9 |
Mergili, M., Emmer, A., Juricova, A., et al., 2018. How Well can we Simulate Complex Hydro-Geomorphic Process Chains? The 2012 Multi-Lake Outburst Flood in the Santa Cruz Valley (Cordillera Blanca, Perú). Earth Surface Processes and Landforms, 43(7): 1373-1389. https://doi.org/10.1002/esp.4318 |
Mergili, M., Pudasaini, S. P., Emmer, A., et al., 2020. Reconstruction of the 1941 GLOF Process Chain at Lake Palcacocha (Cordillera Blanca, Peru). Hydrology and Earth System Sciences, 24(1): 93-114. https://doi.org/10.5194/hess-24-93-2020 |
Mernild, S. H., Beckerman, A. P., Yde, J. C., et al., 2015. Mass Loss and Imbalance of Glaciers along the Andes Cordillera to the Sub-Antarctic Islands. Global and Planetary Change, 133(B9): 109-119. https://doi.org/10.1016/j.gloplacha.2015.08.009 |
Michelutti, N., Wolfe, A. P., Cooke, C. A., et al., 2015. Climate Change Forces New Ecological States in Tropical Andean Lakes. PLoS ONE, 10(2): e0115338. https://doi.org/10.1371/journal.pone.0115338 |
Michelutti, N., Tapia, P. M., Labaj, A. L., et al., 2019. A Limnological Assessment of the Diverse Waterscape in the Cordillera Vilcanota, Peruvian Andes. Inland Waters, 9(3): 395-407. https://doi.org/10.1080/20442041.2019.1582959 |
Milan, R., Rignot, E., Rivera, A., et al., 2019. Ice Thickness and Bed Elevation of the Northern and Southern Patagonian Icefields. Geophysical Research Letters, 46: 6626-6635. https://doi.org/10.1029/2019gl082485 |
Mulsow, C., Koschitzki, R., Maas, H. G., 2013. Photogrammetric Monitoring of Glacier Margin Lakes. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 40-5/W3, The Role of Geomatics in Hydrogeological Risk. Feb. 7-28, 2013, Padua. 1-6 |
Palmer, J., 2017. Chile's Glacial Lakes Pose Newly Recognized Flood Threat. Science, 355(6329): 1004-1005. https://doi.org/10.1126/science.355.6329.1004 |
Pasquini, A. I., Depetris, P. J., 2011. Southern Patagonia's Perito Moreno Glacier, Lake Argentino, and Santa Cruz River Hydrological System: An Overview. Journal of Hydrology, 405(1/2): 48-56. https://doi.org/10.1016/j.jhydrol.2011.05.009 |
Paul, F., Mölg, N., 2014. Hasty Retreat of Glaciers in Northern Patagonia from 1985 to 2011. Journal of Glaciology, 60(224): 1033-1043. https://doi.org/10.3189/2014jog14j104 |
Pepin, N., Bradley, R. S., Diaz, H. F., et al., 2015. Elevation-Dependent Warming in Mountain Regions of the World. Nature Climate Change, 5: 424-430. https://doi.org/10.1038/nclimate2563 |
Pitte, L. P., 2014. Fluctuaciones de los Glaciares, en los Últimos 50 años, en las Cuencas Amarillo, Turbio, Canito y Potrerillos, San Juan, Argentina: [Dissertation]. National University of Córdoba, Córdoba |
Pizarro, J., Vergara, P. M., Cerda, S., et al., 2016. Cooling and Eutrophication of Southern Chilean Lakes. Science of the Total Environment, 541(6): 683-691. https://doi.org/10.1016/j.scitotenv.2015.09.105 |
Portocarrero-Rodriguez, C. A., 2013. Safety Measures for Dangerous Glacial Lakes in the Cordillera Blanca, Peru. U.S. Agency for International Development 1300 Pennsylvania Avenue, Washington DC, USA |
Pradhan, N. S., Bajracharya, N., Bajracharya, S. R., et al., 2016. Community-Based Flood Early Warning System: Resource Manual. International Centre for Integrated Mountain Development, Kathmandu |
Rabatel, A., Francou, B., Soruco, A., et al., 2013. Current State of Glaciers in the Tropical Andes: A Multi-Century Perspective on Glacier Evolution and Climate Change. The Cryosphere, 7: 81-102. https://doi.org/10.5194/tc-7-81-2013 |
Racoviteanu, A. E., Arnaud, Y., Williams, M. W., et al., 2008. Decadal Changes in Glacier Parameters in the Cordillera Blanca, Peru, Derived from Remote Sensing. Journal of Glaciology, 54(186): 499-510. https://doi.org/10.3189/002214308785836922 |
Reynolds, J. M., 1992. The Identification and Mitigation of Glacier-Related Hazards: Examples from the Cordillera Blanca, Peru. In: McCall, G. J. H., Laming, D. J. C., Scott, S. C., eds., Geohazards. Chapman and Hall, London. 143-157 |
Reynolds, J. M., 2000. On the Formation of Supraglacial Lakes on Debris-Covered Glaciers. In: Nakawo, M., Raymond, C. F., Fountain, A., eds., Debris-Covered Glaciers. IAHS Publication 264, IAHS Press, Wallingford. 153-161 |
Rignot, E., Rivera, A., Casassa, G., 2003. Contribution of the Patagonia Icefields of South America to Sea Level Rise. Science, 302(5644): 434-437. https://doi.org/10.1126/science.1087393 |
Richardson, S. D., Reynolds, J. M., 2000. An Overview of Glacial Hazards in the Himalayas. Quaternary International, 65/66(37): 31-47. https://doi.org/10.1016/s1040-6182(99)00035-x |
Rivera, A., Casassa, G., 2004. Ice Elevation, Areal, and Frontal Changes of Glaciers from National Park Torres Del Paine, Southern Patagonia Icefield. Arctic, Antarctic, and Alpine Research, 36(4): 379-389. https://doi.org/10.1657/1523-0430(2004)036[0379:ieaafc]2.0.co;2 |
Ross, L., Santos, I. P., Castro, L., et al., 2015. Response of Zooplankton Abundance to Internal Motions and a Glacial Lake Outburst Flood in a Patagonian Fjord. Proceedings of Rio Acoustics 2015, Rio de Janeiro |
Ruiz Pereira, S. F., Veettil, B. K., 2019. Glacier Decline in the Central Andes (33°S): Context and Magnitude from Satellite and Historical Data. Journal of South American Earth Sciences, 94(2): 102249. https://doi.org/10.1016/j.jsames.2019.102249 |
Schoolmeester, T., Johansen, K. S., Alfthan, B., et al., 2018. The Andean Glacier and Water Atlas: The Impact of Glacier Retreat on Water Resources. UNESCO, Paris and GRID, Arendal |
Stansell, N. D., Rodbell, D. T., Abbott, M. B., et al., 2013. Proglacial Lake Sediment Records of Holocene Climate Change in the Western Cordillera of Peru. Quaternary Science Reviews, 70(21): 1-14. https://doi.org/10.1016/j.quascirev.2013.03.003 |
Somos-Valenzuela, M. A., Chisolm, R. E., Rivas, D. S., et al., 2016. Modeling a Glacial Lake Outburst Flood Process Chain: The Case of Lake Palcacocha and Huaraz, Peru. Hydrology and Earth System Sciences, 20(6): 2519-2543. https://doi.org/10.5194/hess-20-2519-2016 |
Sugiyama, S., Minowa, M., Sakakibara, D., et al., 2016. Thermal Structure of Proglacial Lakes in Patagonia. Journal of Geophysical Research: Earth Surface, 121: 2270-2286. https://doi.org/10.1002/2016jf004084 |
Thorndycraft, V. R., Bendle, J. M., Benito, G., et al., 2019. Glacial Lake Evolution and Atlantic-Pacific Drainage Reversals during Deglaciation of the Patagonia Ice Sheet. Quaternary Science Reviews, 203: 102-127. https://doi.org/10.1016/j.quascirev.2018.10.036 |
UGRH, 2014. Inventario de Lagunas Glaciares del Peru. Unidad de Glaciologia y Recursos Hidricos, Autoridad Nacional del Agua (ANA), Huaraz |
Urbanski, J. A., Wochna, A., Bubak, I., et al., 2016. Application of Landsat 8 Imagery to Regional-Scale Assessment of Lake Water Quality. International Journal of Applied Earth Observation and Geoinformation, 51(4): 28-36. https://doi.org/10.1016/j.jag.2016.04.004 |
USAID, 2014. The Glacial Lake Handbook: Reducing Risk from Dangerous Glacial Lakes in the Cordillera Blanca, Peru. United States Agency for International Development, Washington, D.C. |
Van Colen, W. R., Mosquera, P., Vanderstukken, M., et al., 2017. Limnology and Trophic Status of Glacial Lakes in the Tropical Andes (Cajas National Park, Ecuador). Freshwater Biology, 62(3): 458-473. https://doi.org/10.1111/fwb.12878 |
Vargas, T. D., 1942. Informe Preliminar Sobre Algunas Lagunas de la Cordillera Blanca. Lima, Octubre. Doc #. I-GEOL-003, Biblioteca, Unidad de Glaciología y Recursos Hídricos, Huaraz |
Veettil, B. K., Kamp, U., 2017. Remote Sensing of Glaciers in the Tropical Andes: A Review. International Journal of Remote Sensing, 38(23): 7101-7137. https://doi.org/10.1080/01431161.2017.1371868 |
Veettil, B. K., Kamp, U., 2019. Global Disappearance of Tropical Mountain Glaciers: Observations, Causes, and Challenges. Geosciences, 9(5): 196. https://doi.org/10.3390/geosciences9050196 |
Veettil, B. K., Bianchini, N., de Andrade, A. M., et al., 2016. Glacier Changes and Related Glacial Lake Expansion in the Bhutan Himalaya, 1990-2010. Regional Environmental Change, 16(5): 1267-1278. https://doi.org/10.1007/s10113-015-0853-7 |
Veettil, B. K., Souza, S. F., Simões, J. C., et al., 2017a. Decadal Evolution of Glaciers and Glacial Lakes in the Apolobamba-Carabaya Region, Tropical Andes (Bolivia-Peru). Geografiska Annaler: Series A, Physical Geography, 99(3): 193-206. https://doi.org/10.1080/04353676.2017.1299577 |
Veettil, B. K., Wang, S. S., Souza, S. F., et al., 2017b. Glacier Monitoring and Glacier-Climate Interactions in the Tropical Andes: A Review. Journal of South American Earth Sciences, 77(D5): 218-246. https://doi.org/10.1016/j.jsames.2017.04.009 |
Vilímek, V., Klimeš, J., Emmer, A., et al., 2015. Geomorphologic Impacts of the Glacial Lake Outburst Flood from Lake No. 513 (Peru). Environmental Earth Sciences, 73(9): 5233-5244. https://doi.org/10.1007/s12665-014-3768-6 |
Vilímek, V., Klimeš, J., Červená, L., 2016. Glacier-Related Landforms and Glacial Lakes in Huascarán National Park, Peru. Journal of Maps, 12(1): 193-202. https://doi.org/10.1080/17445647.2014.1000985 |
Vuille, M., 2013. Climate Change and Water Resources in the Tropical Andes. Inter-American Development Bank, IDB-TN-515 |
Vuille, M., Bradley, R. S., Werner, M., et al., 2003. 20th Century Climate Change in the Tropical Andes: Observations and Model Results. Climatic Change, 59: 75-99. https://doi.org/10.1023/a:1024406427519 |
Vuille, M., Francou, B., Wagnon, P., et al., 2008. Climate Change and Tropical Andean Glaciers: Past, Present and Future. Earth-Science Reviews, 89(3/4): 79-96. https://doi.org/10.1016/j.earscirev.2008.04.002 |
Vuille, M., Carey, M., Huggel, C., et al., 2017. Rapid Decline of Snow and Ice in the Tropical Andes: Impacts, Uncertainties and Challenges Ahead. Earth Science Reviews, 176: 195-213. https://doi.org/10.1016/j.earscirev.2017.09.019 |
Wang, X. Y., Yang, W., 2019. Water Quality Monitoring and Evaluation Using Remote Sensing Techniques in China: A Systematic Review. Ecosystem Health and Sustainability, 5(1): 47-56. https://doi.org/10.1080/20964129.2019.1571443 |
Warner, K., Aff, T., Henry, K., et al., 2012. Where the Rain Falls: Climate Change, Food and Livelihood Security, and Migration. Global Policy Report of the Where the Rain Falls Project. CARE France and UNU-EHS, Bonn |
Westoby, M. J., Glasser, N. F., Brasington, J., et al., 2014. Modelling Outburst Floods from Moraine-Dammed Glacial Lakes. Earth-Science Reviews, 134(F2): 137-159. https://doi.org/10.1016/j.earscirev.2014.03.009 |
Wigmore, O., 2016. Assessing Spatiotemporal Variability in Glacial Watershed Hydrology: Integrating Unmanned Aerial Vehicles and Field Hydrology, Cordillera Blanca, Peru: [Dissertation]. Ohio State University, Columbus |
Wigmore, O., Mark, B., 2016. UAV Mapping of Debris Covered Glacier Change, Llaca Glacier, Cordillera Blanca, Peru. Proceedings of the 73rd Eastern Snow Conference 2016, Columbus. 1-10 |
Wigmore, O., Mark, B., 2017. Monitoring Tropical Debris-Covered Glacier Dynamics from High-Resolution Unmanned Aerial Vehicle Photogrammetry, Cordillera Blanca, Peru. The Cryosphere, 11(6): 2463-2480. https://doi.org/10.5194/tc-11-2463-2017 |
Wigmore, O., Mark, B., 2018. High Altitude Kite Mapping: Evaluation of Kite Aerial Photography (KAP) and Structure from Motion Digital Elevation Models in the Peruvian Andes. International Journal of Remote Sensing, 39(15/16): 4995-5015. https://doi.org/10.1080/01431161.2017.1387312 |
Wigmore, O., Mark, B., McKenzie, J., et al., 2019. Sub-Metre Mapping of Surface Soil Moisture in Proglacial Valleys of the Tropical Andes Using a Multispectral Unmanned Aerial Vehicle. Remote Sensing of Environment, 222: 104-118. https://doi.org/10.1016/j.rse.2018.12.024 |
Wilson, R., Glasser, N. F., Reynolds, J. M., et al., 2018. Glacial Lakes of the Central and Patagonian Andes. Global and Planetary Change, 162(1-4): 275-291. https://doi.org/10.1016/j.gloplacha.2018.01.004 |
Wilson, R., Harrison, S., Reynolds, J., et al., 2019. The 2015 Chileno Valley Glacial Lake Outburst Flood, Patagonia. Geomorphology, 332(1-4): 51-65. https://doi.org/10.1016/j.geomorph.2019.01.015 |
WMO, 2010. Guidelines in Early Warning Systems and Application of Nowcasting and Warning Operations. World Meteorological Organization, WMO/TD 1559, Geneva |
Worni, R., Stoffel, M., Huggel, C., et al., 2012. Analysis and Dynamic Modeling of a Moraine Failure and Glacier Lake Outburst Flood at Ventisquero Negro, Patagonian Andes (Argentina). Journal of Hydrology, 444/445(2-4): 134-145. https://doi.org/10.1016/j.jhydrol.2012.04.013 |
Worni, R., Huggel, C., Clague, J. J., et al., 2014. Coupling Glacial Lake Impact, Dam Breach, and Flood Processes: A Modeling Perspective. Geomorphology, 224: 161-176. https://doi.org/10.1016/j.geomorph.2014.06.031 |
Worni, R., Huggel, C., Stoffel, M., 2013. Glacial Lakes in the Indian Himalayas-from an Area-Wide Glacial Lake Inventory to On-site and Modeling Based Risk Assessment of Critical Glacial Lakes. Science of the Tota: Environment, 468/469: S71-S84. https://doi.org/10.1016/j.scitotenv.2012.11.043 |
Yamada, T., Sharma, C. K., 1993. Glacier Lakes and Outburst Floods in the Nepal Himalaya. Proceedings of the Kathmandu Symposium Snow and Glacier Hydrology, November 1992, IAHS Publ. 218. 319-330 |
Yan, H. M., Yao, Z. J., Huang, H. Q., et al., 2013. Water Quality and Light Absorption Attributes of Glacial Lakes in Mount Qomolangma Region. Journal of Geographical Sciences, 23(5): 860-870. https://doi.org/10.1007/s11442-013-1049-z |
Yao, X. J., Liu, S. Y., Sun, M. P., et al., 2012. Volume Calculation and Analysis of the Changes in Moraine-Dammed Lakes in the North Himalaya: A Case Study of Longbasaba Lake. Journal of Glaciology, 58(210): 753-760. https://doi.org/10.3189/2012jog11j048 |