Angiolini, L., Zanchi, A., Zanchetta, S., et al., 2013. The Cimmerian Geopuzzle:New Data from South Pamir. Terra Nova, 25(5):352-360. https://doi.org/10.1111/ter.12042 |
Arnaud, N. O., Brunel, M., Cantagrel, J. M., et al., 1993. High Cooling and Denudation Rates at Kongur Shan, Eastern Pamir (Xinjiang, China) Revealed by 40Ar/39Ar Alkali Feldspar Thermochronology. Tectonics, 12(6):1335-1346. https://doi.org/10.1029/93tc00767 |
Bershaw, J., Garzione, C. N., Schoenbohm, L., et al., 2012. Cenozoic Evolution of the Pamir Plateau Based on Stratigraphy, Zircon Provenance, and Stable Isotopes of Foreland Basin Sediments at Oytag (Wuyitake) in the Tarim Basin (west China). Journal of Asian Earth Sciences, 44:136-148. https://doi.org/10.1016/j.jseaes.2011.04.020 |
Brunel, M., Arnaud, N., Tapponnier, P., et al., 1994. Kongur Shan Normal Fault:Type Example of Mountain Building Assisted by Extension (Karakoram Fault, Eastern Pamir). Geology, 22(8):707-710. https://doi.org/10.1130/0091-7613(1994)022<0707:ksnfte>2.3.co; 2 doi: 10.1130/0091-7613(1994)022<0707:ksnfte>2.3.co;2 |
Burtman, V. S., Molnar, P. H., 1993. Geological and Geophysical Evidence for Deep Subduction of Continental Crust beneath the Pamir. Geological Society of America Bulletin, 281:1-76. https://doi.org/10.1130/spe281-p1 |
Cai, Z. H., Xu, Z. Q., Cao, H., et al., 2017. Miocene Exhumation of Northeast Pamir:Deformation and Geo/thermochronological Evidence from Western Muztaghata Shear zone and Kuke Ductile Shear Zone. Journal of Structural Geology, 102:130-146. https://doi.org/10.1016/j.jsg.2017.07.010 |
Cao, K., Wang, G. C., van der Beek, P., et al., 2013a. Cenozoic Thermo-Tectonic Evolution of the Northeastern Pamir Revealed by Zircon and Apatite Fission-Track Thermochronology. Tectonophysics, 589:17-32. https://doi.org/10.1016/j.tecto.2012.12.038 |
Cao, K., Bernet, M., Wang, G. C., et al., 2013b. Focused Pliocene-Quaternary Exhumation of the Eastern Pamir Domes, Western China. Earth and Planetary Science Letters, 363:16-26. https://doi.org/10.1016/j.epsl.2012.12.023 |
Chapman, J. B., Scoggin, S. H., Kapp, P., et al., 2018. Mesozoic to Cenozoic Magmatic History of the Pamir. Earth and Planetary Science Letters, 482:181-192. https://doi.org/10.1016/j.epsl.2017.10.041 |
Chen, X. W., Chen, H. L., Lin, X. B., et al., 2018. Arcuate Pamir in the Paleogene? Insights from a Review of Stratigraphy and Sedimentology of the Basin Fills in the Foreland of NE Chinese Pamir, Western Tarim Basin. Earth-Science Reviews, 180:1-16. https://doi.org/10.1016/j.earscirev.2018.03.003 |
Cheng, X. G., Chen, H. L., Lin, X. B., et al., 2016. Deformation Geometry and Timing of TheWupoer Thrust Belt in the NE Pamir and Its Tectonic Implications. Frontiers of Earth Science, 10(4):751-760. https://doi.org/10.1007/s11707-016-0606-z |
Cowgill, E., 2010. Cenozoic Right-Slip Faulting along the Eastern Margin of the Pamir Salient, Northwestern China. Geological Society of America Bulletin, 122(1/2):145-161. https://doi.org/10.1130/b26520.1 |
Farley, K. A., 2000. Helium Diffusion from Apatite:General Behavior as Illustrated by Durango Fluorapatite. Journal of Geophysical Research:Solid Earth, 105(B2):2903-2914. https://doi.org/10.1029/1999jb900348 |
Flowers, R. M., Ketcham, R. A., Shuster, D. L., et al., 2009. Apatite (U-Th)/He Thermochronometry Using a Radiation Damage Accumulation and Annealing Model. Geochimica et Cosmochimica Acta, 73(8):2347-2365. https://doi.org/10.1016/j.gca.2009.01.015 |
Galbraith, R. F., 1981. On Statistical Models for Fission Track Counts:Reply. Journal of the International Association for Mathematical Geology, 13(6):485-488. https://doi.org/10.1007/bf01034500 |
Guenthner, W. R., Reiners, P. W., Ketcham, R. A., et al., 2013. Helium Diffusion in Natural Zircon:Radiation Damage, Anisotropy, and the Interpretation of Zircon (U-Th)/He Thermochronology. American Journal of Science, 313(3):145-198. https://doi.org/10.2475/03.2013.01 |
Hacker, B. R., Ratschbacher, L., Rutte, D., et al., 2017. Building the Pamir-Tibet Plateau-Crustal Stacking, Extensional Collapse, and Lateral Extrusion in the Pamir:3. Thermobarometry and Petrochronology of Deep Asian Crust. Tectonics, 36(9):1743-1766. https://doi.org/10.1002/2017tc004488 |
Hurford, A. J., Green, P. F., 1983. The Zeta Age Calibration of Fission-Track Dating. Chemical Geology, 41:285-317. https://doi.org/10.1016/s0009-2541(83)80026-6 |
Imrecke, D. B., ,., Robinson, A. C., et al., 2019. Mesozoic Evolution of the Eastern Pamir. Lithosphere, 11(4):560-580. https://doi.org/10.1130/l1017.1 |
Jiang, Y. H., Liu, Z., Jia, R. Y., et al., 2012. Miocene Potassic Granite-Syenite Association in Western Tibetan Plateau:Implications for Shoshonitic and High Ba-Sr Granite Genesis. Lithos, 134/135:146-162. https://doi.org/10.1016/j.lithos.2011.12.012 |
Jiang, Y. H., Liu, Z., Jia, R. Y., et al., 2013. Origin of Early Cretaceous High-K Calc-Alkaline Granitoids, Western Tibet:Implications for the Evolution of the Tethys in NW China. International Geology Review, 56(1):88-103. https://doi.org/10.1080/01431161.2013.819963 |
Ke, S., Luo, Z., Mo, X., et al., 2008. The Geochronology of Taxkorgan Alkalic Complex, Pamir Syntax. Acta Petrologica Sinica, 24(2):315-324 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200802011 |
Ketcham, R. A., Donelick, R. A., Carlson, W. D., 1999. Variability of Apatite Fission-Track Annealing Kinetics; Ⅲ, Extrapolation to Geological Time Scales. American Mineralogist, 84(9):1235-1255. https://doi.org/10.2138/am-1999-0903 |
Ketcham, R. A., Gautheron, C., Tassan-Got, L., 2011. Accounting for Long Alpha-Particle Stopping Distances in (U-Th-Sm)/He Geochronology:Refinement of the Baseline Case. Geochimica et Cosmochimica Acta, 75(24):7779-7791. https://doi.org/10.1016/j.gca.2011.10.011 |
Lee, J. K. W., Williams, I. S., Ellis, D. J., 1997. Pb, U and Th Diffusion in Natural Zircon. Nature, 390(6656):159-162. https://doi.org/10.1038/36554 |
Liu, X., Fan, H. R., Evans, N. J., et al., 2014. Cooling and Exhumation of the Mid-Jurassic Porphyry Copper Systems in Dexing City, SE China:Insights from Geo-and Thermochronology. Mineralium Deposita, 49(7):809-819. https://doi.org/10.1007/s00126-014-0536-1 |
Mechie, J., Yuan, X., Schurr, B., et al., 2012. Crustal and Uppermost Mantle Velocity Structure along a Profile Across the Pamir and Southern Tien Shan as Derived from Project TIPAGE Wide-Angle Seismic Data. Geophysical Journal International, 188(2):385-407. https://doi.org/10.1111/j.1365-246x.2011.05278.x |
Murphy, M. A., An, Y., Kapp, P., et al., 2000. Southward Propagation of the Karakoram Fault System, Southwest Tibet:Timing and Magnitude of Slip. Geology, 28(5):451. https://doi.org/10.1130/0091-7613(2000)28<451:spotkf>2.0.co; 2 doi: 10.1130/0091-7613(2000)28<451:spotkf>2.0.co;2 |
Owen, L. A., Chen, J., Hedrick, K. A., et al., 2012. Quaternary Glaciation of the Tashkurgan Valley, Southeast Pamir. Quaternary Science Reviews, 47:56-72. https://doi.org/10.1016/j.quascirev.2012.04.027 |
Reiners, P. W., Spell, T. L., Nicolescu, S., et al., 2004. Zircon (U-Th)/He Thermochronometry:He Diffusion and Comparisons with 40Ar/39Ar Dating. Geochimica et Cosmochimica Acta, 68(8):1857-1887. https://doi.org/10.1016/j.gca.2003.10.021 |
Reiners, P. W., Brandon, M. T., 2006. Using Thermochronology to Understand Orogenic Erosion. Annual Review of Earth and Planetary Sciences, 34(1):419-466. https://doi.org/10.1146/annurev.earth. 34.031405.125202 doi: 10.1146/annurev.earth.34.031405.125202 |
RGSRTK (Regional Geological Survey Report of the People's Republic of China, 2004. 1: 250 000 Tashkurgan County J43C003003. China Geological Survey (in Chinese) |
Robinson, A. C., Yin, A., Manning, C. E., et al., 2004. Tectonic Evolution of the Northeastern Pamir:Constraints from the Northern Portion of the Cenozoic Kongur Shan Extensional System, Western China. Geological Society of America Bulletin, 116(7/8):953-973. https://doi.org/10.1130/b25375.1 |
Robinson, A. C., Yin, A., Manning, C. E., et al., 2007. Cenozoic Evolution of the Eastern Pamir:Implications for Strain-Accommodation Mechanisms at the Western End of the Himalayan-Tibetan Orogen. Geological Society of America Bulletin, 119(7/8):882-896. https://doi.org/10.1130/b25981.1 |
Robinson, A. C., Yin, A., Lovera, O. M., 2010. The Role of Footwall Deformation and Denudation in Controlling Cooling Age Patterns of Detachment Systems:An Application to the Kongur Shan Extensional System in the Eastern Pamir, China. Tectonophysics, 496(1/2/3/4):28-43. https://doi.org/10.1016/j.tecto.2010.10.003 |
Robinson, A. C., 2015. Mesozoic Tectonics of the Gondwanan Terranes of the Pamir Plateau. Journal of Asian Earth Sciences, 102:170-179. https://doi.org/10.1016/j.jseaes.2014.09.012 |
Rutte, D., Ratschbacher, L., Schneider, S., et al., 2017a. Building the Pamir-Tibetan Plateau-Crustal Stacking, Extensional Collapse, and Lateral Extrusion in the Central Pamir:1. Geometry and Kinematics. Tectonics, 36(3):342-384. https://doi.org/10.1002/2016tc004293 |
Rutte, D., Ratschbacher, L., Khan, J., et al., 2017b. Building the Pamir-Tibetan Plateau-Crustal Stacking, Extensional Collapse, and Lateral Extrusion in the Central Pamir:2. Timing and Rates. Tectonics, 36(3):385-419. https://doi.org/10.1002/2016tc004294 |
Schmalholz, M., 2004. The Amalgamation of the Pamirs and Their Subsequent Evolution in the Far Field of the India-Asia Collision: [Dissertation]. Universitat Tubingen, Tubingen. 1-103 |
Schmidt, J., Hacker, B. R., Ratschbacher, L., et al., 2011. Cenozoic Deep Crust in the Pamir. Earth and Planetary Science Letters, 312(3/4):411-421. https://doi.org/10.1016/j.epsl.2011.10.034 |
Schneider, F. M., Yuan, X., Schurr, B., et al., 2013. Seismic Imaging of Subducting Continental Lower Crust beneath the Pamir. Earth and Planetary Science Letters, 375:101-112. https://doi.org/10.1016/j.epsl.2013.05.015 |
Schneider, F. M., Yuan, X., Schurr, B., et al., 2019. The Crust in the Pamir:Insights from Receiver Functions. Journal of Geophysical Research:Solid Earth, 124(8):9313-9331. https://doi.org/10.1029/2019jb017765 |
Schwab, M., Ratschbacher, L., Siebel, W., et al., 2004. Assembly of the Pamirs:Age and Origin of Magmatic Belts from the Southern Tien Shan to the Southern Pamirs and Their Relation to Tibet. Tectonics, 23(4):TC4002. https://doi.org/10.1029/2003tc001583 |
Shaffer, M., Hacker, B. R., Ratschbacher, L., et al., 2017. Foundering Triggered by the Collision of India and Asia Captured in Xenoliths. Tectonics, 36(10):1913-1933. https://doi.org/10.1002/2017tc004704 |
Shuster, D. L., Flowers, R. M., Farley, K. A., 2006. The Influence of Natural Radiation Damage on Helium Diffusion Kinetics in Apatite. Earth and Planetary Science Letters, 249(3/4):148-161. https://doi.org/10.1016/j.epsl.2006.07.028 |
Smit, M. A., Ratschbacher, L., Kooijman, E., et al., 2014. Early Evolution of the Pamir Deep Crust from Lu-Hf and U-Pb Geochronology and Garnet Thermometry. Geology, 42(12):1047-1050. https://doi.org/10.1130/g35878.1 |
Sobel, E. R., Dumitru, T. A., 1997. Thrusting and Exhumation around the Margins of the Western Tarim Basin during the India-Asia Collision. Journal of Geophysical Research:Solid Earth, 102(B3):5043-5063. https://doi.org/10.1029/96jb03267 |
Sobel, E. R., Schoenbohm, L. M., Chen, J., et al., 2011. Late Miocene-Pliocene Deceleration of Dextral Slip between Pamir and Tarim:Implications for Pamir Orogenesis. Earth and Planetary Science Letters, 304(3/4):369-378. https://doi.org/10.1016/j.epsl.2011.02.012 |
Sobel, E. R., Chen, J., Schoenbohm, L. M., et al., 2013. Oceanic-Style Subduction Controls Late Cenozoic Deformation of the Northern Pamir Orogen. Earth and Planetary Science Letters, 363:204-218. https://doi.org/10.1016/j.epsl.2012.12.009 |
Stearns, M. A., Hacker, B. R., Ratschbacher, L., et al., 2013. Synchronous Oligocene-Miocene Metamorphism of the Pamir and the North Himalaya Driven by Plate-Scale Dynamics. Geology, 41(10):1071-1074. https://doi.org/10.1130/g34451.1 |
Stearns, M. A., Hacker, B. R., Ratschbacher, L., et al., 2015. Titanite Petrochronology of the Pamir Gneiss Domes:Implications for Middle to Deep Crust Exhumation and Titanite Closure to Pb and Zr Diffusion. Tectonics, 34(4):784-802. https://doi.org/10.1002/2014tc003774 |
Strecker, M. R., Frisch, W., Hamburger, M. W., et al., 1995. Quaternary Deformation in the Eastern Pamirs, Tadzhikistan and Kyrgyzstan. Tectonics, 14(5):1061-1079. https://doi.org/10.1029/95tc00927 |
Stübner, K., Ratschbacher, L., Rutte, D., et al., 2013a. The Giant Shakhdara Migmatitic Gneiss Dome, Pamir, India-Asia Collision Zone:1. Geometry and Kinematics. Tectonics, 32(4):948-979. https://doi.org/10.1002/tect.20057 |
Stübner, K., Ratschbacher, L., Weise, C., et al., 2013b. The Giant Shakhdara Migmatitic Gneiss Dome, Pamir, India-Asia Collision Zone:2. Timing of Dome Formation. Tectonics, 32(5):1404-1431. https://doi.org/10.1002/tect.20059 |
Thiede, R. C., Sobel, E. R., Chen, J., et al., 2013. Late Cenozoic Extension and Crustal Doming in the India-Eurasia Collision Zone:New Thermochronologic Constraints from the NE Chinese Pamir. Tectonics, 32(3):763-779. https://doi.org/10.1002/tect.20050 |
Weather China, 2016. Climatic Data for Tashkurgan County (1971-2000). (2020-1-20). http://www.weather.com.cn/cityintro/101130903.shtml |
Willett, S. D., Brandon, M. T., 2013. Some Analytical Methods for Converting Thermochronometric Age to Erosion Rate. Geochemistry, Geophysics, Geosystems, 14(1):209-222. https://doi.org/10.1029/2012gc004279 |
Worthington, J. R., Ratschbacher, L., Stübner, K., et al., 2019. The Alichur Dome, South Pamir, Western India-Asia Collisional Zone:Detailing the Neogene Shakhdara-Alichur Syn-Collisional Gneiss-Dome Complex and Connection to Lithospheric Processes. Tectonics, 39(1):e2019TC005735. https://doi.org/10.1029/2019tc005735 |
Yin, A., Robinson, A., Manning, C. E., 2001. Oroclinal Bending and Slab-Break-off Causing Coeval East-West Extension and East-West Contraction in the Pamir-Nanga Parbat Syntaxis in the Past 10 m.y.. American Geophysical Union, 82(47):F1124 https://ui.adsabs.harvard.edu/abs/2001AGUFM.T12F..03Y/abstract |
Yuan, W. M., Carter, A., Dong, J. Q., et al., 2006. Mesozoic-Tertiary Exhumation History of the Altai Mountains, Northern Xinjiang, China:New Constraints from Apatite Fission Track Data. Tectonophysics, 412(3/4):183-193. https://doi.org/10.1016/j.tecto.2005.09.007 |