Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 4
Aug 2020
Turn off MathJax
Article Contents
Shenqiang Chen, Hanlin Chen. Late Cenozoic Activity of the Tashkurgan Normal Fault and Implications for the Origin of the Kongur Shan Extensional System, Eastern Pamir. Journal of Earth Science, 2020, 31(4): 723-734. doi: 10.1007/s12583-020-1282-1
Citation: Shenqiang Chen, Hanlin Chen. Late Cenozoic Activity of the Tashkurgan Normal Fault and Implications for the Origin of the Kongur Shan Extensional System, Eastern Pamir. Journal of Earth Science, 2020, 31(4): 723-734. doi: 10.1007/s12583-020-1282-1

Late Cenozoic Activity of the Tashkurgan Normal Fault and Implications for the Origin of the Kongur Shan Extensional System, Eastern Pamir

doi: 10.1007/s12583-020-1282-1
More Information
  • Corresponding author: Shenqiang Chen, ORCID:0000-0002-2265-6313, shenqiang.chen@erdw.ethz.ch
  • Received Date: 26 Aug 2019
  • Accepted Date: 28 Nov 2019
  • Publish Date: 24 Aug 2020
  • In the northwest of the Himalayan-Tibetan Orogen, the ~250 km-long Kongur Shan extensional system in the eastern Pamir was formed during the convergence between the Indian and Asian plates. Tectonic activity of the Kongur Shan normal fault and the Tashkurgan normal fault can help to reveal the origin of east-west extension along the Kongur Shan extensional system. The Kongur Shan fault has been extensively studied, while the Tashkurgan fault calls for systemic research. In this study, low-temperature thermochronology including apatite fission track analysis and apatite and zircon (U-Th)/He analyses is applied to constrain the timing of activity of the Tashkurgan fault. Results indicate that the Tashkurgan fault initiated at 10-5 Ma, and most likely at 6-5 Ma. The footwall of the Tashkurgan fault has been exhumed at an average exhumation rate of 0.6-0.9 mm/a since the initiation of the Tashkurgan fault. Combined with previous research on the Kongur Shan fault, we believe that the origin of east-west extension along the Kongur Shan extensional system was driven by gravitational collapse of over-thickened Pamir crust.

     

  • loading
  • Angiolini, L., Zanchi, A., Zanchetta, S., et al., 2013. The Cimmerian Geopuzzle:New Data from South Pamir. Terra Nova, 25(5):352-360. https://doi.org/10.1111/ter.12042
    Arnaud, N. O., Brunel, M., Cantagrel, J. M., et al., 1993. High Cooling and Denudation Rates at Kongur Shan, Eastern Pamir (Xinjiang, China) Revealed by 40Ar/39Ar Alkali Feldspar Thermochronology. Tectonics, 12(6):1335-1346. https://doi.org/10.1029/93tc00767
    Bershaw, J., Garzione, C. N., Schoenbohm, L., et al., 2012. Cenozoic Evolution of the Pamir Plateau Based on Stratigraphy, Zircon Provenance, and Stable Isotopes of Foreland Basin Sediments at Oytag (Wuyitake) in the Tarim Basin (west China). Journal of Asian Earth Sciences, 44:136-148. https://doi.org/10.1016/j.jseaes.2011.04.020
    Brunel, M., Arnaud, N., Tapponnier, P., et al., 1994. Kongur Shan Normal Fault:Type Example of Mountain Building Assisted by Extension (Karakoram Fault, Eastern Pamir). Geology, 22(8):707-710. https://doi.org/10.1130/0091-7613(1994)022<0707:ksnfte>2.3.co; 2 doi: 10.1130/0091-7613(1994)022<0707:ksnfte>2.3.co;2
    Burtman, V. S., Molnar, P. H., 1993. Geological and Geophysical Evidence for Deep Subduction of Continental Crust beneath the Pamir. Geological Society of America Bulletin, 281:1-76. https://doi.org/10.1130/spe281-p1
    Cai, Z. H., Xu, Z. Q., Cao, H., et al., 2017. Miocene Exhumation of Northeast Pamir:Deformation and Geo/thermochronological Evidence from Western Muztaghata Shear zone and Kuke Ductile Shear Zone. Journal of Structural Geology, 102:130-146. https://doi.org/10.1016/j.jsg.2017.07.010
    Cao, K., Wang, G. C., van der Beek, P., et al., 2013a. Cenozoic Thermo-Tectonic Evolution of the Northeastern Pamir Revealed by Zircon and Apatite Fission-Track Thermochronology. Tectonophysics, 589:17-32. https://doi.org/10.1016/j.tecto.2012.12.038
    Cao, K., Bernet, M., Wang, G. C., et al., 2013b. Focused Pliocene-Quaternary Exhumation of the Eastern Pamir Domes, Western China. Earth and Planetary Science Letters, 363:16-26. https://doi.org/10.1016/j.epsl.2012.12.023
    Chapman, J. B., Scoggin, S. H., Kapp, P., et al., 2018. Mesozoic to Cenozoic Magmatic History of the Pamir. Earth and Planetary Science Letters, 482:181-192. https://doi.org/10.1016/j.epsl.2017.10.041
    Chen, X. W., Chen, H. L., Lin, X. B., et al., 2018. Arcuate Pamir in the Paleogene? Insights from a Review of Stratigraphy and Sedimentology of the Basin Fills in the Foreland of NE Chinese Pamir, Western Tarim Basin. Earth-Science Reviews, 180:1-16. https://doi.org/10.1016/j.earscirev.2018.03.003
    Cheng, X. G., Chen, H. L., Lin, X. B., et al., 2016. Deformation Geometry and Timing of TheWupoer Thrust Belt in the NE Pamir and Its Tectonic Implications. Frontiers of Earth Science, 10(4):751-760. https://doi.org/10.1007/s11707-016-0606-z
    Cowgill, E., 2010. Cenozoic Right-Slip Faulting along the Eastern Margin of the Pamir Salient, Northwestern China. Geological Society of America Bulletin, 122(1/2):145-161. https://doi.org/10.1130/b26520.1
    Farley, K. A., 2000. Helium Diffusion from Apatite:General Behavior as Illustrated by Durango Fluorapatite. Journal of Geophysical Research:Solid Earth, 105(B2):2903-2914. https://doi.org/10.1029/1999jb900348
    Flowers, R. M., Ketcham, R. A., Shuster, D. L., et al., 2009. Apatite (U-Th)/He Thermochronometry Using a Radiation Damage Accumulation and Annealing Model. Geochimica et Cosmochimica Acta, 73(8):2347-2365. https://doi.org/10.1016/j.gca.2009.01.015
    Galbraith, R. F., 1981. On Statistical Models for Fission Track Counts:Reply. Journal of the International Association for Mathematical Geology, 13(6):485-488. https://doi.org/10.1007/bf01034500
    Guenthner, W. R., Reiners, P. W., Ketcham, R. A., et al., 2013. Helium Diffusion in Natural Zircon:Radiation Damage, Anisotropy, and the Interpretation of Zircon (U-Th)/He Thermochronology. American Journal of Science, 313(3):145-198. https://doi.org/10.2475/03.2013.01
    Hacker, B. R., Ratschbacher, L., Rutte, D., et al., 2017. Building the Pamir-Tibet Plateau-Crustal Stacking, Extensional Collapse, and Lateral Extrusion in the Pamir:3. Thermobarometry and Petrochronology of Deep Asian Crust. Tectonics, 36(9):1743-1766. https://doi.org/10.1002/2017tc004488
    Hurford, A. J., Green, P. F., 1983. The Zeta Age Calibration of Fission-Track Dating. Chemical Geology, 41:285-317. https://doi.org/10.1016/s0009-2541(83)80026-6
    Imrecke, D. B., ,., Robinson, A. C., et al., 2019. Mesozoic Evolution of the Eastern Pamir. Lithosphere, 11(4):560-580. https://doi.org/10.1130/l1017.1
    Jiang, Y. H., Liu, Z., Jia, R. Y., et al., 2012. Miocene Potassic Granite-Syenite Association in Western Tibetan Plateau:Implications for Shoshonitic and High Ba-Sr Granite Genesis. Lithos, 134/135:146-162. https://doi.org/10.1016/j.lithos.2011.12.012
    Jiang, Y. H., Liu, Z., Jia, R. Y., et al., 2013. Origin of Early Cretaceous High-K Calc-Alkaline Granitoids, Western Tibet:Implications for the Evolution of the Tethys in NW China. International Geology Review, 56(1):88-103. https://doi.org/10.1080/01431161.2013.819963
    Ke, S., Luo, Z., Mo, X., et al., 2008. The Geochronology of Taxkorgan Alkalic Complex, Pamir Syntax. Acta Petrologica Sinica, 24(2):315-324 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200802011
    Ketcham, R. A., Donelick, R. A., Carlson, W. D., 1999. Variability of Apatite Fission-Track Annealing Kinetics; Ⅲ, Extrapolation to Geological Time Scales. American Mineralogist, 84(9):1235-1255. https://doi.org/10.2138/am-1999-0903
    Ketcham, R. A., Gautheron, C., Tassan-Got, L., 2011. Accounting for Long Alpha-Particle Stopping Distances in (U-Th-Sm)/He Geochronology:Refinement of the Baseline Case. Geochimica et Cosmochimica Acta, 75(24):7779-7791. https://doi.org/10.1016/j.gca.2011.10.011
    Lee, J. K. W., Williams, I. S., Ellis, D. J., 1997. Pb, U and Th Diffusion in Natural Zircon. Nature, 390(6656):159-162. https://doi.org/10.1038/36554
    Liu, X., Fan, H. R., Evans, N. J., et al., 2014. Cooling and Exhumation of the Mid-Jurassic Porphyry Copper Systems in Dexing City, SE China:Insights from Geo-and Thermochronology. Mineralium Deposita, 49(7):809-819. https://doi.org/10.1007/s00126-014-0536-1
    Mechie, J., Yuan, X., Schurr, B., et al., 2012. Crustal and Uppermost Mantle Velocity Structure along a Profile Across the Pamir and Southern Tien Shan as Derived from Project TIPAGE Wide-Angle Seismic Data. Geophysical Journal International, 188(2):385-407. https://doi.org/10.1111/j.1365-246x.2011.05278.x
    Murphy, M. A., An, Y., Kapp, P., et al., 2000. Southward Propagation of the Karakoram Fault System, Southwest Tibet:Timing and Magnitude of Slip. Geology, 28(5):451. https://doi.org/10.1130/0091-7613(2000)28<451:spotkf>2.0.co; 2 doi: 10.1130/0091-7613(2000)28<451:spotkf>2.0.co;2
    Owen, L. A., Chen, J., Hedrick, K. A., et al., 2012. Quaternary Glaciation of the Tashkurgan Valley, Southeast Pamir. Quaternary Science Reviews, 47:56-72. https://doi.org/10.1016/j.quascirev.2012.04.027
    Reiners, P. W., Spell, T. L., Nicolescu, S., et al., 2004. Zircon (U-Th)/He Thermochronometry:He Diffusion and Comparisons with 40Ar/39Ar Dating. Geochimica et Cosmochimica Acta, 68(8):1857-1887. https://doi.org/10.1016/j.gca.2003.10.021
    Reiners, P. W., Brandon, M. T., 2006. Using Thermochronology to Understand Orogenic Erosion. Annual Review of Earth and Planetary Sciences, 34(1):419-466. https://doi.org/10.1146/annurev.earth. 34.031405.125202 doi: 10.1146/annurev.earth.34.031405.125202
    RGSRTK (Regional Geological Survey Report of the People's Republic of China, 2004. 1: 250 000 Tashkurgan County J43C003003. China Geological Survey (in Chinese)
    Robinson, A. C., Yin, A., Manning, C. E., et al., 2004. Tectonic Evolution of the Northeastern Pamir:Constraints from the Northern Portion of the Cenozoic Kongur Shan Extensional System, Western China. Geological Society of America Bulletin, 116(7/8):953-973. https://doi.org/10.1130/b25375.1
    Robinson, A. C., Yin, A., Manning, C. E., et al., 2007. Cenozoic Evolution of the Eastern Pamir:Implications for Strain-Accommodation Mechanisms at the Western End of the Himalayan-Tibetan Orogen. Geological Society of America Bulletin, 119(7/8):882-896. https://doi.org/10.1130/b25981.1
    Robinson, A. C., Yin, A., Lovera, O. M., 2010. The Role of Footwall Deformation and Denudation in Controlling Cooling Age Patterns of Detachment Systems:An Application to the Kongur Shan Extensional System in the Eastern Pamir, China. Tectonophysics, 496(1/2/3/4):28-43. https://doi.org/10.1016/j.tecto.2010.10.003
    Robinson, A. C., 2015. Mesozoic Tectonics of the Gondwanan Terranes of the Pamir Plateau. Journal of Asian Earth Sciences, 102:170-179. https://doi.org/10.1016/j.jseaes.2014.09.012
    Rutte, D., Ratschbacher, L., Schneider, S., et al., 2017a. Building the Pamir-Tibetan Plateau-Crustal Stacking, Extensional Collapse, and Lateral Extrusion in the Central Pamir:1. Geometry and Kinematics. Tectonics, 36(3):342-384. https://doi.org/10.1002/2016tc004293
    Rutte, D., Ratschbacher, L., Khan, J., et al., 2017b. Building the Pamir-Tibetan Plateau-Crustal Stacking, Extensional Collapse, and Lateral Extrusion in the Central Pamir:2. Timing and Rates. Tectonics, 36(3):385-419. https://doi.org/10.1002/2016tc004294
    Schmalholz, M., 2004. The Amalgamation of the Pamirs and Their Subsequent Evolution in the Far Field of the India-Asia Collision: [Dissertation]. Universitat Tubingen, Tubingen. 1-103
    Schmidt, J., Hacker, B. R., Ratschbacher, L., et al., 2011. Cenozoic Deep Crust in the Pamir. Earth and Planetary Science Letters, 312(3/4):411-421. https://doi.org/10.1016/j.epsl.2011.10.034
    Schneider, F. M., Yuan, X., Schurr, B., et al., 2013. Seismic Imaging of Subducting Continental Lower Crust beneath the Pamir. Earth and Planetary Science Letters, 375:101-112. https://doi.org/10.1016/j.epsl.2013.05.015
    Schneider, F. M., Yuan, X., Schurr, B., et al., 2019. The Crust in the Pamir:Insights from Receiver Functions. Journal of Geophysical Research:Solid Earth, 124(8):9313-9331. https://doi.org/10.1029/2019jb017765
    Schwab, M., Ratschbacher, L., Siebel, W., et al., 2004. Assembly of the Pamirs:Age and Origin of Magmatic Belts from the Southern Tien Shan to the Southern Pamirs and Their Relation to Tibet. Tectonics, 23(4):TC4002. https://doi.org/10.1029/2003tc001583
    Shaffer, M., Hacker, B. R., Ratschbacher, L., et al., 2017. Foundering Triggered by the Collision of India and Asia Captured in Xenoliths. Tectonics, 36(10):1913-1933. https://doi.org/10.1002/2017tc004704
    Shuster, D. L., Flowers, R. M., Farley, K. A., 2006. The Influence of Natural Radiation Damage on Helium Diffusion Kinetics in Apatite. Earth and Planetary Science Letters, 249(3/4):148-161. https://doi.org/10.1016/j.epsl.2006.07.028
    Smit, M. A., Ratschbacher, L., Kooijman, E., et al., 2014. Early Evolution of the Pamir Deep Crust from Lu-Hf and U-Pb Geochronology and Garnet Thermometry. Geology, 42(12):1047-1050. https://doi.org/10.1130/g35878.1
    Sobel, E. R., Dumitru, T. A., 1997. Thrusting and Exhumation around the Margins of the Western Tarim Basin during the India-Asia Collision. Journal of Geophysical Research:Solid Earth, 102(B3):5043-5063. https://doi.org/10.1029/96jb03267
    Sobel, E. R., Schoenbohm, L. M., Chen, J., et al., 2011. Late Miocene-Pliocene Deceleration of Dextral Slip between Pamir and Tarim:Implications for Pamir Orogenesis. Earth and Planetary Science Letters, 304(3/4):369-378. https://doi.org/10.1016/j.epsl.2011.02.012
    Sobel, E. R., Chen, J., Schoenbohm, L. M., et al., 2013. Oceanic-Style Subduction Controls Late Cenozoic Deformation of the Northern Pamir Orogen. Earth and Planetary Science Letters, 363:204-218. https://doi.org/10.1016/j.epsl.2012.12.009
    Stearns, M. A., Hacker, B. R., Ratschbacher, L., et al., 2013. Synchronous Oligocene-Miocene Metamorphism of the Pamir and the North Himalaya Driven by Plate-Scale Dynamics. Geology, 41(10):1071-1074. https://doi.org/10.1130/g34451.1
    Stearns, M. A., Hacker, B. R., Ratschbacher, L., et al., 2015. Titanite Petrochronology of the Pamir Gneiss Domes:Implications for Middle to Deep Crust Exhumation and Titanite Closure to Pb and Zr Diffusion. Tectonics, 34(4):784-802. https://doi.org/10.1002/2014tc003774
    Strecker, M. R., Frisch, W., Hamburger, M. W., et al., 1995. Quaternary Deformation in the Eastern Pamirs, Tadzhikistan and Kyrgyzstan. Tectonics, 14(5):1061-1079. https://doi.org/10.1029/95tc00927
    Stübner, K., Ratschbacher, L., Rutte, D., et al., 2013a. The Giant Shakhdara Migmatitic Gneiss Dome, Pamir, India-Asia Collision Zone:1. Geometry and Kinematics. Tectonics, 32(4):948-979. https://doi.org/10.1002/tect.20057
    Stübner, K., Ratschbacher, L., Weise, C., et al., 2013b. The Giant Shakhdara Migmatitic Gneiss Dome, Pamir, India-Asia Collision Zone:2. Timing of Dome Formation. Tectonics, 32(5):1404-1431. https://doi.org/10.1002/tect.20059
    Thiede, R. C., Sobel, E. R., Chen, J., et al., 2013. Late Cenozoic Extension and Crustal Doming in the India-Eurasia Collision Zone:New Thermochronologic Constraints from the NE Chinese Pamir. Tectonics, 32(3):763-779. https://doi.org/10.1002/tect.20050
    Weather China, 2016. Climatic Data for Tashkurgan County (1971-2000). (2020-1-20). http://www.weather.com.cn/cityintro/101130903.shtml
    Willett, S. D., Brandon, M. T., 2013. Some Analytical Methods for Converting Thermochronometric Age to Erosion Rate. Geochemistry, Geophysics, Geosystems, 14(1):209-222. https://doi.org/10.1029/2012gc004279
    Worthington, J. R., Ratschbacher, L., Stübner, K., et al., 2019. The Alichur Dome, South Pamir, Western India-Asia Collisional Zone:Detailing the Neogene Shakhdara-Alichur Syn-Collisional Gneiss-Dome Complex and Connection to Lithospheric Processes. Tectonics, 39(1):e2019TC005735. https://doi.org/10.1029/2019tc005735
    Yin, A., Robinson, A., Manning, C. E., 2001. Oroclinal Bending and Slab-Break-off Causing Coeval East-West Extension and East-West Contraction in the Pamir-Nanga Parbat Syntaxis in the Past 10 m.y.. American Geophysical Union, 82(47):F1124 https://ui.adsabs.harvard.edu/abs/2001AGUFM.T12F..03Y/abstract
    Yuan, W. M., Carter, A., Dong, J. Q., et al., 2006. Mesozoic-Tertiary Exhumation History of the Altai Mountains, Northern Xinjiang, China:New Constraints from Apatite Fission Track Data. Tectonophysics, 412(3/4):183-193. https://doi.org/10.1016/j.tecto.2005.09.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(365) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return