Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 4
Aug 2020
Turn off MathJax
Article Contents
Yi Cao, Xinzhuan Guo, Jinxue Du. Electrical Conductivity of Eclogite, Amphibolite and Garnet-Quartz-Mica Schist with Implications for the Conductivity in the Qiangtang Terrane of Northern Tibetan Plateau. Journal of Earth Science, 2020, 31(4): 683-692. doi: 10.1007/s12583-020-1290-1
Citation: Yi Cao, Xinzhuan Guo, Jinxue Du. Electrical Conductivity of Eclogite, Amphibolite and Garnet-Quartz-Mica Schist with Implications for the Conductivity in the Qiangtang Terrane of Northern Tibetan Plateau. Journal of Earth Science, 2020, 31(4): 683-692. doi: 10.1007/s12583-020-1290-1

Electrical Conductivity of Eclogite, Amphibolite and Garnet-Quartz-Mica Schist with Implications for the Conductivity in the Qiangtang Terrane of Northern Tibetan Plateau

doi: 10.1007/s12583-020-1290-1
More Information
  • Corresponding author: Yi Cao, ORCID:0000-0001-9197-0763, caoyi0701@126.com
  • Received Date: 16 Jan 2020
  • Accepted Date: 26 Mar 2020
  • Publish Date: 24 Aug 2020
  • Understanding the electrical conductivity of high pressure metamorphic rocks is essential to constrain the compositions in the subduction zone and continental crust. In this study, we calculated the electrical conductivity for such rocks sampled from the central Qiangtang metamorphic belt in the northern Tibetan Plateau. The results reveal that, when aqueous fluids are absent, the conductivity of meta-mafic rocks (e.g., eclogite and amphibolite) is strikingly higher than that of meta-felsic rocks (e.g., garnet-quartz-mica schist). The conductivity of eclogite decreases due to the enrichment of amphibole, but this effect is diminished when a critical degree of amphibolization is reached. Our calculated conductivity of eclogite and amphibolite differs greatly from the experimentally derived results for the eclogites from other localities, partly owing to the strong effects of different mineral assemblages and chemical compositions on the conduction mechanisms and efficiencies. However, the disparity of conductivity between our calculated and the previously measured results for a similar amphibole-rich eclogite sampled from the same locality suggests that trails of highly conductive rutile-ilmenite aggregates may contribute to the higher bulk-rock conductivity in the laboratory measurements. Moreover, since the calculated conductivity of eclogite and amphibolite is not high enough at the temperatures relevant to their metamorphic thermal condition, partial melts or aqueous fluids originated from the upwelling asthenosphere are more likely to explain the anomalously high electrical conductivity zones in magnetotelluric images in the Qiangtang terrane in the northern Tibetan Plateau.

     

  • loading
  • Andreozzi, G. B., Cellucci, F., Gozzi, D., 1996. High-Temperature Electrical Conductivity of FeTiO3 and Ilmenite. Journal of Materials Chemistry, 6(6):987. https://doi.org/10.1039/jm9960600987
    Angiboust, S., Agard, P., Raimbourg, H., et al., 2011. Subduction Interface Processes Recorded by Eclogite-Facies Shear Zones (Monviso, W. Alps). Lithos, 127(1/2):222-238. https://doi.org/10.1016/j.lithos.2011.09.004
    Austrheim, H., 2013. Fluid and Deformation Induced Metamorphic Processes around Moho beneath Continent Collision Zones:Examples from the Exposed Root Zone of the Caledonian Mountain Belt, W-Norway. Tectonophysics, 609:620-635. https://doi.org/10.1016/j.tecto.2013.08.030
    Bagdassarov, N., Batalev, V., Egorova, V., 2011. State of Lithosphere beneath Tien Shan from Petrology and Electrical Conductivity of Xenoliths. Journal of Geophysical Research, 116(B1) https://doi.org/10.1029/2009jb007125
    Bagdassarov, N. S., Slutskii, A. B., 2003. Phase Transformations in Calcite from Electrical Impedance Measurements. Phase Transitions, 76(12):1015-1028. https://doi.org/10.1080/0141159031000098233
    Baldwin, S. L., Monteleone, B. D., Webb, L. E., et al., 2004. Pliocene Eclogite Exhumation at Plate Tectonic Rates in Eastern Papua New Guinea. Nature, 431(7006):263-267. https://doi.org/10.1038/nature02846
    Berryman, J. G., 1995. Mixture Theories for Rock Properties. In: Ahrens, T. J., ed., Rock Physics & Phase Relations. American Geophysical Union, Washington, DC. 205-228
    Carswell, D. A., 1990. Eclogite Facies Rocks. Springer, Netherlands
    Čermák, V., Laštovičková, M., 1987. Temperature Profiles in the Earth of Importance to Deep Electrical Conductivity Models. Pure and Applied Geophysics Pageoph, 125(2/3):255-284. https://doi.org/10.1007/bf00874497
    Chen, S. B., Guo, X. Z., Yoshino, T., et al., 2017. Dehydration of Phengite Inferred by Electrical Conductivity Measurements:Implication for the High Conductivity Anomalies Relevant to the Subduction Zones. Geology, 46(1):11-14. https://doi.org/10.1130/g39716.1
    Dai, L. D., Li, H. P., Hu, H. Y., et al., 2012. The Effect of Chemical Composition and Oxygen Fugacity on the Electrical Conductivity of Dry and Hydrous Garnet at High Temperatures and Pressures. Contributions to Mineralogy and Petrology, 163(4):689-700. https://doi.org/10.1007/s00410-011-0693-5
    Dai, L. D., Karato, S. I., 2014. High and Highly Anisotropic Electrical Conductivity of the Asthenosphere Due to Hydrogen Diffusion in Olivine. Earth and Planetary Science Letters, 408:79-86. https://doi.org/10.1016/j.epsl.2014.10.003
    Dai, L. D., Hu, H. Y., Li, H. P., et al., 2016. Influence of Temperature, Pressure, and Oxygen Fugacity on the Electrical Conductivity of Dry Eclogite, and Geophysical Implications. Geochemistry, Geophysics, Geosystems, 17(6):2394-2407. https://doi.org/10.1002/2016gc006282
    Davis, P. B., Whitney, D. L., 2006. Petrogenesis of Lawsonite and Epidote Eclogite and Blueschist, Sivrihisar Massif, Turkey. Journal of Metamorphic Geology, 24(9):823-849. https://doi.org/10.1111/j.1525-1314.2006.00671.x
    Ernst, W. G., 2016. Franciscan Mélanges:Coherent Blocks in a Low-Density, Ductile Matrix. International Geology Review, 58(5):626-642. https://doi.org/10.1080/00206814.2015.1108879
    Garber, J. M., Maurya, S., et al., 2018. Multidisciplinary Constraints on the Abundance of Diamond and Eclogite in the Cratonic Lithosphere. Geochemistry, Geophysics, Geosystems, 19(7):2062-2086. https://doi.org/10.1029/2018gc007534
    Godard, G., 2001. Eclogites and Their Geodynamic Interpretation:A History. Journal of Geodynamics, 32(1/2):165-203. https://doi.org/10.1016/s0264-3707(01)00020-5
    Greener, E. H., Barone, F. J., Hirthe, W. M., 1965. Electrical Conductivity of Single and Polycrystalline Near-Stoichiometric Rutile in the Range 600 to 1 400℃. Journal of the American Ceramic Society, 48(12):623-627. https://doi.org/10.1111/j.1151-2916.1965.tb14692.x
    Guo, H. H., Keppler, H., 2019. Electrical Conductivity of NaCl-Bearing Aqueous Fluids to 900℃ and 5 GPa. Journal of Geophysical Research:Solid Earth, 124(2):1397-1411. https://doi.org/10.1029/2018jb016658
    Guo, X. Z., Yoshino, T., Shimojuku, A., 2015. Electrical Conductivity of Albite-(Quartz)-Water and Albite-Water-NaCl Systems and Its Implication to the High Conductivity Anomalies in the Continental Crust. Earth and Planetary Science Letters, 412:1-9. https://doi.org/10.1016/j.epsl.2014.12.021
    Guo, X., Zhang, L., Su, X., et al., 2018. Melting Inside the Tibetan Crust? Constraint from Electrical Conductivity of Peraluminous Granitic Melt. Geophysical Research Letters, 45(9):3906-3913. https://doi.org/10.1029/2018gl077804
    Guo, Y. X., Wang, D. J., Shi, Y. L., et al., 2014. The Electrical Conductivity of Eclogite in Tibet and Its Geophysical Implications. Science China Earth Sciences, 57(9):2071-2078. https://doi.org/10.1007/s11430-014-4876-6
    Hacker, B. R., Abers, G. A., Peacock, S. M., 2003. Subduction Factory 1. Theoretical Mineralogy, Densities, Seismic Wave Speeds, and H2O Contents. Journal of Geophysical Research:Solid Earth, 108(B1):2029. https://doi.org/10.1029/2001jb001127
    Hashin, Z., Shtrikman, S., 1962. A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials. Journal of Applied Physics, 33(10):3125-3131. https://doi.org/10.1063/1.1728579
    Hu, H. Y., Dai, L. D., Li, H. P., et al., 2017. Influence of Dehydration on the Electrical Conductivity of Epidote and Implications for High-Conductivity Anomalies in Subduction Zones. Journal of Geophysical Research:Solid Earth, 122(4):2751-2762. https://doi.org/10.1002/2016jb013767
    Hu, H. Y., Dai, L. D., Li, H. P., et al., 2018. Effect of Dehydrogenation on the Electrical Conductivity of Fe-Bearing Amphibole:Implications for High Conductivity Anomalies in Subduction Zones and Continental Crust. Earth and Planetary Science Letters, 498:27-37. https://doi.org/10.1016/j.epsl.2018.06.003
    Karato, S. I., Wang, D., 2013. Electrical Conductivity of Minerals and Rocks. Physics and Chemistry of the Deep Earth. 145-182 doi: 10.1002/9781118529492.ch5/pdf
    Laštovičková, M., Parchomenko, E. I., 1976. The Electric Properties of Eclogites from the Bohemian Massif under High Temperatures and Pressures. Pure and Applied Geophysics Pageoph, 114(3):451-460. https://doi.org/10.1007/bf00876944
    Liou, J. G., Zhang, R. Y., Ernst, W. G., et al., 1998. High-Pressure Minerals from Deeply Subducted Metamorphic Rocks. Reviews in Mineralogy and Geochemistry, 37(1):33-96
    Liou, J. G., Zhang, R. Y., Jahn, B. M., 2000. Petrological and Geochemical Characteristics of Ultrahigh-Pressure Metamorphic Rocks from the Dabie-Sulu Terrane, East-Central China. International Geology Review, 42(4):328-352. https://doi.org/10.1080/00206810009465086
    Liu, H. Y., Zhu, Q., Yang, X. Z., 2019. Electrical Conductivity of OH-Bearing Omphacite and Garnet in Eclogite:The Quantitative Dependence on Water Content. Contributions to Mineralogy and Petrology, 174(7):57. https://doi.org/10.1007/s00410-019-1593-3
    Manthilake, G., Bolfan-Casanova, N., Novella, D., et al., 2016. Dehydration of Chlorite Explains Anomalously High Electrical Conductivity in the Mantle Wedges. Science Advances, 2(5):e1501631. https://doi.org/10.1126/sciadv.1501631
    Peacock, S. M., 1993. The Importance of Blueschist→Eclogite Dehydration Reactions in Subducting Oceanic Crust. Geological Society of America Bulletin, 105(5):684-694. https://doi.org/10.1130/0016-7606(1993)105<0684:tiobed>2.3.co; 2 doi: 10.1130/0016-7606(1993)105<0684:tiobed>2.3.co;2
    Pommier, A., Leinenweber, K., Kohlstedt, D. L., et al., 2015. Experimental Constraints on the Electrical Anisotropy of the Lithosphere-Asthenosphere System. Nature, 522(7555):202-206. https://doi.org/10.1038/nature14502
    Sakuma, H., Ichiki, M., 2016. Electrical Conductivity of NaCl-H2O Fluid in the Crust. Journal of Geophysical Research:Solid Earth, 121(2):577-594. https://doi.org/10.1002/2015jb012219
    Shimojuku, A., Yoshino, T., Yamazaki, D., et al., 2012. Electrical Conductivity of Fluid-Bearing Quartzite under Lower Crustal Conditions. Physics of the Earth and Planetary Interiors, 198/199:1-8. https://doi.org/10.1016/j.pepi.2012.03.007
    Shimojuku, A., Yoshino, T., Yamazaki, D., 2014. Electrical Conductivity of Brine-Bearing Quartzite at 1 GPa:Implications for Fluid Content and Salinity of the Crust. Earth, Planets and Space, 66(1):2. https://doi.org/10.1186/1880-5981-66-2
    Spandler, C., Hermann, J., Faure, K., et al., 2008. The Importance of Talc and Chlorite "Hybrid" Rocks for Volatile Recycling through Subduction Zones; Evidence from the High-Pressure Subduction Mélange of New Caledonia. Contributions to Mineralogy and Petrology, 155(2):181-198. https://doi.org/10.1007/s00410-007-0236-2
    Tilmann, F., 2003. Seismic Imaging of the Downwelling Indian Lithosphere beneath Central Tibet. Science, 300(5624):1424-1427. https://doi.org/10.1126/science.1082777
    Wang, D. J., Guo, Y. X., Yu, Y. J., et al., 2012. Electrical Conductivity of Amphibole-Bearing Rocks:Influence of Dehydration. Contributions to Mineralogy and Petrology, 164(1):17-25. https://doi.org/10.1007/s00410-012-0722-z
    Wang, Q., Bagdassarov, N., Xia, Q. K., et al., 2014. Water Contents and Electrical Conductivity of Peridotite Xenoliths from the North China Craton:Implications for Water Distribution in the Upper Mantle. Lithos, 189:105-126. https://doi.org/10.1016/j.lithos.2013.08.005
    Wei, C. J., Yang, Y., Su, X. L., et al., 2009. Metamorphic Evolution of Low-Teclogite from the North Qilian Orogen, NW China:Evidence from Petrology and Calculated Phase Equilibria in the System Nckfmasho. Journal of Metamorphic Geology, 27(1):55-70. https://doi.org/10.1111/j.1525-1314.2008.00803.x
    Wei, W., 2001. Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies. Science, 292(5517):716-719. https://doi.org/10.1126/science.1010580
    Wei, W. B., Jin, S., Ye, G. F., et al., 2007. Features of Faults in the Central and Northern Tibetan Plateau Based on Results of Indepth (Ⅲ)-MT. Frontiers of Earth Science in China, 1(1):121-128. https://doi.org/10.1007/s11707-007-0016-3
    Yang, J. S., Xu, Z. Q., Zhang, J. X., et al., 2002. Early Palaeozoic North Qaidam UHP Metamorphic Belt on the North-Eastern Tibetan Plateau and a Paired Subduction Model. Terra Nova, 14(5):397-404. https://doi.org/10.1046/j.1365-3121.2002.00438.x
    Yang, X. Z., Keppler, H., McCammon, C., et al., 2011. Effect of Water on the Electrical Conductivity of Lower Crustal Clinopyroxene. Journal of Geophysical Research, 116(B4):B04208. https://doi.org/10.1029/2010jb008010
    Yoshino, T., Noritake, F., 2011. Unstable Graphite Films on Grain Boundaries in Crustal Rocks. Earth and Planetary Science Letters, 306(3/4):186-192. https://doi.org/10.1016/j.epsl.2011.04.003
    Yoshino, T., Gruber, B., Reinier, C., 2018. Effects of Pressure and Water on Electrical Conductivity of Carbonate Melt with Implications for Conductivity Anomaly in Continental Mantle Lithosphere. Physics of the Earth and Planetary Interiors, 281:8-16. https://doi.org/10.1016/j.pepi.2018.05.003
    Zhang, H., Zhao, D. P., Zhao, J. M., et al., 2015. Tomographic Imaging of the Underthrusting Indian Slab and Mantle Upwelling beneath Central Tibet. Gondwana Research, 28(1):121-132. https://doi.org/10.1016/j.gr.2014.02.012
    Zhou, W. G., Fan, D. W., Liu, Y. G., et al., 2011. Measurements of Wave Velocity and Electrical Conductivity of an Amphibolite from Southwestern Margin of the Tarim Basin at Pressures to 1.0 GPa and Temperatures to 700℃:Comparison with Field Observations. Geophysical Journal International, 187(3):1393-1404. https://doi.org/10.1111/j.1365-246x.2011.05220.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(594) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return