Ahmed, A., Arai, S., 2002. Unexpectedly High-PGE Chromitite from the Deeper Mantle Section of the Northern Oman Ophiolite and Its Tectonic Implications. Contributions to Mineralogy and Petrology, 143(3):263-278. https://doi.org/10.1007/s00410-002-0347-8 |
Arai, S., 1997. Origin of Podiform Chromitites. Journal of Asian Earth Sciences, 15(2/3):303-310. https://doi.org/10.1016/S0743-9547(97)00015-9 |
Arai, S., Matsukage, K., 1998. Petrology of a Chromitite Micropod from Hess Deep, Equatorial Pacific:A Comparison between Abyssal and Alpine-Type Podiform Chromitites. Lithos, 43(1):1-14. https://doi.org/10.1016/s0024-4937(98)00003-6 |
Arai, S., Miura, M., 2016. Formation and Modification of Chromitites in the Mantle. Lithos, 264:277-295. https://doi.org/10.1016/j.lithos.2016.08.039 |
Arai, S., Yurimoto, H., 1994. Podiform Chromitites of the Tari-Misaka Ultramafic Complex, Southwestern Japan, as Mantle-Melt Interaction Products. Economic Geology, 89(6):1279-1288. https://doi.org/10.2113/gsecongeo.89.6.1279 |
Bonavia, F. F., Diella, V., Ferrario, A., 1993. Precambrian Podiform Chromitites from Kenticha Hill, Southern Ethiopia. Economic Geology, 88(1):198-202. https://doi.org/10.2113/gsecongeo.88.1.198 |
Dickey, J. S., 1975. A Hypothesis of Origin for Podiform Chromite Deposits. Geochimica et Cosmochimica Acta, 39(6):1061-1074. https://doi.org/10.1016/0016-7037(75)90047-2 |
Edwards, S. J., Pearce, J. A., Freeman, J., 2000. New Insights Concerning the Influence of Water during the Formation of Podiform Chromitite. Special Papers-Geololgical Society of America, 139-148 |
Gaetani, G. A., Grove, T. L., Bryan, W. B., 1994. Experimental Phase Relations of Basaltic Andesite from Hole 839B under Hydrous and Anhydrous Conditions. In Proceedings of the Ocean Drilling Program, Scientific Results, 135:557-563 http://ci.nii.ac.jp/naid/10020147122 |
Gervilla, F., Proenza, J. A., Frei, R., et al., 2005. Distribution of Platinum-Group Elements and Os Isotopes in Chromite Ores from Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contributions to Mineralogy and Petrology, 150(6):589-607. https://doi.org/10.1007/s00410-005-0039-2 |
González-Jiménez, J. M., Proenza, J. A., Gervilla, F., et al., 2011. High-Cr and High-Al Chromitites from the Sagua de Tánamo District, Mayarí-Cristal Ophiolitic Massif (Eastern Cuba):Constraints on Their Origin from Mineralogy and Geochemistry of Chromian Spinel and Platinum-Group Elements. Lithos, 125(1/2):101-121. https://doi.org/10.1016/j.lithos.2011.01.016 |
Graham, I. T., Franklin, B. J., Marshall, B., 1996. Chemistry and Mineralogy of Podiform Chromitite Deposits, Southern NSW, Australia:A Guide to Their Origin and Evolution. Mineralogy and Petrology, 57(3/4):129-150. https://doi.org/10.1007/bf01162355 |
Griffin, W. L., Afonso, J. C., Belousova, E. A., et al., 2016. Mantle Recycling:Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and Its Tectonic Implications. Journal of Petrology, 57(4):655-684. https://doi.org/10.1093/petrology/egw011 |
Hock, M., Friedrich, G., Plüger, W. L., et al., 1986. Refractory-and Metallurgical-Type Chromite Ores, Zambales Ophiolite, Luzon, Philippines. Mineralium Deposita, 21(3):190-199. https://doi.org/10.1007/bf00199799 |
Johan, Z., Martin, R. F., Ettler, V., 2017. Fluids are Bound to be Involved in the Formation of Ophiolitic Chromite Deposits. European Journal of Mineralogy, 29(4):543-555. https://doi.org/10.1127/ejm/2017/0029-2648 |
Leblanc, M., 1997. Chromitite and Ultramafic Rock Compositional Zoning through a Paleotransform Fault, Poum, New Caledonia:Reply. Economic Geology, 92(4):503-504. https://doi.org/10.2113/gsecongeo.92.4.503 |
Leblanc, M., Violette, J. F., 1983. Distribution of Aluminum-Rich and Chromium-Rich Chromite Pods in Ophiolite Peridotites. Economic Geology, 78(2):293-301. https://doi.org/10.2113/gsecongeo.78.2.293 |
Matveev, S., Ballhaus, C., 2002. Role of Water in the Origin of Podiform Chromitite Deposits. Earth and Planetary Science Letters, 203(1):235-243. https://doi.org/10.1016/s0012-821x(02)00860-9 |
Melcher, F., Grum, W., Simon, G., et al., 1997. Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai, Kazakhstan:A Study of Solid and Fluid Inclusions in Chromite. Journal of Petrology, 38(10):1419-1458. https://doi.org/10.1093/petroj/38.10.1419 |
Moghadam, H. S., Zaki Khedr, M., Arai, S., et al., 2015. Arc-Related Harzburgite-Dunite-Chromitite Complexes in the Mantle Section of the Sabzevar Ophiolite, Iran:A Model for Formation of Podiform Chromitites. Gondwana Research, 27(2):575-593. https://doi.org/10.1016/j.gr.2013.09.007 |
Morishita, T., Dilek, Y., Shallo, M., et al., 2011. Insight into the Uppermost Mantle Section of a Maturing Arc:The Eastern Mirdita Ophiolite, Albania. Lithos, 124(3/4):215-226. https://doi.org/10.1016/j.lithos.2010.10.003 |
Nicolas, A., Al-Azri, H., 1991. Chromite-Rich and Chromite-Poor Ophiolites: The Oman Case. In Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Springer, Dordrecht. 261-274. https://doi.org/10.1007/978-94-011-3358-6_14 |
Payot, B. D., Arai, S., Tamayo, R. A. Jr, et al., 2013. Textural Evidence for the Chromite-Oversaturated Character of the Melt Involved in Podiform Chromitite Formation. Resource Geology, 63(3):313-319. https://doi.org/10.1111/rge.12011 |
Proenza, J. A., Zaccarini, F., Escayola, M., et al., 2008. Composition and Textures of Chromite and Platinum-Group Minerals in Chromitites of the Western Ophiolitic Belt from Pampean Ranges of Córdoba, Argentina. Ore Geology Reviews, 33(1):32-48. https://doi.org/10.1016/j.oregeorev.2006.05.009 |
Proenza, J., Gervilla, F., Melgarejo, J., et al., 1999. Al- and Cr-Rich Chromitites from the Mayari-Baracoa Ophiolitic Belt (Eastern Cuba); Consequence of Interaction between Volatile-Rich Melts and Peridotites in Suprasubduction Mantle. Economic Geology, 94(4):547-566. https://doi.org/10.2113/gsecongeo.94.4.547 |
Robinson, P.., Trumbull, R. B., Schmitt, A., et al., 2015. The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites. Gondwana Research, 27:486-506. https://doi.org/10.1016/j.gr.2014.06.003 |
Rollinson, H., 2008. The Geochemistry of Mantle Chromitites from the Northern Part of the Oman Ophiolite:Inferred Parental Melt Compositions. Contributions to Mineralogy and Petrology, 156(3):273-288. https://doi.org/10.1007/s00410-008-0284-2 |
Rollinson, H., Adetunji, J., 2013. Mantle Podiform Chromitites do not Form beneath Mid-Ocean Ridges:A Case Study from the Moho Transition Zone of the Oman Ophiolite. Lithos, 177:314-327. https://doi.org/10.1016/j.lithos.2013.07.004 |
Rui, H. C., Jiao, J. G., Xia, M. Z., et al., 2019. Origin of Chromitites in the Songshugou Peridotite Massif, Qinling Orogen (Central China):Mineralogical and Geochemical Evidence. Journal of Earth Science, 30(3):476-493. https://doi.org/10.1007/s12583-019-1227-8 |
Schiano, P., Clocchiatti, R., Lorand, J. P., et al., 1997. Primitive Basaltic Melts Included in Podiform Chromites from the Oman Ophiolite. Earth and Planetary Science Letters, 146(3/4):489-497. https://doi.org/10.1016/s0012-821x(96)00254-3 |
Shi, R. D., Alard, O., Zhi, X. C., et al., 2007. Multiple Events in the Neo-Tethyan Oceanic Upper Mantle:Evidence from Ru-Os-Ir Alloys in the Luobusa and Dongqiao Ophiolitic Podiform Chromitites, Tibet. Earth and Planetary Science Letters, 261(1/2):33-48. https://doi.org/10.1016/j.epsl.2007.05.044 |
Shi, R. D., Griffin, W. L., O'Reilly, S. Y., et al., 2012. Melt/mantle Mixing Produces Podiform Chromite Deposits in Ophiolites:Implications of Re-Os Systematics in the Dongqiao Neo-Tethyan Ophiolite, Northern Tibet. Gondwana Research, 21(1):194-206. https://doi.org/10.1016/j.gr.2011.05.011 |
Thayer, T. P., 1964. Principal Features and Origin of Podiform Chromite Deposits, and Some Observations on the Guelman-Soridag District, Turkey. Economic Geology, 59(8):1497-1524. https://doi.org/10.2113/gsecongeo.59.8.1497 |
Uysal, İ., Tarkian, M., Sadiklar, M. B., et al., 2009. Petrology of Al- and Cr-Rich Ophiolitic Chromitites from the Muğla, SW Turkey:Implications from Composition of Chromite, Solid Inclusions of Platinum-Group Mineral, Silicate, and Base-Metal Mineral, and Os-Isotope Geochemistry. Contributions to Mineralogy and Petrology, 158(5):659-674. https://doi.org/10.1007/s00410-009-0402-9 |
Wang, C., Jin, Z. M., Gao, S., et al., 2010. Eclogite-Melt/Peridotite Reaction:Experimental Constrains on the Destruction Mechanism of the North China Craton. Science China Earth Sciences, 53(6):797-809. https://doi.org/10.1007/s11430-010-3084-2 |
Xiong, F. H., Yang, J. S., Dilek, Y., et al., 2018. Origin and Significance of Diamonds and other Exotic Minerals in the Dingqing Ophiolite Peridotites, Eastern Bangong-Nujiang Suture Zone, Tibet. Lithosphere, 10(1):142-155. https://doi.org/10.1130/l607.1 |
Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2015. Origin of Podiform Chromitite, a New Model Based on the Luobusa Ophiolite, Tibet. Gondwana Research, 27(2):525-542. https://doi.org/10.1016/j.gr.2014.04.008 |
Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2017a. High-Al and High-Cr Podiform Chromitites from the Western Yarlung-Zangbo Suture Zone, Tibet:Implications from Mineralogy and Geochemistry of Chromian Spinel, and Platinum-Group Elements. Ore Geology Reviews, 80:1020-1041. https://doi.org/10.1016/j.oregeorev.2016.09.009 |
Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2017b. Petrology and Geochemistry of Peridotites and Podiform Chromitite in the Xigaze Ophiolite, Tibet:Implications for a Suprasubduction Zone Origin. Journal of Asian Earth Sciences, 146:56-75. https://doi.org/10.1016/j.jseaes.2017.05.001 |
Xiong, Q., Henry, H., Griffin, W. L., et al., 2017. High- and Low-Cr Chromitite and Dunite in a Tibetan Ophiolite:Evolution from Mature Subduction System to Incipient Forearc in the Neo-Tethyan Ocean. Contributions to Mineralogy and Petrology, 172(6):45. https://doi.org/10.1007/s00410-017-1364-y |
Zaccarini, F., Garuti, G., Proenza, J. A., et al., 2011. Chromite and Platinum Group Elements Mineralization in the Santa Elena Ultramafic Nappe (Costa Rica):Geodynamic Implications. Geologica Acta:An International Earth Science Journal, 9(3/4):407-423 https://dialnet.unirioja.es/servlet/articulo?codigo=3750361 |
Zhou, M. F., Robinson, P. T., 1997. Origin and Tectonic Environment of Podiform Chromite Deposits. Economic Geology, 92(2):259-262. https://doi.org/10.2113/gsecongeo.92.2.259 |
Zhou, M. F., Robinson, P. T., Malpas, J., et al., 1996. Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet):Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 37(1):3-21. https://doi.org/10.1093/petrology/37.1.3 |
Zhou, M. F., Robinson, P. T., Su, B. X., et al., 2014. Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits:The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments. Gondwana Research, 26(1):262-283. https://doi.org/10.1016/j.gr.2013.12.011 |
Zhou, M. F., Sun, M., Keays, R. R., et al., 1998. Controls on Platinum-Group Elemental Distributions of Podiform Chromitites:A Case Study of High-Cr and High-Al Chromitites from Chinese Orogenic Belts. Geochimica et Cosmochimica Acta, 62(4):677-688. https://doi.org/10.1016/s0016-7037(97)00382-7 |