Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 4
Aug 2020
Turn off MathJax
Article Contents
Yage Zhao, Yanfei Zhang, Chao Wang, Zhenmin Jin, Qijin Xu. Experimental Constraints on Formation of Low-Cr# Chromitite: Effect of Variable H2O and Cr2O3 on Boninitic-Magma and Harzburgite Reactions. Journal of Earth Science, 2020, 31(4): 709-722. doi: 10.1007/s12583-020-1291-0
Citation: Yage Zhao, Yanfei Zhang, Chao Wang, Zhenmin Jin, Qijin Xu. Experimental Constraints on Formation of Low-Cr# Chromitite: Effect of Variable H2O and Cr2O3 on Boninitic-Magma and Harzburgite Reactions. Journal of Earth Science, 2020, 31(4): 709-722. doi: 10.1007/s12583-020-1291-0

Experimental Constraints on Formation of Low-Cr# Chromitite: Effect of Variable H2O and Cr2O3 on Boninitic-Magma and Harzburgite Reactions

doi: 10.1007/s12583-020-1291-0
More Information
  • Corresponding author: Yanfei Zhang, ORCID:/0000-0001-9874-0469, yanfzhang@126.com
  • Received Date: 16 Jan 2020
  • Accepted Date: 26 Mar 2020
  • Publish Date: 24 Aug 2020
  • Reactions between a boninitic or basaltic magma and harzburgite at shallow mantle depths are thought to be closely related to the formation of podiform chromitites, but little experimental data is available on these reactions. In this study, a series of experiments were conducted at 1.5 GPa and 1 000-1 400 oC to investigate the interactions between boninitic magma and harzburgite in homogenous mixed systems with varied bulk concentrations of water (~0.7 wt.%-10 wt.%) and Cr2O3 (~0.2 wt.%-4 wt.%). In the experimental charges, chromite grains can be observed coexisting with orthopyroxene, clinopyroxene±olivine, and quenched melt in the Cr-bearing systems. The bulk concentration of Cr2O3 in the starting material has a slight effect on compositional changes in the chromites generated. However, the Cr# (Cr#=100×Cr/(Cr+Al)) and Mg# (Mg#=100×Mg/(Mg+Fe)) values for the chromites exhibit positive and negative correlations, respectively, with the bulk H2O concentrations. At 1 100 oC, chromite Cr# values range from ~33-35 to ~58-65, and chromite Mg# values range from ~70-73 to~55-58 when bulk H2O contents in the starting material are increased from ~0.7 wt.% to ~10 wt.%. The experimentally produced chromites have compositions (as expressed by Cr#, Mg#, and NiO and MnO contents) similar to natural chromites from low-Cr# chromitite bodies. We suggest that the interactions between boninitic magmas with varied H2O contents and harzburgite in a shallow mantle wedge could be a possible mechanism that forms the low-Cr# chromitites found in ophiolites. We emphasize here that H2O may play an important role in the compositional evolutions of natural chromitites.

     

  • loading
  • Ahmed, A., Arai, S., 2002. Unexpectedly High-PGE Chromitite from the Deeper Mantle Section of the Northern Oman Ophiolite and Its Tectonic Implications. Contributions to Mineralogy and Petrology, 143(3):263-278. https://doi.org/10.1007/s00410-002-0347-8
    Arai, S., 1997. Origin of Podiform Chromitites. Journal of Asian Earth Sciences, 15(2/3):303-310. https://doi.org/10.1016/S0743-9547(97)00015-9
    Arai, S., Matsukage, K., 1998. Petrology of a Chromitite Micropod from Hess Deep, Equatorial Pacific:A Comparison between Abyssal and Alpine-Type Podiform Chromitites. Lithos, 43(1):1-14. https://doi.org/10.1016/s0024-4937(98)00003-6
    Arai, S., Miura, M., 2016. Formation and Modification of Chromitites in the Mantle. Lithos, 264:277-295. https://doi.org/10.1016/j.lithos.2016.08.039
    Arai, S., Yurimoto, H., 1994. Podiform Chromitites of the Tari-Misaka Ultramafic Complex, Southwestern Japan, as Mantle-Melt Interaction Products. Economic Geology, 89(6):1279-1288. https://doi.org/10.2113/gsecongeo.89.6.1279
    Bonavia, F. F., Diella, V., Ferrario, A., 1993. Precambrian Podiform Chromitites from Kenticha Hill, Southern Ethiopia. Economic Geology, 88(1):198-202. https://doi.org/10.2113/gsecongeo.88.1.198
    Dickey, J. S., 1975. A Hypothesis of Origin for Podiform Chromite Deposits. Geochimica et Cosmochimica Acta, 39(6):1061-1074. https://doi.org/10.1016/0016-7037(75)90047-2
    Edwards, S. J., Pearce, J. A., Freeman, J., 2000. New Insights Concerning the Influence of Water during the Formation of Podiform Chromitite. Special Papers-Geololgical Society of America, 139-148
    Gaetani, G. A., Grove, T. L., Bryan, W. B., 1994. Experimental Phase Relations of Basaltic Andesite from Hole 839B under Hydrous and Anhydrous Conditions. In Proceedings of the Ocean Drilling Program, Scientific Results, 135:557-563 http://ci.nii.ac.jp/naid/10020147122
    Gervilla, F., Proenza, J. A., Frei, R., et al., 2005. Distribution of Platinum-Group Elements and Os Isotopes in Chromite Ores from Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contributions to Mineralogy and Petrology, 150(6):589-607. https://doi.org/10.1007/s00410-005-0039-2
    González-Jiménez, J. M., Proenza, J. A., Gervilla, F., et al., 2011. High-Cr and High-Al Chromitites from the Sagua de Tánamo District, Mayarí-Cristal Ophiolitic Massif (Eastern Cuba):Constraints on Their Origin from Mineralogy and Geochemistry of Chromian Spinel and Platinum-Group Elements. Lithos, 125(1/2):101-121. https://doi.org/10.1016/j.lithos.2011.01.016
    Graham, I. T., Franklin, B. J., Marshall, B., 1996. Chemistry and Mineralogy of Podiform Chromitite Deposits, Southern NSW, Australia:A Guide to Their Origin and Evolution. Mineralogy and Petrology, 57(3/4):129-150. https://doi.org/10.1007/bf01162355
    Griffin, W. L., Afonso, J. C., Belousova, E. A., et al., 2016. Mantle Recycling:Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and Its Tectonic Implications. Journal of Petrology, 57(4):655-684. https://doi.org/10.1093/petrology/egw011
    Hock, M., Friedrich, G., Plüger, W. L., et al., 1986. Refractory-and Metallurgical-Type Chromite Ores, Zambales Ophiolite, Luzon, Philippines. Mineralium Deposita, 21(3):190-199. https://doi.org/10.1007/bf00199799
    Johan, Z., Martin, R. F., Ettler, V., 2017. Fluids are Bound to be Involved in the Formation of Ophiolitic Chromite Deposits. European Journal of Mineralogy, 29(4):543-555. https://doi.org/10.1127/ejm/2017/0029-2648
    Leblanc, M., 1997. Chromitite and Ultramafic Rock Compositional Zoning through a Paleotransform Fault, Poum, New Caledonia:Reply. Economic Geology, 92(4):503-504. https://doi.org/10.2113/gsecongeo.92.4.503
    Leblanc, M., Violette, J. F., 1983. Distribution of Aluminum-Rich and Chromium-Rich Chromite Pods in Ophiolite Peridotites. Economic Geology, 78(2):293-301. https://doi.org/10.2113/gsecongeo.78.2.293
    Matveev, S., Ballhaus, C., 2002. Role of Water in the Origin of Podiform Chromitite Deposits. Earth and Planetary Science Letters, 203(1):235-243. https://doi.org/10.1016/s0012-821x(02)00860-9
    Melcher, F., Grum, W., Simon, G., et al., 1997. Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai, Kazakhstan:A Study of Solid and Fluid Inclusions in Chromite. Journal of Petrology, 38(10):1419-1458. https://doi.org/10.1093/petroj/38.10.1419
    Moghadam, H. S., Zaki Khedr, M., Arai, S., et al., 2015. Arc-Related Harzburgite-Dunite-Chromitite Complexes in the Mantle Section of the Sabzevar Ophiolite, Iran:A Model for Formation of Podiform Chromitites. Gondwana Research, 27(2):575-593. https://doi.org/10.1016/j.gr.2013.09.007
    Morishita, T., Dilek, Y., Shallo, M., et al., 2011. Insight into the Uppermost Mantle Section of a Maturing Arc:The Eastern Mirdita Ophiolite, Albania. Lithos, 124(3/4):215-226. https://doi.org/10.1016/j.lithos.2010.10.003
    Nicolas, A., Al-Azri, H., 1991. Chromite-Rich and Chromite-Poor Ophiolites: The Oman Case. In Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Springer, Dordrecht. 261-274. https://doi.org/10.1007/978-94-011-3358-6_14
    Payot, B. D., Arai, S., Tamayo, R. A. Jr, et al., 2013. Textural Evidence for the Chromite-Oversaturated Character of the Melt Involved in Podiform Chromitite Formation. Resource Geology, 63(3):313-319. https://doi.org/10.1111/rge.12011
    Proenza, J. A., Zaccarini, F., Escayola, M., et al., 2008. Composition and Textures of Chromite and Platinum-Group Minerals in Chromitites of the Western Ophiolitic Belt from Pampean Ranges of Córdoba, Argentina. Ore Geology Reviews, 33(1):32-48. https://doi.org/10.1016/j.oregeorev.2006.05.009
    Proenza, J., Gervilla, F., Melgarejo, J., et al., 1999. Al- and Cr-Rich Chromitites from the Mayari-Baracoa Ophiolitic Belt (Eastern Cuba); Consequence of Interaction between Volatile-Rich Melts and Peridotites in Suprasubduction Mantle. Economic Geology, 94(4):547-566. https://doi.org/10.2113/gsecongeo.94.4.547
    Robinson, P.., Trumbull, R. B., Schmitt, A., et al., 2015. The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites. Gondwana Research, 27:486-506. https://doi.org/10.1016/j.gr.2014.06.003
    Rollinson, H., 2008. The Geochemistry of Mantle Chromitites from the Northern Part of the Oman Ophiolite:Inferred Parental Melt Compositions. Contributions to Mineralogy and Petrology, 156(3):273-288. https://doi.org/10.1007/s00410-008-0284-2
    Rollinson, H., Adetunji, J., 2013. Mantle Podiform Chromitites do not Form beneath Mid-Ocean Ridges:A Case Study from the Moho Transition Zone of the Oman Ophiolite. Lithos, 177:314-327. https://doi.org/10.1016/j.lithos.2013.07.004
    Rui, H. C., Jiao, J. G., Xia, M. Z., et al., 2019. Origin of Chromitites in the Songshugou Peridotite Massif, Qinling Orogen (Central China):Mineralogical and Geochemical Evidence. Journal of Earth Science, 30(3):476-493. https://doi.org/10.1007/s12583-019-1227-8
    Schiano, P., Clocchiatti, R., Lorand, J. P., et al., 1997. Primitive Basaltic Melts Included in Podiform Chromites from the Oman Ophiolite. Earth and Planetary Science Letters, 146(3/4):489-497. https://doi.org/10.1016/s0012-821x(96)00254-3
    Shi, R. D., Alard, O., Zhi, X. C., et al., 2007. Multiple Events in the Neo-Tethyan Oceanic Upper Mantle:Evidence from Ru-Os-Ir Alloys in the Luobusa and Dongqiao Ophiolitic Podiform Chromitites, Tibet. Earth and Planetary Science Letters, 261(1/2):33-48. https://doi.org/10.1016/j.epsl.2007.05.044
    Shi, R. D., Griffin, W. L., O'Reilly, S. Y., et al., 2012. Melt/mantle Mixing Produces Podiform Chromite Deposits in Ophiolites:Implications of Re-Os Systematics in the Dongqiao Neo-Tethyan Ophiolite, Northern Tibet. Gondwana Research, 21(1):194-206. https://doi.org/10.1016/j.gr.2011.05.011
    Thayer, T. P., 1964. Principal Features and Origin of Podiform Chromite Deposits, and Some Observations on the Guelman-Soridag District, Turkey. Economic Geology, 59(8):1497-1524. https://doi.org/10.2113/gsecongeo.59.8.1497
    Uysal, İ., Tarkian, M., Sadiklar, M. B., et al., 2009. Petrology of Al- and Cr-Rich Ophiolitic Chromitites from the Muğla, SW Turkey:Implications from Composition of Chromite, Solid Inclusions of Platinum-Group Mineral, Silicate, and Base-Metal Mineral, and Os-Isotope Geochemistry. Contributions to Mineralogy and Petrology, 158(5):659-674. https://doi.org/10.1007/s00410-009-0402-9
    Wang, C., Jin, Z. M., Gao, S., et al., 2010. Eclogite-Melt/Peridotite Reaction:Experimental Constrains on the Destruction Mechanism of the North China Craton. Science China Earth Sciences, 53(6):797-809. https://doi.org/10.1007/s11430-010-3084-2
    Xiong, F. H., Yang, J. S., Dilek, Y., et al., 2018. Origin and Significance of Diamonds and other Exotic Minerals in the Dingqing Ophiolite Peridotites, Eastern Bangong-Nujiang Suture Zone, Tibet. Lithosphere, 10(1):142-155. https://doi.org/10.1130/l607.1
    Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2015. Origin of Podiform Chromitite, a New Model Based on the Luobusa Ophiolite, Tibet. Gondwana Research, 27(2):525-542. https://doi.org/10.1016/j.gr.2014.04.008
    Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2017a. High-Al and High-Cr Podiform Chromitites from the Western Yarlung-Zangbo Suture Zone, Tibet:Implications from Mineralogy and Geochemistry of Chromian Spinel, and Platinum-Group Elements. Ore Geology Reviews, 80:1020-1041. https://doi.org/10.1016/j.oregeorev.2016.09.009
    Xiong, F. H., Yang, J. S., Robinson, P. T., et al., 2017b. Petrology and Geochemistry of Peridotites and Podiform Chromitite in the Xigaze Ophiolite, Tibet:Implications for a Suprasubduction Zone Origin. Journal of Asian Earth Sciences, 146:56-75. https://doi.org/10.1016/j.jseaes.2017.05.001
    Xiong, Q., Henry, H., Griffin, W. L., et al., 2017. High- and Low-Cr Chromitite and Dunite in a Tibetan Ophiolite:Evolution from Mature Subduction System to Incipient Forearc in the Neo-Tethyan Ocean. Contributions to Mineralogy and Petrology, 172(6):45. https://doi.org/10.1007/s00410-017-1364-y
    Zaccarini, F., Garuti, G., Proenza, J. A., et al., 2011. Chromite and Platinum Group Elements Mineralization in the Santa Elena Ultramafic Nappe (Costa Rica):Geodynamic Implications. Geologica Acta:An International Earth Science Journal, 9(3/4):407-423 https://dialnet.unirioja.es/servlet/articulo?codigo=3750361
    Zhou, M. F., Robinson, P. T., 1997. Origin and Tectonic Environment of Podiform Chromite Deposits. Economic Geology, 92(2):259-262. https://doi.org/10.2113/gsecongeo.92.2.259
    Zhou, M. F., Robinson, P. T., Malpas, J., et al., 1996. Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet):Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. Journal of Petrology, 37(1):3-21. https://doi.org/10.1093/petrology/37.1.3
    Zhou, M. F., Robinson, P. T., Su, B. X., et al., 2014. Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits:The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments. Gondwana Research, 26(1):262-283. https://doi.org/10.1016/j.gr.2013.12.011
    Zhou, M. F., Sun, M., Keays, R. R., et al., 1998. Controls on Platinum-Group Elemental Distributions of Podiform Chromitites:A Case Study of High-Cr and High-Al Chromitites from Chinese Orogenic Belts. Geochimica et Cosmochimica Acta, 62(4):677-688. https://doi.org/10.1016/s0016-7037(97)00382-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views(383) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return