Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 41 Issue 4
Aug.  2020
Turn off MathJax
Article Contents

Zhiguang Zhou, Jiangwei Wu, Yi Niu, Guosheng Wang, Chen Wu, Changfeng Liu, Juncheng Ju. Geochemistry of the Mesoproterozoic Intrusions, Geochronology and Isotopic Constraints on the Xiaonanshan Cu-Ni Deposit along the Northern Margin of the North China Craton. Journal of Earth Science, 2020, 31(4): 653-667. doi: 10.1007/s12583-020-1296-8
Citation: Zhiguang Zhou, Jiangwei Wu, Yi Niu, Guosheng Wang, Chen Wu, Changfeng Liu, Juncheng Ju. Geochemistry of the Mesoproterozoic Intrusions, Geochronology and Isotopic Constraints on the Xiaonanshan Cu-Ni Deposit along the Northern Margin of the North China Craton. Journal of Earth Science, 2020, 31(4): 653-667. doi: 10.1007/s12583-020-1296-8

Geochemistry of the Mesoproterozoic Intrusions, Geochronology and Isotopic Constraints on the Xiaonanshan Cu-Ni Deposit along the Northern Margin of the North China Craton

doi: 10.1007/s12583-020-1296-8
More Information
  • Mesoproterozoic magma events in the Bayan Obo rift belt have remained poorly constrained and as a result, the Late Paleoproterozoic-Mesoproterozoic tectonic evolution of the rift belt has remained unclear. By a multiple-facetted regional geological investigation of this belt, we have resolved the stratigraphic sequence and geochronology of the Bayan Obo Group and made new discoveries including a three-stage mantle-derived magmatic sequence. Zircon and baddeleyite dating of Xiaonanshan hornblende pyroxenite emplaced into the Bayan Obo Group yields 207Pb/206Pb ages of ca. 1.34 and 1.33 Ga. The geochronological, geochemistry, Hf isotopic analyses place an important constraint on ages of the Late Paleoproterozoic-Mesoproterozoic strata and the evolution of the rift belt. Our field observations and U-Pb dating results suggest that mineralization is genetically related to Mesoproterozoic magmatism in North China Craton, i.e., 1.33-1.34 Ga. The δ34SV-CDT values of sulphide from the ore-bearing ultra-/mafic samples are about 6.2‰, whereas the 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values vary in the ranges of 17.598-18.115, 15.496-15.501, and 37.478-37.952, respectively. The Late Paleozoic mafic gabbro and acidic granite porphyry intrusions are possible to bimodal magmatic event related to the extensional tectonic setting of the Central Asia in this period.
  • 加载中
  • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x doi:  10.1016/s0009-2541(02)00195-x
    Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies, In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, Netherlands. 63-114
    Dang, Z. C., Li, J. J., Fu C., et al., 2019. LA-ICP-MS Zircon U-Pb Dating of Mafic-Ultramafic Intrusions in the Central Inner Mongolia and Its Geological Significance. Geotectonica et Metallogenia, 43 (2):303-321 (in Chinese with English Abstract)
    Dang, Z. C., Li, J. J., Zhao, Z. L., et al., 2015. Geochemistry of Cu-Ni (PGE) Sulfide-Bearing Mafic-Ultramafic Rocks on the Middle Segment of the North China Plate, Northwestern Geology; 48(2):73-83 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-XBDI201502007.htm
    Dulski, P., 1994. Interferences of Oxide, Hydroxide and Chloride Analyte Species in the Determination of Rare Earth Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry. Fresenius' Journal of Analytical Chemistry, 350(4/5):194-203. https://doi.org/10.1007/bf00322470 doi:  10.1007/bf00322470
    Ernst, R. E., Hamilton, M. A., Söderlund, U., et al., 2016. Long-Lived Connection between Southern Siberia and Northern Laurentia in the Proterozoic. Nature Geoscience, 9(6):464-469. https://doi.org/10.1038/ngeo2700 doi:  10.1038/ngeo2700
    Ernst, R. E., Wingate, M. T. D., Buchan, K. L., et al., 2008. Global Record of 1 600-700 Ma Large Igneous Provinces (LIPs):Implications for the Reconstruction of the Proposed Nuna (Columbia) and Rodinia Supercontinents. Precambrian Research, 160(1/2):159-178. https://doi.org/10.1016/j.precamres.2007.04.019 doi:  10.1016/j.precamres.2007.04.019
    Evans, D. A. D., 2013. Reconstructing Pre-Pangean Supercontinents. Geological Society of America Bulletin, 125(11/12):1735-1751. https://doi.org/10.1130/b30950.1 doi:  10.1130/b30950.1
    Goldberg, A. S., 2010. Dyke Swarms as Indicators of Major Extensional Events in the 1.9-1.2 Ga Columbia Supercontinent. Journal of Geodynamics, 50(3/4):176-190. https://doi.org/10.1016/j.jog. 2010.01.017 doi:  10.1016/j.jog.2010.01.017
    Griffin, W. L., Belousova, E. A., Shee, S. R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3/4):231-282. https://doi.org/10.1016/j.precamres.2003.12.011 doi:  10.1016/j.precamres.2003.12.011
    Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 doi:  10.1016/s0016-7037(99)00343-9
    Hanson, R. E., 2004. Coeval Large-Scale Magmatism in the Kalahari and Laurentian Cratons during Rodinia Assembly. Science, 304(5674):1126-1129. https://doi.org/10.1126/science.1096329 doi:  10.1126/science.1096329
    He, Y., Zhao, G., Sun, M., et al., 2009. SHRIMP and LA-ICP-MS Zircon Geochronology of the Xiong'er Volcanic Rocks:Implications for the Paleo-Mesoproterozoic Evolution of the Southern Margin of the North China Craton. Precambrian Research, 168(3/4):213-222. https://doi.org/10.1016/j.precamres.2008.09.011 doi:  10.1016/j.precamres.2008.09.011
    Hoffman, P. F., 1991. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out?. Science, 252(5011):1409-1412. https://doi.org/10.1126/science.252.5011.1409 doi:  10.1126/science.252.5011.1409
    Hoffman, P. F., 1997. Tectonic Genealogy of North America. In: van Der Pluijm, B. A., Marshak, S., eds., Earth Structure: An Introduction to Structural Geology and Tectonics. McGraw-Hill, New York. 459-464
    Hou, G. T., Santosh, M., Qian, X. L., et al., 2008. Tectonic Constraints on 1.3~1.2 Ga Final Breakup of Columbia Supercontinent from a Giant Radiating Dyke Swarm. Gondwana Research, 14(3):561-566. https://doi.org/10.1016/j.gr.2008.03.005 doi:  10.1016/j.gr.2008.03.005
    Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Application. Acta Petrologica Sinica, 23:2595-2604 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710026.htm
    Jia, H. Y., Xu, L. Q., Zhang, Y. Q., 2002. Features and Regional Correlation on Two-Main Unconformity Interfaces in Baiyunebo Group, Inner Mongolia. Inner Mongolia Geology, 2:5-10. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-NMGZ200202002.htm
    Jiang, S. H., Nie, F. J., Liu, Y., et al., 2003. Geochemical Features and Origin of the Gabbro in the Xiaonanshan Pt-Cu-Ni Deposit, Inner Mongolia. Acta Geoscientia Sinica, 4:121-126 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB200302004.htm
    Kaur, P., Chaudhri, N., 2014. Metallogeny Associated with the Palaeo-Mesoproterozoic Columbia Supercontinent Cycle:A Synthesis of Major Metallic Deposits. Ore Geology Reviews, 56:415-422. https://doi.org/10.1016/j.oregeorev.2013.03.005 doi:  10.1016/j.oregeorev.2013.03.005
    Kröner, A., Wilde, S. A., Zhao, G. C., et al., 2006. Zircon Geochronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China:Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton. Precambrian Research, 146(1/2):45-67. https://doi.org/10.1016/j.precamres.2006.01.008 doi:  10.1016/j.precamres.2006.01.008
    Kusky, T. M., Li, J. H., 2010. Origin and Emplacement of Archean Ophiolites of the Central Orogenic Belt, North China Craton. Journal of Earth Science, 21(5):744-781. https://doi.org/10.1007/s12583-010-0119-8 doi:  10.1007/s12583-010-0119-8
    Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis:A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162:387-432. https://doi.org/10.1016/j.earscirev.2016.09.002 doi:  10.1016/j.earscirev.2016.09.002
    Kusky, T. M., Windley, B. F., Polat, A., 2018. Geological Evidence for the Operation of Plate Tectonics Throughout the Archean:Records from Archean Paleo-Plate Boundaries. Journal of Earth Science, 29(6):1291-1303. https://doi.org/10.1007/s12583-018-0999-6 doi:  10.1007/s12583-018-0999-6
    Le Maitre, R. W. B., Dudek, P., Keller, A., et al., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks (No. 552.3 CLA): International Union of Geological Sciences. Blackwell, Oxford. 193
    Li, H. K., Geng, J. Z., Hao, S., et al., 2009a. The Study of Zircon U-Pb Dating by Means LA-MC-ICPMS. Bulletin of Mineralogy, Petrology and Geochemistry, 28:77 (in Chinese)
    Li, H. K., Lu, S. N., Li, H. M., et al., 2009b. Zircon and Baddeleyite U-Pb Precision Dating of Basic Rock Sills Intruding Xiamaling Formation, North China. Geological Bulletin of China, 28:1396-1404 (in Chinese with English Abstract)
    Li, H. K., Lu, S. N., Su, W. B., et al., 2013. Recent Advances in the Study of the Mesoproterozoic Geochronology in the North China Craton. Journal of Asian Earth Sciences, 72:216-227. https://doi.org/10.1016/j.jseaes.2013.02.020 doi:  10.1016/j.jseaes.2013.02.020
    Liu, C. F., Zhang, H. R., Yu, Y. S., et al., 2010. Dating and Petrochemistry of the Beijige Pluton in Siziwangqi, Inner Mongolia. Geoscience, 24(1):112-119 (in Chinese with English Abstract)
    Liu, C. H., Liu, F. L., 2015. The Mesoproterozoic Rifting in the North China Craton:A Case Study for Magmatism and Sedimentation of the Zhaertai-Bayan Obo-Huade Rift Zone. Acta Geological Sinica, 31:317-3128 (in Chinese with English Abstract) http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201510013.htm
    Liu, C. H., Zhao, G. C., Liu, F. L., 2014. Detrital Zircon U-Pb, Hf Isotopes, Detrital Rutile and Whole-Rock Geochemistry of the Huade Group on the Northern Margin of the North China Craton:Implications on the Breakup of the Columbia Supercontinent. Precambrian Research, 254:290-305. https://doi.org/10.1016/j.precamres.2014.09.011 doi:  10.1016/j.precamres.2014.09.011
    Liu, C. H., Zhao, G. C., Liu, F. L., et al., 2017. Detrital Zircon U-Pb and Hf Isotopic and Whole-Rock Geochemical Study of the Bayan Obo Group, Northern Margin of the North China Craton:Implications for Rodinia Reconstruction. Precambrian Research, 303:372-391. https://doi.org/10.1016/j.precamres.2017.04.033 doi:  10.1016/j.precamres.2017.04.033
    Lu, S. N., Hao, G. J., Xiang, Z. Q., 2016. Precambrian Major Geological Events. Earth Science Frontiers, 23(6):140-155 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201606018.htm
    Lu, S. N., Yang, C. L., Li, H. K., et al., 2002. North China Continent and Columbia Supercontinent. Earth Science Frontier, 9(4):225-233 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200204001.htm
    Lu, S. N., Zhao, G. C., Wang, H. C., et al., 2008. Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton:A Review. Precambrian Research, 160(1/2):77-93. https://doi.org/10.1016/j.precamres. 2007.04.017 doi:  10.1016/j.precamres.2007.04.017
    Ludwig, K. R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 4A, Berkeley, California. 70
    Meert, J. G., 2014. Strange Attractors, Spiritual Interlopers and Lonely Wanderers:The Search for Pre-Pangean Supercontinents. Geoscience Frontiers, 5(2):155-166. https://doi.org/10.1016/j.gsf.2013.12.001 doi:  10.1016/j.gsf.2013.12.001
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/igneous Rock System. Earth-Science Reviews, 37(3/4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 doi:  10.1016/0012-8252(94)90029-9
    Ning, W. B., Wang, J. P., Xiao, D., et al., 2019. Electron Probe Microanalysis of Monazite and Its Applications to U-Th-Pb Dating of Geological Samples. Journal of Earth Science, 30(5):952-963. https://doi.org/10.1007/s12583-019-1020-8 doi:  10.1007/s12583-019-1020-8
    Norrish, K., Chappel, B. W., 1977. X-Ray Fluorescence Spectrometry. In: Zussman, J., ed., Physical Methods in Determinative Mineralogy (2nd Ed.). Academic Press, New York. 201-272
    Ohmoto, H., Goldhaber, M. B., 1997. Sulfur and Carbon Isotopes. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits (3rd Ed.). John Wiley & Sons Inc., New York. 517-611
    Ohmoto, H., Rye, R. O., 1979. Isotopes of Sulfur and Carbon, in Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits (2nd Ed.). John Wiley & Sons Inc., New York. 509-567
    Peng, R. M., Zhai, Y. S., Wang, J. P., et al., 2010. Discovery of Neoproterozoic Acid Volcanic Rock in the Western Section of Langshan, Inner Mongolia, and Its Geological Significance. Chinese Science Bulletin (Chinese Version) 55:2611-2620 (in Chinese) doi:  10.1360/972010-266
    Piper, J. D. A., 2013. Continental Velocity through Precambrian Times:The Link to Magmatism, Crustal Accretion and Episodes of Global Cooling. Geoscience Frontiers, 4(1):7-36. https://doi.org/10.1016/j.gsf. 2012.05.008 doi:  10.1016/j.gsf.2012.05.008
    Pisarevsky, S. A., Elming, S. Å., Pesonen, L. J., et al., 2014. Mesoproterozoic Paleogeography:Supercontinent and Beyond. Precambrian Research, 244:207-225. https://doi.org/10.1016/j.precamres. 2013.05.014 doi:  10.1016/j.precamres.2013.05.014
    Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4):247-263. https://doi.org/10.1016/0024-4937(89)90028-5 doi:  10.1016/0024-4937(89)90028-5
    Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5(1):5-22. https://doi.org/10.1016/s1342-937x(05)70883-2 doi:  10.1016/s1342-937x(05)70883-2
    Rogers, J. J. W., Santosh, M., 2009. Tectonics and Surface Effects of the Supercontinent Columbia. Gondwana Research, 15(3/4):373-380. https://doi.org/10.1016/j.gr.2008.06.008 doi:  10.1016/j.gr.2008.06.008
    Santosh, M., 2010. Assembling North China Craton within the Columbia Supercontinent:The Role of Double-Sided Subduction. Precambrian Research, 178(1/2/3/4):149-167. https://doi.org/10.1016/j.precamres.2010.02.003 doi:  10.1016/j.precamres.2010.02.003
    Santosh, M., Maruyama, S., Yamamoto, S., 2009. The Making and Breaking of Supercontinents:Some Speculations Based on Superplumes, Super Downwelling and the Role of Tectosphere. Gondwana Research, 15(3/4):324-341. https://doi.org/10.1016/j.gr.2008.11.004 doi:  10.1016/j.gr.2008.11.004
    Scherer, E., 2001. Calibration of the Lutetium-Hafnium Clock. Science, 293(5530):683-687. https://doi.org/10.1126/science.1061372 doi:  10.1126/science.1061372
    Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon-A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2):1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 doi:  10.1016/j.chemgeo.2007.11.005
    Sun, S. Q., Wang, Y. L., Zhang, C. J., 2003. Discrimination of the Tectonic Setting of Basalts by Th, Nb, Zr. Geological Review, 49(1):40-47 (in Chinese with English Abstract)
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi:  10.1144/gsl.sp.1989.042.01.19
    Upton, B., 2003. Magmatism of the Mid-Proterozoic Gardar Province, South Greenland:Chronology, Petrogenesis and Geological Setting. Lithos, 68(1/2):43-65. https://doi.org/10.1016/s0024-4937(03)00030-6 doi:  10.1016/s0024-4937(03)00030-6
    Wan, B., Windley, B. F., Xiao, W. J., et al., 2015. Paleoproterozoic High-Pressure Metamorphism in the Northern North China Craton and Implications for the Nuna Supercontinent. Nature Communications, 6(1):1-10. https://doi.org/10.1038/ncomms9344 doi:  10.1038/ncomms9344
    Wan, Y. S., Liu, D. Y., Wang, W., et al., 2011. Provenance of Meso-to Neoproterozoic Cover Sediments at the Ming Tombs, Beijing, North China Craton:An Integrated Study of U-Pb Dating and Hf Isotopic Measurement of Detrital Zircons and Whole-Rock Geochemistry. Gondwana Research, 20(1):219-242. https://doi.org/10.1016/j.gr.2011.02.009 doi:  10.1016/j.gr.2011.02.009
    Wan, Y. S., Liu, D., Xu, Z., et al., 2008. Paleoproterozoic Crustally Derived Carbonate-Rich Magmatic Rocks from the Daqinshan Area, North China Craton:Geological, Petrographical, Geochronological and Geochemical (Hf, Nd, O and C) Evidence. American Journal of Science, 308(3):351-378. https://doi.org/10.2475/03.2008.07 doi:  10.2475/03.2008.07
    Wan, Y. S., Xu, Z. Y., Dong, C. Y., et al., 2013. Episodic Paleoproterozoic (~2.45, ~1.95 and~1.85 Ga) Mafic Magmatism and Associated High Temperature Metamorphism in the Daqingshan Area, North China Craton:SHRIMP Zircon U-Pb Dating and Whole-Rock Geochemistry. Precambrian Research, 224:71-93. https://doi.org/10.1016/j.precamres.2012.09.014 doi:  10.1016/j.precamres.2012.09.014
    Wang, J. P., Kusky, T. M., Polat, A., et al., 2013. A Late Archean Tectonic Mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 608:929-946. https://doi.org/10.1016/j.tecto.2013.07.025 doi:  10.1016/j.tecto.2013.07.025
    Wang, J. P., Kusky, T. M., Wang, L., et al., 2015. A Neoarchean Subduction Polarity Reversal Event in the North China Craton. Lithos, 220-223:133-146. https://doi.org/10.1016/j.lithos.2015.01.029 doi:  10.1016/j.lithos.2015.01.029
    Wang, J. P., Kusky, T., Wang, L., et al., 2017. Structural Relationships along a Neoarchean Arc-Continent Collision Zone, North China Craton. Geological Society of America Bulletin, 129(1/2):59-75. https://doi.org/10.1130/b31479.1 doi:  10.1130/b31479.1
    Wang, J. P., Li, X. W., Ning, W. B., et al., 2019. Geology of a Neoarchean Suture:Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin, 131(11/12):1943-1964. https://doi.org/10.1130/b35138.1 doi:  10.1130/b35138.1
    Wang, S. J., Li, X. P., Schertl, H. P., et al., 2019. Petrogenesis of Early Cretaceous Andesite Dykes in the Sulu Orogenic Belt, Eastern China. Mineralogy and Petrology, 113(1):77-97. https://doi.org/10.1007/s00710-018-0636-1 doi:  10.1007/s00710-018-0636-1
    Wang, S. J., Schertl, H. P., Pang, Y. M., 2020. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences, 57(2):249-266. https://doi.org/10.1139/cjes-2019-0003 doi:  10.1139/cjes-2019-0003
    Wang, W., Liu, S. W., Santosh, M., et al., 2015. 1.23 Ga Mafic Dykes in the North China Craton and Their Implications for the Reconstruction of the Columbia Supercontinent. Gondwana Research, 27(4):1407-1418. https://doi.org/10.1016/j.gr.2014.02.002 doi:  10.1016/j.gr.2014.02.002
    Wang, Y. L., Zhang, C. J., Xin, S. Z., 2001. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrologica Sinica, 17(3):413-421 (in Chinese with English Abstract)
    Wingate, M. T. D., Compston, W., 2000. Crystal Orientation Effects during Ion Microprobe U-Pb Analysis of Baddeleyite. Chemical Geology, 168(1/2):75-97. https://doi.org/10.1016/s0009-2541 (00)00184-4 doi:  10.1016/s0009-2541(00)00184-4
    Wu, C., Liu, C. F., Zhu, Y., et al., 2016. Early Paleozoic Magmatic History of Central Inner Mongolia, China:Implications for the Tectonic Evolution of the Southeast Central Asian Orogenic Belt. International Journal of Earth Sciences, 105(5):1307-1327. https://doi.org/10.1007/s00531-015-1250-7 doi:  10.1007/s00531-015-1250-7
    Wu, C., Zhou, Z. G., Zuza, A. V., et al., 2018. A 1.9-Ga Mélange along the Northern Margin of the North China Craton:Implications for the Assembly of Columbia Supercontinent. Tectonics, 37(10):3610-3646. https://doi.org/10.1029/2018tc005103 doi:  10.1029/2018tc005103
    Xia, X. P., Sun, M., Zhao, G. C., et al., 2006. U-Pb and Hf Isotopic Study of Detrital Zircons from the Wulashan Khondalites:Constraints on the Evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 241(3/4):581-593. https://doi.org/10.1016/j.epsl.2005.11.024 doi:  10.1016/j.epsl.2005.11.024
    Zhai, M. G., Hu, B., Peng, P., et al., 2014. Meso-Neoproterozoic Magmatic Events and Multi-Stage Rifting in the NCC. Earth Science Frontiers, 21(1):100-119 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY201401013.htm
    Zhai, M. G., Santosh, M., 2013. Metallogeny of the North China Craton:Link with Secular Changes in the Evolving Earth. Gondwana Research, 24(1):275-297. https://doi.org/10.1016/j.gr.2013.02.007 doi:  10.1016/j.gr.2013.02.007
    Zhai, M., 2003. Palaeoproterozoic Tectonic History of the North China Craton:A Review. Precambrian Research, 122(1/2/3/4):183-199. https://doi.org/10.1016/s0301-9268(02)00211-5 doi:  10.1016/s0301-9268(02)00211-5
    Zhang, S. H., Zhao, Y., Li, X. H., et al., 2017. The 1.33-1.30 Ga Yanliao Large Igneous Province in the North China Craton:Implications for Reconstruction of the Nuna (Columbia) Supercontinent, and Specifically with the North Australian Craton. Earth and Planetary Science Letters, 465:112-125. https://doi.org/10.1016/j.epsl.2017.02.034 doi:  10.1016/j.epsl.2017.02.034
    Zhang, S. H., Zhao, Y., Santosh, M., 2012. Mid-Mesoproterozoic Bimodal Magmatic Rocks in the Northern North China Craton:Implications for Magmatism Related to Breakup of the Columbia Supercontinent. Precambrian Research, 222-223:339-367. https://doi.org/10.1016/j.precamres.2011.06.003 doi:  10.1016/j.precamres.2011.06.003
    Zhang, S. H., Zhao, Y., Yang, Z. Y., et al., 2009. The 1.35 Ga Diabase Sills from the Northern North China Craton:Implications for Breakup of the Columbia (Nuna) Supercontinent. Earth and Planetary Science Letters, 288(3/4):588-600. https://doi.org/10.1016/j.epsl.2009.10.023 doi:  10.1016/j.epsl.2009.10.023
    Zhang, Y. M., Zhang, H. F., Liu, W. C., et al., 2009. Timing and Petrogenesis of the Damiao Granodiorite, Siziwangqi, Inner Mongolia. Acta Peteologica Sinica, 25(12):3165-3181 (in Chinese with English Abstract)
    Zhao, G. C., 2014. Precambrian Evolution of the North China Craton. Elsevier, Oxford. 1-14
    Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton:Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1/2):55-88. https://doi.org/10.1016/s0301-9268(00)00076-0 doi:  10.1016/s0301-9268(00)00076-0
    Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002. Review of Global 2.1-1.8 Ga Orogens:Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1/2/3/4):125-162. https://doi.org/10.1016/s0012-8252(02)00073-9 doi:  10.1016/s0012-8252(02)00073-9
    Zhao, G. C., He, Y. H., Sun, M., 2009. The Xiong'er Volcanic Belt at the Southern Margin of the North China Craton:Petrographic and Geochemical Evidence for Its Outboard Position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16(2):170-181. https://doi.org/10.1016/j.gr.2009.02.004 doi:  10.1016/j.gr.2009.02.004
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2003a. Assembly, Accretion and Breakup of the Paleo-Mesoproterozoic Columbia Supercontinent:Records in the North China Craton. Gondwana Research, 6(3):417-434. https://doi.org/10.1016/s1342-937x(05)70996-5 doi:  10.1016/s1342-937x(05)70996-5
    Zhao, G. C., Sun, M., Wilde, S. A., 2003b. Correlations between the Eastern Block of the North China Craton and the South Indian Block of the Indian Shield:an Archean to Paleoproterozoic Link. Precambrian Research, 122:201-233. https://doi.org/10.1016/S0301-9268(02)00212-7 doi:  10.1016/S0301-9268(02)00212-7
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent:Assembly, Growth and Breakup. Earth-Science Reviews, 67(1/2):91-123. https://doi.org/10.1016/j.earscirev. 2004.02.003 doi:  10.1016/j.earscirev.2004.02.003
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited. Precambrian Research, 136:177-202. https://doi.org/10.1016/j.precamres.2004.10.002 doi:  10.1016/j.precamres.2004.10.002
    Zhao, G. C., Wilde, S. A., Cawood, et al., 2001. Archean Blocks and Their Boundaries in the North China Craton:Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107:45-73. https://doi.org/10.1016/S0301-9268(00)00154-6 doi:  10.1016/S0301-9268(00)00154-6
    Zhao, T. P., Chen, F. K., Zhai, M. G., et al., 2004. Single Zircon U-Pb Ages and Their Geological Significance of the Damiao Anorthosite Complex, Heibei Province, China. Acta Petrological Sinica, 20:685-690 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200403032.htm
    Zhao, T. P., Xu, Y. H., Zhai, M. G., 2007. Petrogenesis and Tectonic Setting of the Paleoproterozoic Xiong'Er Group in the Southern Part of the North China Craton:A Review. Geological Journal of China Universities, 13(2):191-206 http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200702004.htm
    Zhou, Z. G., Wang, G. S., Di, Y. J., et al., 2018a. Discovery of Mesoproterozoic Kimberlite from Dörbed Banner, Inner Mongolia and Its Tectonic Significance. Geological Journal, 53(3):992-1004. https://doi.org/10.1002/gj.2939 doi:  10.1002/gj.2939
    Zhou, Z. G., Hu, M. M., Wu, C., et al., 2018b. Coupled U-Pb Dating and Hf Isotopic Analysis of Detrital Zircons from Bayan Obo Group in Inner Mongolia:Constraints on the Evolution of the Bayan Obo Rift Belt. Geological Journal, 53(6):2649-2664. https://doi.org/10.1002/gj.3102 doi:  10.1002/gj.3102
    Zhou, Z. G., Wang, G. S., Zhang, D., et al., 2016, Zircon Ages of Gabbros in the Siziwangqi, Inner Mongolia and Its Constrain on the Formation Time of the Bayan Obo Group. Acta Petrologica Sinica, 32(6):1809-1822 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201606016.htm
    Zhou, Z. G., Zhang, H. F., Liu, H. L., et al., 2009. Zircon U-Pb Dating of Basic Intrusions in Siziwangqi Area of Middle Inner Mongolia:China. Acta Petrologica Sinica, 25:1519-1528 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200906023.htm
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(2)

Article Metrics

Article views(55) PDF downloads(11) Cited by()

Related
Proportional views

Geochemistry of the Mesoproterozoic Intrusions, Geochronology and Isotopic Constraints on the Xiaonanshan Cu-Ni Deposit along the Northern Margin of the North China Craton

doi: 10.1007/s12583-020-1296-8

Abstract: Mesoproterozoic magma events in the Bayan Obo rift belt have remained poorly constrained and as a result, the Late Paleoproterozoic-Mesoproterozoic tectonic evolution of the rift belt has remained unclear. By a multiple-facetted regional geological investigation of this belt, we have resolved the stratigraphic sequence and geochronology of the Bayan Obo Group and made new discoveries including a three-stage mantle-derived magmatic sequence. Zircon and baddeleyite dating of Xiaonanshan hornblende pyroxenite emplaced into the Bayan Obo Group yields 207Pb/206Pb ages of ca. 1.34 and 1.33 Ga. The geochronological, geochemistry, Hf isotopic analyses place an important constraint on ages of the Late Paleoproterozoic-Mesoproterozoic strata and the evolution of the rift belt. Our field observations and U-Pb dating results suggest that mineralization is genetically related to Mesoproterozoic magmatism in North China Craton, i.e., 1.33-1.34 Ga. The δ34SV-CDT values of sulphide from the ore-bearing ultra-/mafic samples are about 6.2‰, whereas the 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values vary in the ranges of 17.598-18.115, 15.496-15.501, and 37.478-37.952, respectively. The Late Paleozoic mafic gabbro and acidic granite porphyry intrusions are possible to bimodal magmatic event related to the extensional tectonic setting of the Central Asia in this period.

Zhiguang Zhou, Jiangwei Wu, Yi Niu, Guosheng Wang, Chen Wu, Changfeng Liu, Juncheng Ju. Geochemistry of the Mesoproterozoic Intrusions, Geochronology and Isotopic Constraints on the Xiaonanshan Cu-Ni Deposit along the Northern Margin of the North China Craton. Journal of Earth Science, 2020, 31(4): 653-667. doi: 10.1007/s12583-020-1296-8
Citation: Zhiguang Zhou, Jiangwei Wu, Yi Niu, Guosheng Wang, Chen Wu, Changfeng Liu, Juncheng Ju. Geochemistry of the Mesoproterozoic Intrusions, Geochronology and Isotopic Constraints on the Xiaonanshan Cu-Ni Deposit along the Northern Margin of the North China Craton. Journal of Earth Science, 2020, 31(4): 653-667. doi: 10.1007/s12583-020-1296-8
  • The Bayan Obo Group is exposed partly as an anticline to the northwest of Siziwangqi City (Fig. 1b) and consists of the Dulahala, Jianshan, Halahuogete, Bilute, and Baiyinbaolage formations in ascending order (e.g., Zhou et al., 2018b, 2016). The field occurrence shows that the ore-bearing Xiaonanshan gabbro and late granite porphyry intrudes into the Dulahala Formation (Figs. 2a and 2b). The Xiaonanshan hornblende pyroxenite sample D445 was collected from the Xiaonanshan copper-nickel deposit at Siziwangqi, Inner Mongolia (Fig. 1b). The field site comprises several layers of hornblende pyroxenite with a thickness ranging 0.5–3 m exhibiting variable concentric weathering (Fig. 2c) and occurs within the Jianshan Formation of the Bayan Obo Group. Minor thin baked zones could be observed at the boundary of the hornblende pyroxenite within the Jianshan Formation.

    Figure 2.  Field photograph of (a) typical Xiaonanshan gabbro and granite porphyry intruded into the Bayan Obo Group Dulahala Formation and sample locations; (b) inset of the Fig. 3a and shows the details of gabbro intruding into the Dulahala Formation and sample location; (c) Xiaonanshan hornblende pyroxenite sample was collected from the drill and poor outcrop, which emplaced at the Jianshan Formation of Bayan Obo Group; (d) Dajingpo gabbro; (e) Jishengtai gabbro within the Mesoproterozoic sandstone of Bayan Obo Group.

    The Dajingpo gabbro occurs as an EW-strike stock ca. 0.5 km long and ~200 m wide intruding into Bilute and Halahuogete formation sandstones (Fig. 2d; Zhou et al., 2016). The Jishengtai gabbro occurs as stock about 2 km long and ~200–500 m wide intruding the Dulahala Formation sandstone (Fig. 2e; Zhou et al., 2016). The long axis of the pluton is closely parallel to the bedding of strata indicating concordant emplacement along bedding of host sedimentary rocks. Baked zones occur and the sandstone displays recrystallization along the boundary due to thermal emplacement of the Jishengtai gabbro. The field occurrence and petrography features of the Mesoproterozoic Longtoushan kimberlite are described by Zhou et al. (2018a).

    The hornblende pyroxenite sample D445 displays typical diabasic texture with mineral compositions of pyroxene (ca. 65%), hornblende (ca. 35%) and accessory apatite, zircon, baddeleyite, and pyrite (Figs. 3a and 3b). Pyroxene grains are idiomorphic and prismatic with a grain size of 0.2–2.6 mm and contain mineral inclusions of hornblende and iron oxides. Most hornblende grains are idiomorphic to hypidiomorphic and chloritized (Fig. 3c). The granite porphyry sample SHY has a porphyritic texture with approximately 10% phenocrysts that are mainly composed of plagioclase (6%), K-feldspar (2%), and quartz (2%), with accessory zircon, apatite, and magnetite (Fig. 3d).

    Figure 3.  Microphotograph of the samples in the study. (a)–(c) Xiaonanshan hornblende pyroxenite; (d) granite porphyry; (e)–(f) Xiaonanshan gabbro; (g) Dajingpo gabbro; (h) Jishengtai gabbro. Noted abbreviations for different minerals: Qtz. quartz; Pl. plagioclase; Mag. magnetite; Px. Pyroxene; Hbl. hornblende; Py. pyrite; Clp. chalcopyrite. All the photomicrographs were taken under cross-polarized light.

    The Xiaonanshan gabbro sample D181870-XNS displays typical diabasic texture with mineral compositions of feldspar (ca. 40%), hornblende and pyroxene (ca. 55%) with accessory apatite, zircon, pyrite and other metallic minerals (ca. 5%) (Figs. 3e and 3f). The Dajingpo gabbro displays typical diabasic texture with mineral compositions of feldspar (ca. 45%), hornblende (ca. 30%) and pyroxene (ca. 25%) with accessory apatite and zircon (Fig. 3g). The Jishengtai gabbro displays typical diabasic texture with a mineral composition of feldspar (ca. 40%), hornblende (ca. 25%), pyroxene (ca. 30%), and quartz (ca. 5%) with accessory apatite and zircon (Fig. 3h).

  • Zircon and baddeleyite minerals were separated at the Institute of Hebei Regional Geology and Mineral Survey, China. The minerals were imaged using the HITACHI S3000-N electron microscope attached with GATAN Chroma CL detector at the Institute of Mineral Resources, Chinese Academy of Geological Sciences. The representative zircon and baddeleyite CL images are shown in Figs. 4a4d. LA-ICP-MS U-Pb dating was performed at the Isotopic Laboratory, Tianjin Institute of Geology and Mineral Resources following methods described in Li et al. (2009a). Each analysis was composed of a ~30 s background measurement with laser off and a 60 s measurement of peak intensities. The ablation pits varied at 50 μm in diameter, which depended on the size of sample grains, and at ~30–40 μm in depth. The ablated material was carried in helium into the Q-ICP-MS and MC-ICP-MS for simultaneous determination of U-Pb age and Hf isotopic values. Standard zircon 91500 was employed to correct for mass bias affecting 207Pb/206Pb, 206Pb/238U, 207Pb/235U, and 208Pb/232Th ratios (Ludwig, 2003). NIST SRM 610 glass was used for concentration information and the U/Th ratio determination. The fractionation correction and results were calculated using GLITTER 4.0, common Pb was corrected following the method described by Andersen (2002).

    Figure 4.  Representative CL images of zircon grains and U-Pb concordia diagrams for zircons ((a), (e)) and baddeleyites ((b), (f)) from a Xiaonanshan, hornblende pyroxenite sample emplaced into the Jianshan Formation northeast to Dajingpo; ((c), (g)) Xiaonanshan gabbro and ((d), (h)) granite porphyry samples. Data-point error crosses are 2σ.

    Twenty-four zircon and twenty baddeleyite grains from the Xiaonanshan hornblende pyroxenite sample (D445) were analyzed. The sample zircons are semitransparent, white subhedral prisms with a size of 100–120 μm and length/width ratio of 1.5 : 1 to 2.5 : 1 (Fig. 4a), whereas the baddeleyites are opaque or semitransparent, brown euhedral platy prisms with a size of 50–80 μm and length/width ratios of 1 : 1 to 2.5 : 1 (Fig. 4b). The analytical results are listed in Table S1 and plotted on the concordia diagrams in Figs. 4e and 4f. The zircon and baddeleyite grains exhibit high Th/U ratios and relative homogenous concentrations of Th and U (Table S1), respectively, showing no or weak oscillatory zoning in CL images (Figs. 4a and 4b). Twenty- four spots yield a weighted mean 207Pb/206Pb age of 1 343±9 Ma (MSWD=0.75; Fig. 4e) which is interpreted as the crystallization age of this hornblende pyroxenite sample. The weighted mean 207Pb/206Pb age of the baddeleyite grains is 1 333±14 Ma (MSWD=0.52; Fig. 4f), which is very similar to the zircon 207Pb/206Pb age obtained from the same sample reflecting the crystallization age of the Xiaonanshan hornblende pyroxenite.

    Forty-four zircon grains from the Xiaonanshan gabbro sample (D181870-XNS) were analyzed, which are opaque or semitransparent, slight dark subhedral prisms with a size of 100–200 μm and length/width ratio of 1.5 : 1 to 3 : 1 (Fig. 4c). High Th/U ratios (Table S1) and weak oscillatory zoning (Fig. 4c) suggests the magmatic zircons. The forty-one spots yield a weighted mean 207Pb/206Pb age of 1 331±11 Ma (MSWD=0.23, Fig. 4g), which is interpreted as the crystallization age of the gabbro. The other analyses were excluded because of discordance or low radiogenic Pb.

    Twenty zircon grains from the Xiaonanshan granite porphyry sample (SHY) were analyzed, which are semitransparent or opaque, slight brown subhedral prisms with a size of 80–150 μm and length/width ratio of 1 : 1 to 2 : 1 (Fig. 4d). The weighted mean U‐Pb age of 12 concordant analyses is 271±3 Ma (MSWD=2.90), which is interpreted as the best estimate of a crystallization age of this granite porphyry sample. The age population near the upper intercept is concordant and yields a weighted mean 207Pb/206Pb age of 1 798±48 Ma (MSWD=0.001, n=3; Fig. 4h), which is a possible inherited core age of this sample.

  • Bulk-rock major and trace element compositions, determined at the Chinese Academy of Geological Sciences, were obtained from igneous bodies to determine their source and tectonic setting. Complete detailed methods can be found in Dulski (1994), Norrish and Chappel (1977), and full geochemical analyses from 18 samples are summarized in Table S2.

    The Jishengtai gabbro samples are characterized by high concentrations of FeOT (12.40 wt.%–14.13 wt.%), CaO (9.56 wt.%–10.82 wt.%), medium concentrations of MgO (5.37 wt.%–6.94 wt.%), Al2O3 (13.51 wt.%–14.72 wt.%), and low contents of SiO2 (50.21 wt.%–51.81 wt.%). The samples are plotted in the field of the gabbroic diorite on the TAS diagram (Fig. 5a). Although most of the samples fall in the field of the low-K tholeiitic series, few samples plot in the field of the tholeiitic series (Fig. 5b). The Jishengtai gabbro samples exhibit medium total rare earth element (ΣREE) values (52.07 ppm–81.32 ppm) and weak enrichment in light rare earth elements (LREE) ((La/Yb)N=1.83–2.48) with no Eu anomalies (Eu/Eu*=0.93–1.00) (Table S2) (Fig. 5c). In the primitive mantle-normalised spider diagram (Fig. 5d), these rocks show moderate enrichment in high field strength elements (HFSEs; i.e., Zr and Hf) with positive Pb, Th and U but negative Nb and P anomalies.

    Figure 5.  (a) SiO2-(K2O+Na2O) (TAS, total alkali vs. silica) diagram for Xiaonanshan hornblende pyroxenite, Longtoushan kimberlite, Jishengtai and Dajingpo gabbros. Normalization values are from Middlemost (1994); (b) Na2O vs. SiO2 diagram for intrusive rocks. Normalization values are from Le Maitre et al. (1989) and Rickwood (1989); (c) Chondrite-normalized rare earth element diagram for the analyzed samples in the study area. Normalization values are from Boynton (1984); (d) Primitive mantle-normalized trace element variation diagram for the analyzed Xiaonanshan hornblende pyroxenite, Longtoushan kimberlite, Jishengtai and Dajingpo gabbros. Normalization values are from Sun and McDonough (1989).

    The Longtoushan kimberlite samples have SiO2=34.63 wt.%–35.99 wt.%, Al2O3=2.00 wt.%–2.19 wt.%, TiO2=0.10 wt.%–0.11 wt.%, MgO=30.48 wt.%–34.40 wt.% and Na2O+K2O=0.12 wt.%–0.48 wt.% (Fig. 5a; Table S2), belonging to sub-alkaline and low-K tholeiitic series (Fig. 5b). The samples are enriched in LREEs and LILEs (such as Rb, and K) as well as Pb, and depleted in HREEs and HFSEs (Figs. 5c and 5d; e.g., Nb, Ta, and Ti), with (La/Yb)N ratio and δEu value at 5.94–11.16 and 0.69–0.77, respectively, and low total REE abundances (ΣREE=26.67 ppm–30.61 ppm).

    The Dajingpo gabbro samples are characterized by low SiO2 (45.31 wt.%–52.41 wt.%), K2O (0.14 wt.%–0.21 wt.%), and MgO (4.50 wt.%–6.30 wt.%), relatively high Na2O (1.96 wt.%–2.42 wt.%) and Al2O3 (12.02 wt.%–16.30 wt.%) (Fig. 5a; Table S2), belonging to sub-alkaline and low-K tholeiitic series (Fig. 5b). In a chondrite-normalized rare-earth element diagram (Fig. 5c), these rocks exhibit obviously LREE-enriched and relatively HREE-depleted patterns and positive Eu anomalies (1.10–1.60). In a primitive mantle-normalized trace element spider diagram (Fig. 5d), these rocks are enriched in Rb, Th, U, Sr and Ti, and depleted in K, Nb, Ta, and P. In contrast with the Dajingpo gabbro samples, the Xiaonanshan hornblende pyroxenite samples have low SiO2 (43.55 wt.%–47.84 wt.%), Al2O3 (5.42 wt.%–8.70 wt.%), Na2O (0.31 wt.%–1.24 wt.%), and CaO (4.97 wt.%–8.31 wt.%), relatively high MgO (13.97 wt.%–24.10 wt.%), and are depleted in Sr and Ba.

  • Zircon Hf analyses were also completed at MRL Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, using the method of Hou et al. (2007). Plesovice standard zircon was used as the reference standard (Sláma et al., 2008). The Hf isotope analysis results were reported with an error of 2σ with the mean and values of εHf(t) calculated using the method of Scherer et al. (2001). Depleted mantle model ages (TDM) were calculated based on Griffin et al. (2000). Crustal model ages (Tc) were calculated using the initial 176Hf/177Hf ratio of the zircon (Griffin et al., 2004). Full Hf analyses are shown in Table 1.

    spot Age (Ma) Beta 2/3Yb 2σ Beta 7/9Hf 2σ 176Yb/177Hf (corr) 2σ 176Lu/177Hf (corr) 2σ 176Hf/177Hf (corr) 2σ εHf(0) εHf(t) TDM (Ma) TDMC (Ma) fLu/Hf
    Jishengtai gabbro
    1 1 670 -1.709 2 0.026 9 -1.826 1 0.009 5 0.262 9 0.002 8 0.007 9 0 0.281 819 0.000 048 -33.7 -5.43 2 459 2 698 -0.76
    2 1 670 -1.763 4 0.045 5 -1.867 0 0.008 8 0.072 0 0.000 8 0.002 3 0 0.281 788 0.000 025 -34.8 -0.22 2 128 2 376 -0.93
    3 1 670 -1.758 6 0.036 5 -1.803 5 0.006 7 0.095 6 0.001 1 0.002 5 0 0.281 759 0.000 026 -35.8 -1.51 2 183 2 456 -0.92
    4 1 670 -1.724 4 0.026 7 -1.858 6 0.006 7 0.125 2 0.003 0 0.003 3 0 0.281 800 0.000 028 -34.4 -0.93 2 171 2 420 -0.90
    5 1 670 -1.691 0 0.021 5 -1.835 6 0.005 6 0.131 1 0.002 2 0.003 6 0 0.281 876 0.000 023 -31.7 1.45 2 076 2 273 -0.89
    6 1 670 -1.762 4 0.045 9 -1.842 3 0.004 4 0.059 6 0.000 7 0.001 6 0 0.281 732 0.000 020 -36.8 -1.40 2 166 2 449 -0.95
    7 1 670 -2.057 9 0.173 8 -1.910 0 0.024 0 0.061 6 0.000 4 0.001 8 0 0.281 531 0.000 064 -43.9 -8.84 2 464 2 909 -0.94
    8 1 670 -1.754 3 0.032 8 -1.816 9 0.006 0.064 6 0.000 2 0.001 9 0 0.281 750 0.000 023 -36.1 -1.12 2 159 2 432 -0.94
    9 1 670 -1.737 8 0.033 1 -1.860 9 0.005 4 0.087 9 0.000 3 0.002 5 0 0.281 836 0.000 026 -33.1 1.31 2 068 2 281 -0.93
    10 1 670 -1.748 2 0.038 0 -1.853 7 0.004 8 0.045 1 0.000 7 0.001 3 0 0.281 763 0.000 015 -35.7 -0.03 2 109 2 364 -0.96
    Dajingpo gabbro
    1 1 342 -1.770 4 0.107 2 -1.855 0 0.004 7 0.018 2 0.000 4 0.000 6 0 0.282 068 0.000 022 -24.9 4.36 1 650 1 839 -0.98
    2 1 342 -1.935 8 0.106 6 -1.854 8 0.005 4 0.023 7 0.000 2 0.000 7 0 0.282 052 0.000 024 -25.5 3.69 1 677 1 880 -0.98
    3 1 342 -1.783 9 0.105 4 -1.856 7 0.004 4 0.022 7 0.000 1 0.000 6 0 0.282 089 0.000 021 -24.2 5.03 1 624 1 797 -0.98
    4 1 342 -1.768 9 0.088 1 -1.852 8 0.005 1 0.027 9 0.000 1 0.000 8 0 0.282 053 0.000 022 -25.4 3.67 1 678 1 882 -0.98
    5 1 342 -1.754 4 0.048 8 -1.848 4 0.003 8 0.034 5 0.000 2 0.001 0 0 0.282 067 0.000 018 -24.9 3.95 1 669 1 865 -0.97
    6 1 342 -1.789 6 0.106 6 -1.851 3 0.005 0 0.016 2 0.000 1 0.000 6 0 0.282 073 0.000 019 -24.7 4.56 1 642 1 826 -0.98
    7 1 342 -1.786 1 0.106 9 -1.852 3 0.003 7 0.013 6 0.000 1 0.000 4 0 0.282 047 0.000 014 -25.6 3.77 1 671 1 876 -0.99
    8 1 342 -1.741 2 0.095 8 -1.859 6 0.005 0 0.029 8 0.000 5 0.000 8 0 0.282 088 0.000 025 -24.2 4.82 1 634 1 810 -0.97
    9 1 342 -1.823 2 0.074 3 -1.841 8 0.005 1 0.030 3 0.000 1 0.000 9 0 0.282 029 0.000 022 -26.3 2.73 1 716 1 941 -0.97
    10 1 342 -1.755 5 0.082 0 -1.852 4 0.007 8 0.043 6 0.000 1 0.001 4 0 0.282 121 0.000 029 -23.0 5.48 1 613 1 769 -0.96
    Xiaonanshan pyroxenite zircon
    1 1 311 -1.715 7 0.027 3 -1.838 6 0.004 6 0.106 6 0.001 3 0.003 4 0 0.282 077 0.000 027 -24.6 1.53 1 767 1 992 -0.90
    2 1 335 -1.726 5 0.026 4 -1.830 4 0.005 3 0.109 5 0.000 8 0.003 1 0 0.282 075 0.000 031 -24.6 2.21 1 755 1 968 -0.91
    3 1 368 -1.708 0 0.029 6 -1.840 3 0.004 9 0.098 8 0.000 8 0.002 7 0 0.282 092 0.000 023 -24.0 3.80 1 714 1 894 -0.92
    4 1 371 -1.752 4 0.027 8 -1.840 9 0.005 9 0.134 8 0.001 1 0.003 5 0 0.282 022 0.000 027 -26.5 0.73 1 851 2 087 -0.90
    5 1 343 -1.792 0 0.054 1 -1.835 0 0.005 2 0.057 1 0.000 3 0.001 8 0 0.281 995 0.000 028 -27.5 0.73 1 805 2 066 -0.95
    6 1 336 -1.703 7 0.031 8 -1.846 2 0.006 3 0.133 4 0.000 9 0.003 7 0 0.282 158 0.000 029 -21.7 4.60 1 663 1 819 -0.89
    7 1 326 -1.693 0 0.044 5 -1.825 3 0.008 4 0.097 6 0.000 5 0.003 2 0 0.282 123 0.000 034 -23.0 3.65 1 689 1 871 -0.90
    8 1 334 -1.734 3 0.046 5 -1.842 9 0.006 8 0.067 2 0.000 3 0.002 0 0 0.282 008 0.000 028 -27.0 0.79 1 799 2 056 -0.94
    9 1 317 -1.732 2 0.025 8 -1.835 9 0.006 5 0.154 7 0.001 1 0.004 5 0 0.282 017 0.000 030 -26.7 -1.44 1 914 2 181 -0.87
    10 1 314 -1.726 0 0.030 6 -1.835 0 0.005 9 0.118 0 0.000 3 0.003 1 0 0.282 086 0.000 034 -24.3 2.16 1 739 1 955 -0.91
    Xiaonanshan pyroxenite baddeleyite
    1 1 332 -1.899 0 0.300 3 -1.857 1 0.007 4 0.008 680 0.000 1 0.000 291 0 0.282 018 0.000 025 -26.7 2.62 1 706 1 940 -0.99
    2 1 321 -1.832 6 0.264 5 -1.815 0 0.008 1 0.009 994 0.000 2 0.000 354 0 0.281 985 0.000 026 -27.8 1.15 1 754 2 023 -0.99
    3 1 331 -2.148 9 0.835 5 -1.783 5 0.010 8 0.008 907 0.000 1 0.000 335 0 0.281 872 0.000 052 -31.8 -2.62 1 907 2 266 -0.99
    4 1 306 -1.555 4 0.336 2 -1.773 0 0.009 5 0.008 175 0.000 1 0.000 307 0 0.281 994 0.000 028 -27.5 1.16 1 740 2 011 -0.99
    5 1 304 -1.703 0 0.395 0 -1.798 3 0.007 7 0.009 952 0.000 1 0.000 358 0 0.282 005 0.000 028 -27.1 1.46 1 727 1 991 -0.99
    6 1 315 -1.511 2 0.987 1 -1.796 7 0.013 3 0.010 358 0.000 2 0.000 380 0 0.282 044 0.000 066 -25.8 3.07 1 675 1 899 -0.99
    7 1 284 -2.115 6 0.659 7 -1.777 7 0.011 9 0.009 963 0.000 1 0.000 379 0 0.281 884 0.000 055 -31.4 -3.27 1 892 2 270 -0.99
    8 1 324 -1.894 2 0.216 5 -1.795 9 0.010 0 0.022 953 0.000 4 0.000 820 0 0.281 877 0.000 039 -31.7 -3.04 1 925 2 287 -0.98
    9 1 368 -1.956 7 0.770 0 -1.731 8 0.009 8 0.010 036 0.000 2 0.000 391 0 0.281 999 0.000 051 -27.3 2.65 1 737 1 966 -0.99
    10 1 398 -0.518 2 3.473 7 -1.852 7 0.029 6 0.008 602 0.000 1 0.000 325 0 0.282 427 0.000 186 -12.2 18.60 1 146 989.3 -0.99

    Table 1.  Hf isotope and model ages of Jishengtai gabbro, Dajingpo gabbro and Xiaonanshan pyroxenite in the northern North China Craton

    Zircons from 1.67 Ga Jishengtai gabbro show relatively higher initial 176Hf/177Hf ratios and corresponding εHf(t) values range from -8.84 to 1.45 with the average is -1.67 (Zhou et al., 2018b), whereas the corresponding TDM model ages are 2 068–2 464 Ma (Fig. 6). The zircon grains with positive εHf(t) values yielded TDM model ages ranging of 2 068–2 076 Ma (Fig. 6). Zircons from ca. 1.34 Ga Dajingpo gabbro also yielded higher initial 176Hf/177Hf ratios and corresponding εHf(t) values range from 2.72 to 5.48 (Zhou et al., 2018b), whereas the TDM model ages range from 1 613 to 1 716 Ma (Fig. 6).

    Figure 6.  Plots of εHf(t) and TDM vs. 207Pb/206Pb ages of zircons and baddeleyites for Xiaonanshan hornblende pyroxenite in this study, zircons of Jishengtai and Dajingpo gabbros collected from Zhou et al.(2018b, 2016).

    Zircons from the Xiaonanshan hornblende pyroxenite sample D445 in this study, which yielded Pb-Pb age of ca. 1 343 Ma, show relatively higher initial 176Hf/177Hf ratios (0.281 995–0.282 158). The corresponding εHf(t=1 342.6 Ma) values range from -1.44 to 4.60 with the average of 2.24, whereas the corresponding TDM model ages are 1 663–1 851 Ma (Fig. 6; Table 1). One single zircon grain with negative εHf(t) values (-1.44) yielded TDM model age of 1 914 Ma (Fig. 6; Table 1). Baddeleyites from the Xiaonanshan hornblende pyroxenite sample D445, yielded age of ca. 1 333 Ma, showing relatively higher initial 176Hf/177Hf ratios of 0.281 872– 0.282 427. The corresponding εHf(t=1 333 Ma) values range from -3.27 to 18.60 with the majority positive, whereas the corresponding TDM model ages are 1 146–1 754 Ma (Fig. 6). Three baddeleyite grains with negative εHf(t) values (-2.62), (-3.27), (-3.04) yielded TDM model ages of 1 907, 1 892, 1 925 Ma (Fig. 6; Table 1), respectively.

  • Sulphur and Lead isotopic compositions were determined at Beijing Institute of Nuclear Geological Research, China. Complete detailed methods can be found in Wu et al.(2015, 2014). The pyrite minerals collected from the Xiaonanshan gabbro and hornblende pyroxenite samples were analyzed for sulphur and lead isotopic compositions. Their δ34SV-CDT value is 6.2‰, suggesting as the typical of mantle sulphur (Table 2). New 206Pb/204Pb, 207Pb/ 204Pb, and 208Pb/204Pb from the samples in this study vary in the ranges of 17.598–18.115, 15.496– 15.501, and 37.478–37.952, respectively (Table 2).

    Sample No. Sample description Testing mineral δ34SV-CDT (‰) 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb
    D181870-XNS Gabbro Pyrite 6.2 18.115 15.501 37.952
    D445 Hornblende pyroxenite Pyrite 6.2 17.598 15.496 37.478

    Table 2.  Result of S isotopic compositions of pyrite minerals from the ore-bearing Xiaonanshan hornblende pyroxenite and gabbro samples

  • Our new LA-ICP-MS dating on zircon and baddeleyite grains from the Xiaonanshan hornblende pyroxenite sample emplaced into the Jianshan Formation of Bayan Obo Group (Figs. 2 and 3c) yielded weighed mean 207Pb/206Pb ages of 1 343±9 Ma (Fig. 4a) and 1 333±14 Ma (Fig. 4b), respectively. The agreement between zircon and baddeleyite analyses clearly suggests that the zircon grains in the Xiaonanshan hornblende pyroxenite sample are primary syn-magmatic and not inherited. We further report that the weighted mean 207Pb/206Pb age of the combined baddeleyite and zircon grains is 1 340±7 Ma within error. Therefore, we infer that the Xiaonanshan hornblende pyroxenite within the Mesoproterozoic Bayan Obo Group sedimentary rocks were emplaced at ca. 1.34 Ga (Figs. 4a and 4b). Furthermore, the field occurrence shows the Xiaonanshan gabbro dike intrudes into the Dulahala Formation of Bayan Obo Group (Figs. 3a and 3b), which emplaced at ca. 1.33 Ga (Fig. 4c).

    Recent exploratory studies on the geochronology of Mesoproterozoic strata in the Bayan Obo rift belt on the North China Craton (e.g., Zhou et al., 2019b, 2018a, 2016; Wu et al., 2018; Liu et al., 2017, 2015, 2014) yield a published geochronology of the Bayan Obo Group including depositional ages of Dulahala-Jianshan, Bilute, and Baiyinbaolage formations are summarized as follows: (1) detrital zircon U-Pb age analyses constrain the maximum depositional age of the Dulahala- Jianshan Formation as ca. 1.81 Ga (Zhou et al., 2018b), the sandstone layer was intruded by the ca. 1.67 Ga Jishengtai gabbro (Zhou et al., 2016), and thus the Dulahala-Jianshan Formation was deposited between ca. 1.81 and ca. 1.67 Ga; (2) detrital zircon U-Pb age analysis suggests the maximum depositional age of the Bilute Formation at ca. 1.58 Ga (Zhou et al., 2018b), and was intruded by the ca. 1.34 Ga Dajingpo gabbro (Zhou et al., 2016), and thus we suggest that the deposition period of the Bilute Formation was between ca. 1.58 and ca. 1.34 Ga; (3) Zhou et al. (2016) proposed that the lower age limit of Baiyinbaolage Formation is ca. 1.0 Ga, and Zhou et al. (2018b) proposed that the depositional interval of the Baiyinbaolage Formation ranges from ca. 1.25 to ca. 1.0 Ga. There is a relatively longer time span between the Halahuogete Formation and Bilute Formation, i.e., 200 Ma, indicating the likely the existence of unconformity.

  • Through field investigation and U-Pb dating results, combined with our new S and Pb isotopic tracing and whole-rock geochemistry analysis, we have demonstrated that ore sulphides of the Xiaonanshan Cu-Ni belt show the same S and Pb isotopic compositions as that of ore-bearing gabbro and hornblende pyroxenite samples. The δ34S values of pyrite minerals from our samples in this study are similar to that of magma hydrothermalism (Ohmoto and Goldhaber, 1997; Ohmoto and Rye, 1979). Their δ34S values are around 6.2‰ and are typical of mantle S (Ohmoto and Goldhaber, 1997). Our new Pb isotopic analyses are broadly consistent with the above interpretation (Table 2) (Ohmoto and Goldhaber, 1997; Ohmoto and Rye, 1979).

    For the evolutionary sequence of magmatic rocks in the Xiaonanshan Cu-Ni deposit, the first concern is the intrusive age of ore-bearing magmatic rocks. The area of outcropping of gabbro is relatively large around the Xiaonanshan deposit, in contrast, outcrops of ultramafic are sporadic (e.g., Jiang et al., 2003). According to zircon U-Pb dating results of the latest gabbro, Dang et al. (2015) proposed that the Xiaonanshan Cu-Ni mineralization occurred approximately at ca. 273 Ma. However, the younger mafic gabbro and our acidic granite porphyry intrusions (Fig. 4h) are possible to bimodal magmatic event related to the Late Paleozoic extensional tectonic setting of the Central Asia. The age and isotopic composition of our ore-bearing gabbro and hornblende pyroxenite are identical within analytical error, indicating that the ultra-/mafic emplacement and the Cu-Ni mineralization occurred approximately at the same time, i.e., ca. 1 330–1 340 Ma. In general, Ni mineralization is related to the ultramafic magmatic events in North China (e.g., Jiang et al., 2003), our field observations also show the evidence of Cu-Ni minerals developing within the Mesoproterozoic hornblende pyroxenite (Fig. 2c).

  • The at least twice Paleoproterozoic collisional events and Late Paleoproterozoic–Mesoproterozoic accretionary events recorded in the North China Craton have been considered as one of evidences on assembly and outgrowth of the North China Craton within the Columbia supercontinent (e.g., Zhao G C et al., 2009, 2004, 2003a, b, 2002; Zhang et al., 2009; He et al., 2009; Ernst et al., 2008; Zhao T P et al., 2004; Fig. 7a). Most researchers agree that the North China Craton was formed by at least two Paleoproterozoic collisional events, with the earlier one forming the EW-trending khondalite belt along which the Yinshan Block in the north and the Ordos Block in the south which amalgamated to form the Western Block at ca. 1.95 Ga and then collided with the Eastern Block along the central orogenic belt to form the coherent basement of the North China Craton at ca. 1.85 Ga (e.g., Zhou et al., 2018b; Wang et al., 2015; Zhang S H et al., 2009; Kröner et al., 2006; Xia et al., 2006; Zhao et al., 2005, 2001, 2000). The competing hypotheses consider that the collision between the Eastern and Western blocks occur at 2.5 Ga (e.g., Kusky et al., 2018, 2016; Wang et al., 2017), in addition, a new 1.9 Ga mélange was reported as the evidence on that North China Craton became a component of the supercontinent starting at ca. 1.9 Ga (Wu et al., 2018). In any case, following final assembly at ca. 1.8 Ga, the North China Craton probably experienced initial extensional possibly related to the breakup of the supercontinent (Lu et al., 2016; Zhai et al., 2014), and is also supported by Hf isotopic compositions from Jishengtai gabbro (Zhou et al., 2018b). Our new geochemistry analyses of the Jishengtai gabbro indicate a continental intraplate tectonic setting (Figs. 7b and 7c) suggesting an intraplate extensional evolution feature during this time period.

    Figure 7.  (a) Comparison diagram of magmatic events during Late Paleoproterozoic–Mesoproterozoic with the Bayan Obo rift belt, North China Craton, southern Siberia Craton and northern Laurentia. Data from: Zhou et al.(2018a, 2016), Zhang et al.(2017, 2012, 2009), Ernst et al.(2016, 2008), Zhai et al. (2014), Li et al. (2013), Peng et al. (2010), He et al. (2009), Zhao T P et al. (2007). (b) Th/Hf-Ta/Hf and (c) Th/Zr-Nb-Zr identification diagrams for tectonic setting diagrams of Xiaonanshan hornblende pyroxenite, Longtoushan kimberlite, Jishengtai and Dajingpo gabbros. Normalization values are from Sun et al. (2003) and Wang et al. (2001). Note: I. divergence margin of oceanic plate N-MORB; Ⅱ. plate convergent margin (Ⅱ1. oceanic island arc basalt; Ⅱ2. continental margin island arc and continental margin volcanic arc basalts); Ⅲ. oceanic intraplate basalt; Ⅳ. continental intraplate (Ⅳ1. intracontinental rift and epicontinental rift tholeiite basalts; Ⅳ2. continental extensional or initial rift; Ⅳ3. continent-continent collision basalt; Ⅳ4. continental rift basalt); Ⅴ. mantle plume basalt.

    Development of Mesoproterozoic Longtoushan kimberlite indicated that a thickness more than 150 km lithosphere existed in the Bayan Obo area during the Proterozoic Period, the North China Craton and the northern ancient craton, i.e., Siberia, had not begun to rift at ca. 1.55 Ga (Zhou et al., 2018a). Furthermore, the contact between the Jianshan and Halahuogete formations is parallel to the unconformity along the northern margin of the North China Craton (Jia et al., 2002) leading to our suggestion that the rift developed in the North China Craton. The later magmatic events (1.35–1.32 Ga) are characterized by bi-model magmatism forming in an extensional tectonic setting and possibly associated with the rift process of the Columbia supercontinent (Zhang et al., 2017, 2012, 2009; Li et al., 2009b). We improve this interpretation from (1) our new geochemistry data for the Dajingpo gabbro and Xiaonanshan hornblende pyroxenite show the extension tectonic setting (Figs. 5c, 5d, 7b, and 7c); (2) our new positive zircon Hf isotopic values from Dajingpo gabbro and Xiaonanshan hornblende pyroxenite, and postive baddeleyite Hf isotopic values, which are characterized by isotopic compositions of depleted mantle (Fig. 6; e.g., Zhou et al., 2018b, 2016); (3) the existence of the baddeleyite within the Xiaonanshan hornblende pyroxenite suggests the characteristics of depleted mantle (Wingate and Compston, 2000). Wang et al. (2015) reported ~1.23 Ga mafic intrusions in the North China Craton and proposed that a regionally extensive and short-lived magmatic event occurred at this time within the craton.

  • (1) Our new zircon and baddeleyite dating on a hornblende pyroxenite sample emplaced into the Jianshan Formation yield weighed mean 207Pb/206Pb ages of 1 343±9 and 1 333±14 Ma, respectively, indicating that the emplacement of Xiaonanshan hornblende pyroxenite occurred at ca. 1.34 Ga. The Xiaonanshan gabbro intrudes into the Dulahala Formation, which emplaced at ca. 1.33 Ga

    (2) The age and isotopic composition of our ore-bearing gabbro and hornblende pyroxenite are identical, indicating that the ultra-/mafic emplacement and the Cu-Ni mineralization occurred at ca. 1.33–1.34 Ga. The Late Paleozoic mafic gabbro and our acidic granite porphyry intrusions are possible to bimodal magmatic event related to the extensional tectonic setting of the Central Asia.

    (3) Four stages of magmatic activities are recognized during the Late Paleoproterozoic–Mesoproterozoic in the North China Craton namely: the 1.8–1.78 Ga Xiong'er Igneous Province; 1.72–1.62 Ga anorogenic magmatism; the ca. 1.55 Ga Longtoushan kimberlite and 1.35–1.32 Ga mafic episode. The geochemistry results and Hf isotopic analysis suggest that the North China Craton and the northern ancient craton had not started rifting until ca. 1.55 Ga. The later magmatic events (1.35–1.32 Ga) are likely related to the breaking of the North China Craton away from the Columbia supercontinent.

  • Constructive reviews by Editor and two anonymous reviewers led to significant improvements of the original manuscript. This research was financially supported by the National Natural Science Foundation of China (No. 41772227). Comments by John Piper on an earlier draft of this manuscript are appreciated. This work was supported by the Inner Mongolia Mapping Programs (Nos. 1212010811001, 1212011120700, DD20160045, 1212010510506) administered by China University of Geosciences (Beijing). The final publication is available at Springer via https://doi.org/10.1007/s12583-020-1296-8.

    Electronic Supplementary Materials: Supplementary materials (Table S1 and Table S2) are available in the online version of this article at https://doi.org/10.1007/s12583-020-1296-8.

Reference (93)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return