Bédard, J. H., 1999. Petrogenesis of Boninites from the Betts Cove Ophiolite, Newfoundland, Canada:Identification of Subducted Source Components. Journal of Petrology, 40(12):1853-1889. https://doi.org/10.1093/petroj/40.12.1853 |
Chen, W. T., Sun, W. H., Wang, W., et al., 2014. "Grenvillian" Intra-Plate Mafic Magmatism in the Southwestern Yangtze Block, SW China. Precambrian Research, 242:138-153. https://doi.org/10.1016/j.precamres.2013.12.019 |
Chen, W. T., Sun, W. H., Zhou, M. F., et al., 2018. Ca. 1 050 Ma Intra-Continental Rift-Related A-Type Felsic Rocks in the Southwestern Yangtze Block, South China. Precambrian Research, 309:22-44. https://doi.org/10.1016/j.precamres.2017.02.011 |
Chen, W. T., Zhou, M. F., Zhao, X. F., et al., 2013. Late Paleoproterozoic Sedimentary and Mafic Rocks in the Hekou Area, SW China:Implication for the Reconstruction of the Yangtze Block in Columbia. Precambrian Research, 231:61-77. https://doi.org/10.1016/j.precamres.2013.03.011 |
Clemens, J. D., Darbyshire, D. P. F., Flinders, J., 2009. Sources of Post-Orogenic Calcalkaline Magmas:The Arrochar and Garabal Hill-Glen Fyne Complexes, Scotland. Lithos, 112(3/4):524-542. https://doi.org/10.1016/j.lithos.2009.03.026 |
Clemens, J., 2003. S-Type Granitic Magmas-Petrogenetic Issues, Models and Evidence. Earth-Science Reviews, 61(1/2):1-18. https://doi.org/10.1016/s0012-8252(02)00107-1 |
Cui, X. Z., Jiang, X. S., Wang, J., et al., 2015. Mid-Neoproterozoic Diabase Dykes from Xide in the Western Yangtze Block, South China:New Evidence for Continental Rifting Related to the Breakup of Rodinia Supercontinent. Precambrian Research, 268:339-356. https://doi.org/10.1016/j.precamres.2015.07.017 |
Deng, S. X., 2000. The Evolution of Metamorphism and Geochemistry for the Cangshan and Julin Groups in Central Yunnan, China: [Dissertation]. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou. 41-49 (in Chinese with English Abstract) |
Du, L. L., Guo, J. H., Nutman, A. P., et al., 2014. Implications for Rodinia Reconstructions for the Initiation of Neoproterozoic Subduction at~860 Ma on the Western Margin of the Yangtze Block:Evidence from the Guandaoshan Pluton. Lithos, 196/197:67-82. https://doi.org/10.1016/j.lithos.2014.03.002 |
Frost, C. D., Bell, J. M., Frost, B. R., et al., 2001. Crustal Growth by Magmatic Underplating:Isotopic Evidence from the Northern Sherman Batholith. Geology, 29(6):515-518. https://doi.org/10.1130/0091-7613(2001)029 < 0515:cgbmui > 2.0.co; 2 doi: 10.1130/0091-7613(2001)029<0515:cgbmui>2.0.co;2 |
Geng, Y. S., Kuang, H. W., Liu, Y. Q., et al., 2017. Subdivision and Correlation of the Mesoproterozoic Stratigraphy in the Western and Northern Margins of Yangtze Block. Acta Geologica Sinica, 91(10):2151-2174 (in Chinese with English Abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252701519.html |
Gibson, I. L., Kirkpatrick, R. J., Emmerman, R., et al., 1982. The Trace Element Composition of the Lavas and Dikes from a 3-km Vertical Section through the Lava Pile of Eastern Iceland. Journal of Geophysical Research:Solid Earth, 87(B8):6532-6546. https://doi.org/10.1029/jb087ib08p06532 |
Greentree, M. R., Li, Z. X., 2008. The Oldest Known Rocks in South-western China:SHRIMP U-Pb Magmatic Crystallisation Age and Detrital Provenance Analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences, 33(5/6):289-302. https://doi.org/10.1016/j.jseaes.2008.01.001 |
Greentree, M. R., Li, Z. X., Li, X. H., et al., 2006. Late Mesoproterozoic to Earliest Neoproterozoic Basin Record of the Sibao Orogenesis in Western South China and Relationship to the Assembly of Rodinia. Precambrian Research, 151(1/2):79-100. https://doi.org/10.1016/j.precamres.2006.08.002 |
Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust:A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7):643-646. https://doi.org/10.1130/g23603a.1 |
Guan, J. L., Zheng, L. L., Lui, J. H., et al., 2011. Zircons SHRIMP U-Pb Dating of Diabase from Hekou, Sichuan Province, China and Its Geological Significance. Acta Geologica Sinica, 85(4):482-490 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201104005.htm |
Han, Q. S., Peng, S. B., Polat, A., et al., 2019. Petrogenesis and Geochronology of Paleoproterozoic Magmatic Rocks in the Kongling Complex:Evidence for a Collisional Orogenic Event in the Yangtze Craton. Lithos, 342/343:513-529. https://doi.org/10.1016/j.lithos.2019.05.015 |
Hu, P. Y., Zhai, Q. G., Wang, J., et al., 2017. The Shimian Ophiolite in the Western Yangtze Block, SW China:Zircon SHRIMP U-Pb Ages, Geochemical and Hf-O Isotopic Characteristics, and Tectonic Implications. Precambrian Research, 298:107-122. https://doi.org/10.1016/j.precamres.2017.06.005 |
Huang, X. L., Xu, Y. G., Lan, J. B., et al., 2009. Neoproterozoic Adakitic Rocks from Mopanshan in the Western Yangtze Craton:Partial Melts of a Thickened Lower Crust. Lithos, 112(3/4):367-381. https://doi.org/10.1016/j.lithos.2009.03.028 |
Huang, X. L., Xu, Y. G., Li, X. H., et al., 2008. Petrogenesis and Tectonic Implications of Neoproterozoic, Highly Fractionated A-Type Granites from Mianning, South China. Precambrian Research, 165(3/4):190-204. https://doi.org/10.1016/j.precamres.2008.06.010 |
Hui, B., Dong, Y. P., Cheng, C., et al., 2017. Zircon U-Pb Chronology, Hf Isotope Analysis and Whole-Rock Geochemistry for the Neoarchean-Paleoproterozoic Yudongzi Complex, Northwestern Margin of the Yangtze Craton, China. Precambrian Research, 301:65-85. https://doi.org/10.1016/j.precamres.2017.09.003 |
Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814):980-983. https://doi.org/10.1126/science.1136154 |
Lai, S. C., Qin, J. F., Zhu, R. Z., et al., 2015. Neoproterozoic Quartz Monzodiorite-Granodiorite Association from the Luding-Kangding Area:Implications for the Interpretation of an Active Continental Margin along the Yangtze Block (South China Block). Precambrian Research, 267:196-208. https://doi.org/10.1016/j.precamres.2015.06.016 |
Li, F. H., Tan, J. M., Shen, Y. L., et al., 1988. The Pre-Sinian in the Kangdian Area. Chongqing Publishing House, Chongqing. 396 (in Chinese with English Abstract) |
Li, Q. W., Zhao, J. H., 2018a. Nature and Thermal State of the Lithosphere beneath the Western Margin of the Yangtze Block in South China during the Neoproterozoic. The Journal of Geology, 126(3):343-360. https://doi.org/10.1086/697306 |
Li, Q. W., Zhao, J. H., 2018b. The Neoproterozoic High-Mg Dioritic Dikes in South China Formed by High Pressures Fractional Crystallization of Hydrous Basaltic Melts. Precambrian Research, 309:198-211. https://doi.org/10.1016/j.precamres.2017.04.009 |
Li, X. H., Li, W. X., Li, Z. -X., et al., 2008.850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China:A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia. Lithos, 102(1/2):341-357. https://doi.org/10.1016/j.lithos.2007.04.007 |
Li, X. H., Li, Z. -X., Zhou, H. W., et al., 2002. U-Pb Zircon Geochronology, Geochemistry and Nd Isotopic Study of Neoproterozoic Bimodal Volcanic Rocks in the Kangdian Rift of South China:Implications for the Initial Rifting of Rodinia. Precambrian Research, 113(1/2):135-154. https://doi.org/10.1016/s0301-9268(01)00207-8 |
Li, X. H., Li, Z. X., Ge, W. C., et al., 2003. Neoproterozoic Granitoids in South China:Crustal Melting above a Mantle Plume at ca. 825 Ma?. Precambrian Research, 122(1-4):45-83. https://doi.org/10.1016/s0301-9268(02)00207-3 |
Li, Z. -X., Li, X. H., Kinny, P. D., et al., 1999. The Breakup of Rodinia:Did It Start with a Mantle Plume beneath South China?. Earth and Planetary Science Letters, 173(3):171-181. https://doi.org/10.1016/s0012-821x(99)00240-x |
Li, Z. -X., Li, X. H., Zhou, H. W., et al., 2002. Grenvillian Continental Collision in South China:New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2):163-166. https://doi.org/10.1130/0091-7613(2002)030 < 0163:gccisc > 2.0.co; 2 doi: 10.1130/0091-7613(2002)030<0163:gccisc>2.0.co;2 |
Li, Z. -X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents:Evidence for a Mantle Superplume That Broke up Rodinia. Precambrian Research, 122(1/2/3/4):85-109. https://doi.org/10.1016/s0301-9268(02)00208-5 |
Lu, G. M., Wang, W., Ernst, R. E., et al., 2019. Petrogenesis of Paleo-Mesoproterozoic Mafic Rocks in the Southwestern Yangtze Block of South China:Implications for Tectonic Evolution and Paleogeographic Reconstruction. Precambrian Research, 322:66-84. https://doi.org/10.1016/j.precamres.2018.12.019 |
Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley |
Mahoney, J. J., Saunders, A. D., Storey, M., et al., 2008. Geochemistry of the Volcan de L'Androy Basalt-Rhyolite Complex, Madagascar Cretaceous Igneous Province. Journal of Petrology, 49(6):1069-1096. https://doi.org/10.1093/petrology/egn018 |
Meng, E., Liu, F. L., Du, L. L., et al., 2015. Petrogenesis and Tectonic Significance of the Baoxing Granitic and Mafic Intrusions, Southwestern China:Evidence from Zircon U-Pb Dating and Lu-Hf Isotopes, and Whole-Rock Geochemistry. Gondwana Research, 28(2):800-815. https://doi.org/10.1016/j.gr.2014.07.003 |
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 |
Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 |
Peng, M., Wu, Y. B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Science Bulletin, 54(6):1098-1104. https://doi.org/10.1007/s11434-008-0558-0 |
Polat, A., Hofmann, A. W., Rosing, M. T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland:Geochemical Evidence for Intraoceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184:231-254 https://doi.org/10.1016/S0009-2541(01)00363-1 |
Qiu, X. F., Ling, W. L., Liu, X. M., et al., 2011. Recognition of Grenvillian Volcanic Suite in the Shennongjia Region and Its Tectonic Significance for the South China Craton. Precambrian Research, 191(3/4):101-119. https://doi.org/10.1016/j.precamres.2011.09.011 |
Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 Kbar:Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891 |
Sichuan Bureau of Geology (SBG), 1972. A Report of Regional Geological Survey in Yanbian Area of the People's Republic of China (Scale of 1: 200 000) (in Chinese) |
Smithies, R. H., 2000. The Archaean High-Mg Diorite Suite:Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archaean Crustal Growth. Journal of Petrology, 41(12):1653-1671. https://doi.org/10.1093/petrology/41.12.1653 |
Soesoo, A., 2000. Fractional Crystallization of Mantle-Derived Melts as a Mechanism for Some I-Type Granite Petrogenesis:An Example from Lachlan Fold Belt, Australia. Journal of the Geological Society, 157(1):135-149. https://doi.org/10.1144/jgs.157.1.135 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
Sun, W. H., Zhou, M. F., 2008. The~860 Ma, Cordilleran-Type Guandaoshan Dioritic Pluton in the Yangtze Block, SW China:Implications for the Origin of Neoproterozoic Magmatism. The Journal of Geology, 116(3):238-253. https://doi.org/10.1086/587881 |
Sun, W. H., Zhou, M. F., Zhao, J. H., 2007. Geochemistry and Tectonic Significance of Basaltic Lavas in the Neoproterozoic Yanbian Group, Southern Sichuan Province, Southwest China. International Geology Review, 49(6):554-571. https://doi.org/10.2747/0020-6814.49.6.554 |
Wang, D. B., Wang, B. D., Yin, F. G., et al., 2019. Petrogenesis and Tectonic Implications of Late Mesoproterozoic A1-and A2-Type Felsic Lavas from the Huili Group, Southwestern Yangtze Block. Geological Magazine, 156(8):1425-1439. https://doi.org/10.1017/s0016756818000882 |
Wang, K., Li, Z. X., Dong, S. W., et al., 2018. Early Crustal Evolution of the Yangtze Craton, South China:New Constraints from Zircon U-Pb-Hf Isotopes and Geochemistry of ca. 2.9-2.6 Ga Granitic Rocks in the Zhongxiang Complex. Precambrian Research, 314:325-352. https://doi.org/10.1016/j.precamres.2018.05.016 |
Wang, W., Zhou, M. F., Zhao, X. F., et al., 2014. Late Paleoproterozoic to Mesoproterozoic Rift Successions in SW China:Implication for the Yangtze Block-North Australia-Northwest Laurentia Connection in the Columbia Supercontinent. Sedimentary Geology, 309:33-47. https://doi.org/10.1016/j.sedgeo.2014.05.004 |
Wang, X. C., Li, X. H., Li, W. X., et al., 2008. The Bikou Basalts in the Northwestern Yangtze Block, South China:Remnants of 820-810 Ma Continental Flood Basalts?. Geological Society of America Bulletin, 120(11/12):1478-1492. https://doi.org/10.1130/b26310.1 |
Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2007. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen:Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1/2):117-131. https://doi.org/10.1016/j.precamres.2007.06.005 |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 |
Yan, D. P., Zhou, M. F., Song, H. L., et al., 2003. Origin and Tectonic Significance of a Mesozoic Multi-Layer Over-Thrust System within the Yangtze Block (South China). Tectonophysics, 361(3/4):239-254. https://doi.org/10.1016/s0040-1951(02)00646-7 |
Yang, Y. J., Zhu, W. G., Bai, Z. J., et al., 2016. Petrogenesis and Tectonic Implications of the Neoproterozoic Datian Mafic-Ultramafic Dykes in the Panzhihua Area, Western Yangtze Block, SW China. International Journal of Earth Sciences, 106(1):185-213. https://doi.org/10.1007/s00531-016-1310-7 |
Zhang, C. H., Gao, L. Z., Wu, Z. J., et al., 2007. SHRIMP U-Pb Zircon Age of Tuff from the Kunyang Group in Central Yunnan:Evidence for Grenvillian Orogeny in South China. Chinese Science Bulletin, 52(11):1517-1525. https://doi.org/10.1007/s11434-007-0225-x |
Zhang, L. J., Ma, C. Q., Wang, L. X., et al., 2011. Discovery of Paleoproterozoic Rapakivi Granite on the Northern Margin of the Yangtze Block and Its Geological Significance. Chinese Science Bulletin, 56(3):306-318. https://doi.org/10.1007/s11434-010-4236-7 |
Zhang, Z. Q., Zhang, G. W., Tang, S. H., et al., 2001. On the Age of Metamorphic Rocks of the Yudongzi Group and the Archean Crystalline Basement of the Qinling Orogen. Acta Geologica Sinica, 75:198-204 (in Chinese with English Abstract) http://www.researchgate.net/publication/284064541_On_the_age_of_metamorphic_rocks_of_the_Yudongzi_Group_and_the_Archean_crystalline_basement_of_the_Qinling_Orogen |
Zhao, G. C., 2015. Jiangnan Orogen in South China:Developing from Divergent Double Subduction. Gondwana Research, 27(3):1173-1180. https://doi.org/10.1016/j.gr.2014.09.004 |
Zhao, J. H., Asimow, P. D., Zhou, M. F., et al., 2017. An Andean-Type Arc System in Rodinia Constrained by the Neoproterozoic Shimian Ophiolite in South China. Precambrian Research, 296:93-111. https://doi.org/10.1016/j.precamres.2017.04.017 |
Zhao, J. H., Li, Q. W., Liu, H., et al., 2018. Neoproterozoic Magmatism in the Western and Northern Margins of the Yangtze Block (South China) Controlled by Slab Subduction and Subduction-Transform-Edge-Propagator. Earth- Science Reviews, 187:1-18. https://doi.org/10.1016/j.earscirev.2018.10.004 |
Zhao, J. H., Zhou, M. F., 2007a. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1/2):27-47. https://doi.org/10.1016/j.precamres.2006.09.002 |
Zhao, J. H., Zhou, M. F., 2007b. Neoproterozoic Adakitic Plutons and Arc Magmatism along the Western Margin of the Yangtze Block, South China. The Journal of Geology, 115(6):675-689. https://doi.org/10.1086/521610 |
Zhao, J. H., Zhou, M. F., 2008. Neoproterozoic Adakitic Plutons in the Northern Margin of the Yangtze Block, China:Partial Melting of a Thickened Lower Crust and Implications for Secular Crustal Evolution. Lithos, 104(1/2/3/4):231-248. https://doi.org/10.1016/j.lithos.2007.12.009 |
Zhao, J. H., Zhou, M. F., Wu, Y. B., et al., 2019. Coupled Evolution of Neoproterozoic Arc Mafic Magmatism and Mantle Wedge in the Western Margin of the South China Craton. Contributions to Mineralogy and Petrology, 174(4):36. https://doi.org/10.1007/s00410-019-1573-7 |
Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2008. Zircon Lu-Hf Isotopic Constraints on Neoproterozoic Subduction-Related Crustal Growth along the Western Margin of the Yangtze Block, South China. Precambrian Research, 163(3/4):189-209. https://doi.org/10.1016/j.precamres.2007.11.003 |
Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China:No Connection with the Grenvillian Orogeny. Geology, 39(4):299-302. https://doi.org/10.1130/g31701.1 |
Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2008. Association of Neoproterozoic A-and I-Type Granites in South China:Implications for Generation of A-Type Granites in a Subduction-Related Environment. Chemical Geology, 257(1/2):1-15. https://doi.org/10.1016/j.chemgeo.2008.07.018 |
Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China:Implications for Tectonic Evolution of the Yangtze Block. Precambrian Research, 182(1/2):57-69. https://doi.org/10.1016/j.precamres.2010.06.021 |
Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China:Implications for Growth and Reworking of Continental Crust. Lithos, 96(1/2):127-150. https://doi.org/10.1016/j.lithos.2006.10.003 |
Zhou, B. G., Wang, S. W., Sun, X. M., et al., 2012. SHRIMP U-Pb Age and Its Significance of Zircons in Welded Tuff of Wangchang Formation in Dongchuan Area, Yunnan Province, SW China. Geological Review, 58(2):359-368 (in Chinese with English Abstract) http://www.researchgate.net/publication/285015332_SHRIMP_U-Pb_age_and_its_significance_of_zircons_in_welded_tuff_of_Wangchang_Formation_in_Dongchuan_area_Yunnan_Province_SW_China?ev=auth_pub |
Zhou, G. Y., Wu, Y. B., Wang, H., et al., 2017. Petrogenesis of the Huashanguan A-Type Granite Complex and Its Implications for the Early Evolution of the Yangtze Block. Precambrian Research, 292:57-74. https://doi.org/10.1016/j.precamres.2017.02.005 |
Zhou, G. Y., Wu, Y. B., Zhang, W. X., et al., 2019. Circa 900 Ma Low δ18O A-Type Rhyolite in the Northern Yangtze Block:Genesis and Geological Significance. Precambrian Research, 324:155-169. https://doi.org/10.1016/j.precamres.2019.01.015 |
Zhou, M. F., Kennedy, A. K., Sun, M., et al., 2002a. Neoproterozoic Arc-Related Mafic Intrusions along the Northern Margin of South China:Implications for the Accretion of Rodinia. The Journal of Geology, 110(5):611-618. https://doi.org/10.1086/341762 |
Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002b. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1/2):51-67. https://doi.org/10.1016/s0012-821x(01)00595-7 |
Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006a. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China):Implications for the Tectonic Setting of the Giant Neoprotero-zoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1/2):286-300. https://doi.org/10.1016/j.epsl.2006.05.032 |
Zhou, M. F., Ma, Y., Yan, D., et al., 2006b. The Yanbian Terrane (Southern Sichuan Province, SW China):A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 144(1/2):19-38. https://doi.org/10.1016/j.precamres.2005.11.002 |
Zhu, W. G., Zhong, H., Li, Z. X., et al., 2016. SIMS Zircon U-Pb Ages, Geochemistry and Nd-Hf Isotopes of ca. 1.0 Ga Mafic Dykes and Volcanic Rocks in the Huili Area, SW China:Origin and Tectonic Significance. Precambrian Research, 273:67-89. https://doi.org/10.1016/j.precamres.2015.12.011 |
Zhu, Y., Lai, S. C., Qin, J. F., et al., 2019a. Petrogenesis and Geodynamic Implications of Neoproterozoic Gabbro-Diorites, Adakitic Granites, and A-Type Granites in the Southwestern Margin of the Yangtze Block, South China. Journal of Asian Earth Sciences, 183:103977. https://doi.org/10.1016/j.jseaes.2019.103977 |
Zhu, Y., Lai, S. C., Qin, J. F., et al., 2019b. Neoproterozoic Peraluminous Granites in the Western Margin of the Yangtze Block, South China:Implications for the Reworking of Mature Continental Crust. Precambrian Research, 333:105443. https://doi.org/10.1016/j.precamres.2019.105443 |
Zhu, Y., Lai, S. C., Qin, J. F., et al., 2019c. Geochemistry and Zircon U-Pb-Hf Isotopes of the 780 Ma I-Type Granites in the Western Yangtze Block:Petrogenesis and Crustal Evolution. International Geology Review, 61(10):1222-1243. https://doi.org/10.1080/00206814.2018.1504330 |
Zhu, Y., Lai, S. C., Qin, J. F., et al., 2020a. Genesis of ca. 850-835 Ma High-Mg# Diorites in the Western Yangtze Block, South China:Implications for Mantle Metasomatism under the Subduction Process. Precambrian Research, 343:105738. https://doi.org/10.1016/j.precamres.2020.105738 |
Zhu, Y., Lai, S. C., Qin, J. F., et al., 2020b. Petrogenesis and Geochemical Diversity of Late Mesoproterozoic S-Type Granites in the Western Yangtze Block, South China:Co-Entrainment of Peritectic Selective Phases and Accessory Minerals. Lithos, 352/353:105326. https://doi.org/10.1016/j.lithos.2019.105326 |
Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia:The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290:32-48. https://doi.org/10.1016/j.precamres.2016.12.010 |