Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 6
Dec 2020
Turn off MathJax
Article Contents
Jibiao Zhang, Xiaozhong Ding, Yanxue Liu, Heng Zhang, Chenglong Shi, Yu Zou. Geochronology and Geochemistry of the 890 Ma I-Type Granites in the Southwestern Yangtze Block: Petrogenesis and Crustal Evolution. Journal of Earth Science, 2020, 31(6): 1216-1228. doi: 10.1007/s12583-020-1339-1
Citation: Jibiao Zhang, Xiaozhong Ding, Yanxue Liu, Heng Zhang, Chenglong Shi, Yu Zou. Geochronology and Geochemistry of the 890 Ma I-Type Granites in the Southwestern Yangtze Block: Petrogenesis and Crustal Evolution. Journal of Earth Science, 2020, 31(6): 1216-1228. doi: 10.1007/s12583-020-1339-1

Geochronology and Geochemistry of the 890 Ma I-Type Granites in the Southwestern Yangtze Block: Petrogenesis and Crustal Evolution

doi: 10.1007/s12583-020-1339-1
More Information
  • The tectonic evolution of the southwestern Yangtze Block during the Early Neoproterozoic period is still controversial because of the limited quantities of 1 000-860 Ma magmatic rocks. In this study, our new LA-ICP-MS zircon U-Pb dating results demonstrate that the Yanbian granodiorites in the southwest Yangtze Block were emplaced at 894.6±7.4 Ma, representing the product of an 894 Ma magmatism. The Yanbian granodiorites are metaluminous to weak peraluminous with A/CNK values of 0.8-1.1, resembling I-type granitoids. They are characterized by right-inclined REE patterns with moderate to insignificant negative Eu anomalies (δEu=0.6-0.9). Their primitive mantle-normalized trace element patterns are characterized by depletion of Nb, Ta and Ti and weakly enrichment of Th. Considering the positive whole-rock εNd(t) (+5.8 to +6.8), we propose that these granodiorites originated from the partial melting of juvenile mafic lower crust. The Yanbian I-type granitoids have low Y and Nb contents similar to volcanic arc igneous rocks in the Y-Nb plot for tectonic discrimination. In conclusion, Early Neoproterozoic Yanbian granodiorites have generated in a compression setting in an active continental margin. Together with previous studies from the southwestern Yangtze Block, we suggest that the 894 Ma subduction-related Yanbian granodiorites represent the early stage of subduction at the southwestern margin of the Yangtze Block.

     

  • loading
  • Bédard, J. H., 1999. Petrogenesis of Boninites from the Betts Cove Ophiolite, Newfoundland, Canada:Identification of Subducted Source Components. Journal of Petrology, 40(12):1853-1889. https://doi.org/10.1093/petroj/40.12.1853
    Chen, W. T., Sun, W. H., Wang, W., et al., 2014. "Grenvillian" Intra-Plate Mafic Magmatism in the Southwestern Yangtze Block, SW China. Precambrian Research, 242:138-153. https://doi.org/10.1016/j.precamres.2013.12.019
    Chen, W. T., Sun, W. H., Zhou, M. F., et al., 2018. Ca. 1 050 Ma Intra-Continental Rift-Related A-Type Felsic Rocks in the Southwestern Yangtze Block, South China. Precambrian Research, 309:22-44. https://doi.org/10.1016/j.precamres.2017.02.011
    Chen, W. T., Zhou, M. F., Zhao, X. F., et al., 2013. Late Paleoproterozoic Sedimentary and Mafic Rocks in the Hekou Area, SW China:Implication for the Reconstruction of the Yangtze Block in Columbia. Precambrian Research, 231:61-77. https://doi.org/10.1016/j.precamres.2013.03.011
    Clemens, J. D., Darbyshire, D. P. F., Flinders, J., 2009. Sources of Post-Orogenic Calcalkaline Magmas:The Arrochar and Garabal Hill-Glen Fyne Complexes, Scotland. Lithos, 112(3/4):524-542. https://doi.org/10.1016/j.lithos.2009.03.026
    Clemens, J., 2003. S-Type Granitic Magmas-Petrogenetic Issues, Models and Evidence. Earth-Science Reviews, 61(1/2):1-18. https://doi.org/10.1016/s0012-8252(02)00107-1
    Cui, X. Z., Jiang, X. S., Wang, J., et al., 2015. Mid-Neoproterozoic Diabase Dykes from Xide in the Western Yangtze Block, South China:New Evidence for Continental Rifting Related to the Breakup of Rodinia Supercontinent. Precambrian Research, 268:339-356. https://doi.org/10.1016/j.precamres.2015.07.017
    Deng, S. X., 2000. The Evolution of Metamorphism and Geochemistry for the Cangshan and Julin Groups in Central Yunnan, China: [Dissertation]. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou. 41-49 (in Chinese with English Abstract)
    Du, L. L., Guo, J. H., Nutman, A. P., et al., 2014. Implications for Rodinia Reconstructions for the Initiation of Neoproterozoic Subduction at~860 Ma on the Western Margin of the Yangtze Block:Evidence from the Guandaoshan Pluton. Lithos, 196/197:67-82. https://doi.org/10.1016/j.lithos.2014.03.002
    Frost, C. D., Bell, J. M., Frost, B. R., et al., 2001. Crustal Growth by Magmatic Underplating:Isotopic Evidence from the Northern Sherman Batholith. Geology, 29(6):515-518. https://doi.org/10.1130/0091-7613(2001)029 < 0515:cgbmui > 2.0.co; 2 doi: 10.1130/0091-7613(2001)029<0515:cgbmui>2.0.co;2
    Geng, Y. S., Kuang, H. W., Liu, Y. Q., et al., 2017. Subdivision and Correlation of the Mesoproterozoic Stratigraphy in the Western and Northern Margins of Yangtze Block. Acta Geologica Sinica, 91(10):2151-2174 (in Chinese with English Abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252701519.html
    Gibson, I. L., Kirkpatrick, R. J., Emmerman, R., et al., 1982. The Trace Element Composition of the Lavas and Dikes from a 3-km Vertical Section through the Lava Pile of Eastern Iceland. Journal of Geophysical Research:Solid Earth, 87(B8):6532-6546. https://doi.org/10.1029/jb087ib08p06532
    Greentree, M. R., Li, Z. X., 2008. The Oldest Known Rocks in South-western China:SHRIMP U-Pb Magmatic Crystallisation Age and Detrital Provenance Analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences, 33(5/6):289-302. https://doi.org/10.1016/j.jseaes.2008.01.001
    Greentree, M. R., Li, Z. X., Li, X. H., et al., 2006. Late Mesoproterozoic to Earliest Neoproterozoic Basin Record of the Sibao Orogenesis in Western South China and Relationship to the Assembly of Rodinia. Precambrian Research, 151(1/2):79-100. https://doi.org/10.1016/j.precamres.2006.08.002
    Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust:A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7):643-646. https://doi.org/10.1130/g23603a.1
    Guan, J. L., Zheng, L. L., Lui, J. H., et al., 2011. Zircons SHRIMP U-Pb Dating of Diabase from Hekou, Sichuan Province, China and Its Geological Significance. Acta Geologica Sinica, 85(4):482-490 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201104005.htm
    Han, Q. S., Peng, S. B., Polat, A., et al., 2019. Petrogenesis and Geochronology of Paleoproterozoic Magmatic Rocks in the Kongling Complex:Evidence for a Collisional Orogenic Event in the Yangtze Craton. Lithos, 342/343:513-529. https://doi.org/10.1016/j.lithos.2019.05.015
    Hu, P. Y., Zhai, Q. G., Wang, J., et al., 2017. The Shimian Ophiolite in the Western Yangtze Block, SW China:Zircon SHRIMP U-Pb Ages, Geochemical and Hf-O Isotopic Characteristics, and Tectonic Implications. Precambrian Research, 298:107-122. https://doi.org/10.1016/j.precamres.2017.06.005
    Huang, X. L., Xu, Y. G., Lan, J. B., et al., 2009. Neoproterozoic Adakitic Rocks from Mopanshan in the Western Yangtze Craton:Partial Melts of a Thickened Lower Crust. Lithos, 112(3/4):367-381. https://doi.org/10.1016/j.lithos.2009.03.028
    Huang, X. L., Xu, Y. G., Li, X. H., et al., 2008. Petrogenesis and Tectonic Implications of Neoproterozoic, Highly Fractionated A-Type Granites from Mianning, South China. Precambrian Research, 165(3/4):190-204. https://doi.org/10.1016/j.precamres.2008.06.010
    Hui, B., Dong, Y. P., Cheng, C., et al., 2017. Zircon U-Pb Chronology, Hf Isotope Analysis and Whole-Rock Geochemistry for the Neoarchean-Paleoproterozoic Yudongzi Complex, Northwestern Margin of the Yangtze Craton, China. Precambrian Research, 301:65-85. https://doi.org/10.1016/j.precamres.2017.09.003
    Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814):980-983. https://doi.org/10.1126/science.1136154
    Lai, S. C., Qin, J. F., Zhu, R. Z., et al., 2015. Neoproterozoic Quartz Monzodiorite-Granodiorite Association from the Luding-Kangding Area:Implications for the Interpretation of an Active Continental Margin along the Yangtze Block (South China Block). Precambrian Research, 267:196-208. https://doi.org/10.1016/j.precamres.2015.06.016
    Li, F. H., Tan, J. M., Shen, Y. L., et al., 1988. The Pre-Sinian in the Kangdian Area. Chongqing Publishing House, Chongqing. 396 (in Chinese with English Abstract)
    Li, Q. W., Zhao, J. H., 2018a. Nature and Thermal State of the Lithosphere beneath the Western Margin of the Yangtze Block in South China during the Neoproterozoic. The Journal of Geology, 126(3):343-360. https://doi.org/10.1086/697306
    Li, Q. W., Zhao, J. H., 2018b. The Neoproterozoic High-Mg Dioritic Dikes in South China Formed by High Pressures Fractional Crystallization of Hydrous Basaltic Melts. Precambrian Research, 309:198-211. https://doi.org/10.1016/j.precamres.2017.04.009
    Li, X. H., Li, W. X., Li, Z. -X., et al., 2008.850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China:A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia. Lithos, 102(1/2):341-357. https://doi.org/10.1016/j.lithos.2007.04.007
    Li, X. H., Li, Z. -X., Zhou, H. W., et al., 2002. U-Pb Zircon Geochronology, Geochemistry and Nd Isotopic Study of Neoproterozoic Bimodal Volcanic Rocks in the Kangdian Rift of South China:Implications for the Initial Rifting of Rodinia. Precambrian Research, 113(1/2):135-154. https://doi.org/10.1016/s0301-9268(01)00207-8
    Li, X. H., Li, Z. X., Ge, W. C., et al., 2003. Neoproterozoic Granitoids in South China:Crustal Melting above a Mantle Plume at ca. 825 Ma?. Precambrian Research, 122(1-4):45-83. https://doi.org/10.1016/s0301-9268(02)00207-3
    Li, Z. -X., Li, X. H., Kinny, P. D., et al., 1999. The Breakup of Rodinia:Did It Start with a Mantle Plume beneath South China?. Earth and Planetary Science Letters, 173(3):171-181. https://doi.org/10.1016/s0012-821x(99)00240-x
    Li, Z. -X., Li, X. H., Zhou, H. W., et al., 2002. Grenvillian Continental Collision in South China:New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2):163-166. https://doi.org/10.1130/0091-7613(2002)030 < 0163:gccisc > 2.0.co; 2 doi: 10.1130/0091-7613(2002)030<0163:gccisc>2.0.co;2
    Li, Z. -X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents:Evidence for a Mantle Superplume That Broke up Rodinia. Precambrian Research, 122(1/2/3/4):85-109. https://doi.org/10.1016/s0301-9268(02)00208-5
    Lu, G. M., Wang, W., Ernst, R. E., et al., 2019. Petrogenesis of Paleo-Mesoproterozoic Mafic Rocks in the Southwestern Yangtze Block of South China:Implications for Tectonic Evolution and Paleogeographic Reconstruction. Precambrian Research, 322:66-84. https://doi.org/10.1016/j.precamres.2018.12.019
    Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley
    Mahoney, J. J., Saunders, A. D., Storey, M., et al., 2008. Geochemistry of the Volcan de L'Androy Basalt-Rhyolite Complex, Madagascar Cretaceous Igneous Province. Journal of Petrology, 49(6):1069-1096. https://doi.org/10.1093/petrology/egn018
    Meng, E., Liu, F. L., Du, L. L., et al., 2015. Petrogenesis and Tectonic Significance of the Baoxing Granitic and Mafic Intrusions, Southwestern China:Evidence from Zircon U-Pb Dating and Lu-Hf Isotopes, and Whole-Rock Geochemistry. Gondwana Research, 28(2):800-815. https://doi.org/10.1016/j.gr.2014.07.003
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
    Peng, M., Wu, Y. B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Science Bulletin, 54(6):1098-1104. https://doi.org/10.1007/s11434-008-0558-0
    Polat, A., Hofmann, A. W., Rosing, M. T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland:Geochemical Evidence for Intraoceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184:231-254 https://doi.org/10.1016/S0009-2541(01)00363-1
    Qiu, X. F., Ling, W. L., Liu, X. M., et al., 2011. Recognition of Grenvillian Volcanic Suite in the Shennongjia Region and Its Tectonic Significance for the South China Craton. Precambrian Research, 191(3/4):101-119. https://doi.org/10.1016/j.precamres.2011.09.011
    Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 Kbar:Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891
    Sichuan Bureau of Geology (SBG), 1972. A Report of Regional Geological Survey in Yanbian Area of the People's Republic of China (Scale of 1: 200 000) (in Chinese)
    Smithies, R. H., 2000. The Archaean High-Mg Diorite Suite:Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archaean Crustal Growth. Journal of Petrology, 41(12):1653-1671. https://doi.org/10.1093/petrology/41.12.1653
    Soesoo, A., 2000. Fractional Crystallization of Mantle-Derived Melts as a Mechanism for Some I-Type Granite Petrogenesis:An Example from Lachlan Fold Belt, Australia. Journal of the Geological Society, 157(1):135-149. https://doi.org/10.1144/jgs.157.1.135
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Sun, W. H., Zhou, M. F., 2008. The~860 Ma, Cordilleran-Type Guandaoshan Dioritic Pluton in the Yangtze Block, SW China:Implications for the Origin of Neoproterozoic Magmatism. The Journal of Geology, 116(3):238-253. https://doi.org/10.1086/587881
    Sun, W. H., Zhou, M. F., Zhao, J. H., 2007. Geochemistry and Tectonic Significance of Basaltic Lavas in the Neoproterozoic Yanbian Group, Southern Sichuan Province, Southwest China. International Geology Review, 49(6):554-571. https://doi.org/10.2747/0020-6814.49.6.554
    Wang, D. B., Wang, B. D., Yin, F. G., et al., 2019. Petrogenesis and Tectonic Implications of Late Mesoproterozoic A1-and A2-Type Felsic Lavas from the Huili Group, Southwestern Yangtze Block. Geological Magazine, 156(8):1425-1439. https://doi.org/10.1017/s0016756818000882
    Wang, K., Li, Z. X., Dong, S. W., et al., 2018. Early Crustal Evolution of the Yangtze Craton, South China:New Constraints from Zircon U-Pb-Hf Isotopes and Geochemistry of ca. 2.9-2.6 Ga Granitic Rocks in the Zhongxiang Complex. Precambrian Research, 314:325-352. https://doi.org/10.1016/j.precamres.2018.05.016
    Wang, W., Zhou, M. F., Zhao, X. F., et al., 2014. Late Paleoproterozoic to Mesoproterozoic Rift Successions in SW China:Implication for the Yangtze Block-North Australia-Northwest Laurentia Connection in the Columbia Supercontinent. Sedimentary Geology, 309:33-47. https://doi.org/10.1016/j.sedgeo.2014.05.004
    Wang, X. C., Li, X. H., Li, W. X., et al., 2008. The Bikou Basalts in the Northwestern Yangtze Block, South China:Remnants of 820-810 Ma Continental Flood Basalts?. Geological Society of America Bulletin, 120(11/12):1478-1492. https://doi.org/10.1130/b26310.1
    Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2007. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen:Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1/2):117-131. https://doi.org/10.1016/j.precamres.2007.06.005
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
    Yan, D. P., Zhou, M. F., Song, H. L., et al., 2003. Origin and Tectonic Significance of a Mesozoic Multi-Layer Over-Thrust System within the Yangtze Block (South China). Tectonophysics, 361(3/4):239-254. https://doi.org/10.1016/s0040-1951(02)00646-7
    Yang, Y. J., Zhu, W. G., Bai, Z. J., et al., 2016. Petrogenesis and Tectonic Implications of the Neoproterozoic Datian Mafic-Ultramafic Dykes in the Panzhihua Area, Western Yangtze Block, SW China. International Journal of Earth Sciences, 106(1):185-213. https://doi.org/10.1007/s00531-016-1310-7
    Zhang, C. H., Gao, L. Z., Wu, Z. J., et al., 2007. SHRIMP U-Pb Zircon Age of Tuff from the Kunyang Group in Central Yunnan:Evidence for Grenvillian Orogeny in South China. Chinese Science Bulletin, 52(11):1517-1525. https://doi.org/10.1007/s11434-007-0225-x
    Zhang, L. J., Ma, C. Q., Wang, L. X., et al., 2011. Discovery of Paleoproterozoic Rapakivi Granite on the Northern Margin of the Yangtze Block and Its Geological Significance. Chinese Science Bulletin, 56(3):306-318. https://doi.org/10.1007/s11434-010-4236-7
    Zhang, Z. Q., Zhang, G. W., Tang, S. H., et al., 2001. On the Age of Metamorphic Rocks of the Yudongzi Group and the Archean Crystalline Basement of the Qinling Orogen. Acta Geologica Sinica, 75:198-204 (in Chinese with English Abstract) http://www.researchgate.net/publication/284064541_On_the_age_of_metamorphic_rocks_of_the_Yudongzi_Group_and_the_Archean_crystalline_basement_of_the_Qinling_Orogen
    Zhao, G. C., 2015. Jiangnan Orogen in South China:Developing from Divergent Double Subduction. Gondwana Research, 27(3):1173-1180. https://doi.org/10.1016/j.gr.2014.09.004
    Zhao, J. H., Asimow, P. D., Zhou, M. F., et al., 2017. An Andean-Type Arc System in Rodinia Constrained by the Neoproterozoic Shimian Ophiolite in South China. Precambrian Research, 296:93-111. https://doi.org/10.1016/j.precamres.2017.04.017
    Zhao, J. H., Li, Q. W., Liu, H., et al., 2018. Neoproterozoic Magmatism in the Western and Northern Margins of the Yangtze Block (South China) Controlled by Slab Subduction and Subduction-Transform-Edge-Propagator. Earth- Science Reviews, 187:1-18. https://doi.org/10.1016/j.earscirev.2018.10.004
    Zhao, J. H., Zhou, M. F., 2007a. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1/2):27-47. https://doi.org/10.1016/j.precamres.2006.09.002
    Zhao, J. H., Zhou, M. F., 2007b. Neoproterozoic Adakitic Plutons and Arc Magmatism along the Western Margin of the Yangtze Block, South China. The Journal of Geology, 115(6):675-689. https://doi.org/10.1086/521610
    Zhao, J. H., Zhou, M. F., 2008. Neoproterozoic Adakitic Plutons in the Northern Margin of the Yangtze Block, China:Partial Melting of a Thickened Lower Crust and Implications for Secular Crustal Evolution. Lithos, 104(1/2/3/4):231-248. https://doi.org/10.1016/j.lithos.2007.12.009
    Zhao, J. H., Zhou, M. F., Wu, Y. B., et al., 2019. Coupled Evolution of Neoproterozoic Arc Mafic Magmatism and Mantle Wedge in the Western Margin of the South China Craton. Contributions to Mineralogy and Petrology, 174(4):36. https://doi.org/10.1007/s00410-019-1573-7
    Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2008. Zircon Lu-Hf Isotopic Constraints on Neoproterozoic Subduction-Related Crustal Growth along the Western Margin of the Yangtze Block, South China. Precambrian Research, 163(3/4):189-209. https://doi.org/10.1016/j.precamres.2007.11.003
    Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China:No Connection with the Grenvillian Orogeny. Geology, 39(4):299-302. https://doi.org/10.1130/g31701.1
    Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2008. Association of Neoproterozoic A-and I-Type Granites in South China:Implications for Generation of A-Type Granites in a Subduction-Related Environment. Chemical Geology, 257(1/2):1-15. https://doi.org/10.1016/j.chemgeo.2008.07.018
    Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China:Implications for Tectonic Evolution of the Yangtze Block. Precambrian Research, 182(1/2):57-69. https://doi.org/10.1016/j.precamres.2010.06.021
    Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China:Implications for Growth and Reworking of Continental Crust. Lithos, 96(1/2):127-150. https://doi.org/10.1016/j.lithos.2006.10.003
    Zhou, B. G., Wang, S. W., Sun, X. M., et al., 2012. SHRIMP U-Pb Age and Its Significance of Zircons in Welded Tuff of Wangchang Formation in Dongchuan Area, Yunnan Province, SW China. Geological Review, 58(2):359-368 (in Chinese with English Abstract) http://www.researchgate.net/publication/285015332_SHRIMP_U-Pb_age_and_its_significance_of_zircons_in_welded_tuff_of_Wangchang_Formation_in_Dongchuan_area_Yunnan_Province_SW_China?ev=auth_pub
    Zhou, G. Y., Wu, Y. B., Wang, H., et al., 2017. Petrogenesis of the Huashanguan A-Type Granite Complex and Its Implications for the Early Evolution of the Yangtze Block. Precambrian Research, 292:57-74. https://doi.org/10.1016/j.precamres.2017.02.005
    Zhou, G. Y., Wu, Y. B., Zhang, W. X., et al., 2019. Circa 900 Ma Low δ18O A-Type Rhyolite in the Northern Yangtze Block:Genesis and Geological Significance. Precambrian Research, 324:155-169. https://doi.org/10.1016/j.precamres.2019.01.015
    Zhou, M. F., Kennedy, A. K., Sun, M., et al., 2002a. Neoproterozoic Arc-Related Mafic Intrusions along the Northern Margin of South China:Implications for the Accretion of Rodinia. The Journal of Geology, 110(5):611-618. https://doi.org/10.1086/341762
    Zhou, M. F., Yan, D. P., Kennedy, A. K., et al., 2002b. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1/2):51-67. https://doi.org/10.1016/s0012-821x(01)00595-7
    Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006a. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China):Implications for the Tectonic Setting of the Giant Neoprotero-zoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1/2):286-300. https://doi.org/10.1016/j.epsl.2006.05.032
    Zhou, M. F., Ma, Y., Yan, D., et al., 2006b. The Yanbian Terrane (Southern Sichuan Province, SW China):A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 144(1/2):19-38. https://doi.org/10.1016/j.precamres.2005.11.002
    Zhu, W. G., Zhong, H., Li, Z. X., et al., 2016. SIMS Zircon U-Pb Ages, Geochemistry and Nd-Hf Isotopes of ca. 1.0 Ga Mafic Dykes and Volcanic Rocks in the Huili Area, SW China:Origin and Tectonic Significance. Precambrian Research, 273:67-89. https://doi.org/10.1016/j.precamres.2015.12.011
    Zhu, Y., Lai, S. C., Qin, J. F., et al., 2019a. Petrogenesis and Geodynamic Implications of Neoproterozoic Gabbro-Diorites, Adakitic Granites, and A-Type Granites in the Southwestern Margin of the Yangtze Block, South China. Journal of Asian Earth Sciences, 183:103977. https://doi.org/10.1016/j.jseaes.2019.103977
    Zhu, Y., Lai, S. C., Qin, J. F., et al., 2019b. Neoproterozoic Peraluminous Granites in the Western Margin of the Yangtze Block, South China:Implications for the Reworking of Mature Continental Crust. Precambrian Research, 333:105443. https://doi.org/10.1016/j.precamres.2019.105443
    Zhu, Y., Lai, S. C., Qin, J. F., et al., 2019c. Geochemistry and Zircon U-Pb-Hf Isotopes of the 780 Ma I-Type Granites in the Western Yangtze Block:Petrogenesis and Crustal Evolution. International Geology Review, 61(10):1222-1243. https://doi.org/10.1080/00206814.2018.1504330
    Zhu, Y., Lai, S. C., Qin, J. F., et al., 2020a. Genesis of ca. 850-835 Ma High-Mg# Diorites in the Western Yangtze Block, South China:Implications for Mantle Metasomatism under the Subduction Process. Precambrian Research, 343:105738. https://doi.org/10.1016/j.precamres.2020.105738
    Zhu, Y., Lai, S. C., Qin, J. F., et al., 2020b. Petrogenesis and Geochemical Diversity of Late Mesoproterozoic S-Type Granites in the Western Yangtze Block, South China:Co-Entrainment of Peritectic Selective Phases and Accessory Minerals. Lithos, 352/353:105326. https://doi.org/10.1016/j.lithos.2019.105326
    Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia:The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290:32-48. https://doi.org/10.1016/j.precamres.2016.12.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views(220) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return