Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 6
Dec 2020
Turn off MathJax
Article Contents
Kouqi Liu, Natalia Zakharova, Thomas Gentzis, Adedoyin Adeyilola, Humberto Carvajal-Ortiz, Hallie Fowler. Microstructure Characterization of a Biogenic Shale Gas Formation—Insights from the Antrim Shale, Michigan Basin. Journal of Earth Science, 2020, 31(6): 1229-1240. doi: 10.1007/s12583-020-1344-4
Citation: Kouqi Liu, Natalia Zakharova, Thomas Gentzis, Adedoyin Adeyilola, Humberto Carvajal-Ortiz, Hallie Fowler. Microstructure Characterization of a Biogenic Shale Gas Formation—Insights from the Antrim Shale, Michigan Basin. Journal of Earth Science, 2020, 31(6): 1229-1240. doi: 10.1007/s12583-020-1344-4

Microstructure Characterization of a Biogenic Shale Gas Formation—Insights from the Antrim Shale, Michigan Basin

doi: 10.1007/s12583-020-1344-4
More Information
  • Corresponding author: Liu Kouqi, liu3k@cmich.edu
  • Received Date: 15 Dec 2019
  • Accepted Date: 01 May 2020
  • Publish Date: 18 Dec 2020
  • Biogenic gas shales, predominantly microbial in origin, form an important class of organic-rich shale reservoirs with a significant economic potential. Yet large gaps remain in the understanding of their gas generation, storage, and transport mechanisms, as previous studies have been largely focused on mature thermogenic shale reservoirs. In this study, the pore structure of 18 Antrim Shale samples was characterized using gas adsorption (CO2 and N2). The results show that most of the Antrim Shale samples are rich in organic matter content (0.58 wt.% to 14.15 wt.%), with highest values found in the Lachine and Norwood members. Samples from the Paxton Member, characterized by lower organic content, have smaller micropore surface area and micropore volume but larger meso-macro pore surface area and volume. The deconvolution results of the pore size distribution from the N2 adsorption indicate that all of the tested Antrim Shale samples have similar pore groups. Organic matter in the Antrim Shale hosts micro pores instead of meso-macro pores, while clay minerals host both micro and meso-macro pores. Mineral-related pores play a primary role in the total porosity. The biogenic Antrim Shale, therefore, has different pore structures from other well-studied thermogenic gas shales worldwide.

     

  • loading
  • Chalmers, G.R., Bustin, R.M., Power, I.M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6):1099-1119. https://doi.org/10.1306/10171111052
    Chen, J., Xiao, X. M., 2014. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation. Fuel, 129:173-181. https://doi.org/10.1016/j.fuel.2014.03.058
    Clarkson, C. R., Solano, N., Bustin, R. M., et al., 2013. Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion. Fuel, 103:606-616. https://doi.org/10.1016/j.fuel.2012.06.119
    Colosimo, F., Thomas, R., Lloyd, J. R., et al., 2016. Biogenic Methane in Shale Gas and Coal Bed Methane:A Review of Current Knowledge and Gaps. International Journal of Coal Geology, 165:106-120. https://doi.org/10.1016/j.coal.2016.08.011
    Currie, B. J., 2016. Stratigraphy of the Upper Devonian-Lower Mississippian Michigan Basin: Review and Revision with an Emphasis on the Ellsworth Petroleum System: [Dissertation]. Geological and Environmental Sciences, Western Michigan University, Kalamazoo
    Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86(11):1921-1938 http://www.nrcresearchpress.com/servlet/linkout?suffix=refg13/ref13&dbid=16&doi=10.1139%2Fcjes-2014-0188&key=10.1306%2F61EEDDBE-173E-11D7-8645000102C1865D
    Do, D. D., Do, H. D., 2003. Pore Characterization of Carbonaceous Materials by DFT and GCMC Simulations:A Review. Adsorption Science & Technology, 21(5):389-423. https://doi.org/10.1260/026361703769645753
    Garrido, J., Linares-Solano, A., Martin-Martinez, J. M., et al., 1987. Use of Nitrogen vs. Carbon Dioxide in the Characterization of Activated Carbons. Langmuir, 3(1):76-81. https://doi.org/10.1021/la00073a013
    Groen, J. C., Peffer, L. A. A., Pérez-Ramı́rez, J., 2003. Pore Size Determination in Modified Micro-and Mesoporous Materials. Pitfalls and Limitations in Gas Adsorption Data Analysis. Microporous and Mesoporous Materials, 60(1/2/3):1-17. https://doi.org/10.1016/s1387-1811(03)00339-1
    Hill, R. J., Tang, Y. C., Kaplan, I. R., 2003. Insights into Oil Cracking Based on Laboratory Experiments. Organic Geochemistry, 34(12):1651-1672. https://doi.org/10.1016/s0146-6380(03)00173-6
    Hopkins, C. W., Frantz, J. H. Jr, Hill, D. G., et al., 1995. Estimating Fracture Geometry in the Naturally Fractured Antrim Shale. In: SPE Annual Technical Conference and Exhibition. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Oct. 22-25, Dallas, Texas
    Jarvie, D. M., Claxton, B. L., Henk, F., et al., 2001. Oil and Shale Gas from the Barnett Shale, Ft. Worth Basin, Texas. Talk Presented at the AAPG National Convention, Jun. 3-6, 2001, Denver, CO
    Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4):475-499. https://doi.org/10.1306/12190606068
    Ji, L. M., Su, L., Wu, Y. D., et al., 2017. Pore Evolution in Hydrocarbon-Generation Simulation of Organic Matter-Rich Muddy Shale. Petroleum Research, 2(2):146-155. https://doi.org/10.1016/j.ptlrs.2017.07.002
    Jia, B., Tsau, J. S., Barati, R., 2019. A Review of the Current Progress of CO2 Injection EOR and Carbon Storage in Shale Oil Reservoirs. Fuel, 236:404-427. https://doi.org/10.1016/j.fuel.2018.08.103
    Ko, L. T., Ruppel, S. C., Loucks, R. G., et al., 2018. Pore-Types and Pore-Network Evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett Mudstones:Insights from Laboratory Thermal Maturation and Organic Petrology. International Journal of Coal Geology, 190:3-28. https://doi.org/10.1016/j.coal.2017.10.001
    Krüger, M., van Berk, W., Arning, E. T., et al., 2014. The Biogenic Methane Potential of European Gas Shale Analogues:Results from Incubation Experiments and Thermodynamic Modelling. International Journal of Coal Geology, 136:59-74. https://doi.org/10.1016/j.coal.2014.09.012
    Li, J. Q., Zhang, P. F., Lu, S. F., et al., 2019. Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales:An Investigation by BIB-SEM and X-Ray CT Methods. Journal of Earth Science, 30(4):823-833. https://doi.org/10.1007/s12583-018-0835-z
    Liu, B., Song, Y., Zhu, K., et al., 2020. Mineralogy and Element Geochemistry of Salinized Lacustrine Organic-Rich Shale in the Middle Permian Santanghu Basin:Implications for Paleoenvironment, Provenance, Tectonic Setting and Shale Oil Potential. Marine and Petroleum Geology, 120:104569. https://doi.org/10.1016/j.marpetgeo.2020.104569
    Liu, K. Q., Ostadhassan, M., Gentzis, T., et al., 2018. Characterization of Geochemical Properties and Microstructures of the Bakken Shale in North Dakota. International Journal of Coal Geology, 190:84-98. https://doi.org/10.1016/j.coal.2017.08.006
    Liu, K. Q., Ostadhassan, M., Zhou, J., et al., 2017. Nanoscale Pore Structure Characterization of the Bakken Shale in the USA. Fuel, 209:567-578. https://doi.org/10.1016/j.fuel.2017.08.034
    Liu, K. Q., Wang, L., Ostadhassan, M., et al., 2019. Nanopore Structure Comparison between Shale Oil and Shale Gas:Examples from the Bakken and Longmaxi Formations. Petroleum Science, 16(1):77-93. https://doi.org/10.1007/s12182-018-0277-3
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6):1071-1098. https://doi.org/10.1306/08171111061
    Ma, Y. Z., Holditch, S., 2015. Unconventional Oil and Gas Resources Handbook: Evaluation and Development. Gulf Professional Publishing
    Manger, K. C., Oliver, S. J. P., Curtis, J. B., et al., 1991. Geologic Influences on the Location and Production of Antrim Shale Gas, Michigan Basin. Low Permeability Reservoirs Symposium, Society of Petroleum Engineers, Apr. 15-17, Denver, Colorado. SPE 21854
    Martini, A. M., Walter, L. M., Ku, T. C. W., et al., 2003. Microbial Production and Modification of Gases in Sedimentary Basins:A Geochemical Case Study from a Devonian Shale Gas Play, Michigan Basin. AAPG Bulletin, 87(8):1355-1375. https://doi.org/10.1306/031903200184
    Pfeifer, P., Wu, Y. J., Cole, M. W., et al., 1989. Multilayer Adsorption on a Fractally Rough Surface. Physical Review Letters, 62(17):1997-2000. https://doi.org/10.1103/physrevlett.62.1997
    Rebata-Landa, V., Santamarina, J. C., 2006. Mechanical Limits to Microbial Activity in Deep Sediments. Geochemistry, Geophysics, Geosystems, 7(11). https://doi.org/10.1029/2006gc001355
    Reeves, S. R., Cox, D. O., Smith, M. B., et al., 1993. Stimulation Technology in the Antrim Shale. In: SPE Gas Technology Symposium. SPE Gas Technology Symposium, Society of Petroleum Engineers, Jun. 28-30, Calgary, Alberta
    Rice, D. D., 1993. Biogenic Gas: Controls, Habitats, and Resource Potential. United States Geological Survey, Professional Paper. 1570
    Rouquerol, J., Avnir, D., Fairbridge, C. W., et al., 1994. Recommendations for the Characterization of Porous Solids (Technical Report). Pure and Applied Chemistry, 66(8):1739-1758. https://doi.org/10.1351/pac199466081739
    Sahouli, B., Blacher, S., Brouers, F., 1997. Applicability of the Fractal FHH Equation. Langmuir, 13(16):4391-4394. https://doi.org/10.1021/la962119k
    Schulz, H. M., Biermann, S., van Berk, W., et al., 2015. From Shale Oil to Biogenic Shale Gas:Retracing Organic-Inorganic Interactions in the Alum Shale (Furongian-Lower Ordovician) in Southern Sweden. AAPG Bulletin, 99(5):927-956. https://doi.org/10.1306/10221414014
    Strąpoć, D., Mastalerz, M., Dawson, K., et al., 2011. Biogeochemistry of Microbial Coal-Bed Methane. Annual Review of Earth and Planetary Sciences, 39(1):617-656. https://doi.org/10.1146/annurev-earth-040610-133343
    Stolper, D. A., Martini, A. M., Clog, M., et al., 2015. Distinguishing and Understanding Thermogenic and Biogenic Sources of Methane Using Multiply Substituted Isotopologues. Geochimica et Cosmochimica Acta, 161:219-247. https://doi.org/10.1016/j.gca.2015.04.015
    Wang, Y., Liu, L. F., Zheng, S. S., et al., 2019. Full-Scale Pore Structure and Its Controlling Factors of the Wufeng-Longmaxi Shale, Southern Sichuan Basin, China:Implications for Pore Evolution of Highly Overmature Marine Shale. Journal of Natural Gas Science and Engineering, 67:134-146. https://doi.org/10.1016/j.jngse.2019.04.020
    Wuchter, C., Banning, E., Mincer, T. J., et al., 2013. Microbial Diversity and Methanogenic Activity of Antrim Shale Formation Waters from Recently Fractured Wells. Frontiers in Microbiology, 4:367. https://doi.org/10.3389/fmicb.2013.00367
    Yang, R., He, S., Yi, J. Z., et al., 2016. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin:Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70:27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019
    Zhang, Q., Liu, R. H., Pang, Z. L., et al., 2016. Characterization of Microscopic Pore Structures in Lower Silurian Black Shale(S1l), Southeastern Chongqing, China. Marine and Petroleum Geology, 71:250-259. https://doi.org/10.1016/j.marpetgeo.2015.12.015
    Zhou, W. D., Xie, S. Y., Bao, Z. Y., et al., 2019. Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. Journal of Earth Science, 30(5):879-892. https://doi.org/10.1007/s12583-019-1013-7
    Zoback, M. D., Kohli, A. H., 2019. Unconventional Reservoir Geomechanics. Cambridge University Press, Cambridge
    Zuo, J. X., Peng, S. C., Qi, Y. P., et al., 2018. Carbon-Isotope Excursions Recorded in the Cambrian System, South China:Implications for Mass Extinctions and Sea-Level Fluctuations. Journal of Earth Science, 29(3):479-491. https://doi.org/10.1007/s12583-017-0963-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views(352) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return