Al-Ostaz, A., Pal, G., Mantena, P. R., et al., 2008. Molecular Dynamics Simulation of SWCNT-Polymer Nanocomposite and Its Constituents. Journal of Materials Science, 43(1):164-173. https://doi.org/10.1007/s10853-007-2132-6 |
Ambrose, R., Hartman, R., diaz Campos, M., et al., 2010. New Pore-Scale Considerations for Shale Gas in Place Calculations. In: Proceedings of SPE Unconventional Gas Conference. Society of Petroleum Engineers. https://doi.org/10.2523/131772-MS |
Anovitz, L. M., Cole, D. R., 2015. Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80(1):61-164. https://doi.org/10.2138/rmg.2015.80.04 |
Bankole, S. A., Buckman, J., Stow, D., et al., 2019. Automated Image Analysis of Mud and Mudrock Microstructure and Characteristics of Hemipelagic Sediments:IODP Expedition 339. Journal of Earth Science, 30(2):407-421. https://doi.org/10.1007/s12583-019-1210-4 |
Blaga, C. I., Xu, J. L., DiChiara, A. D., et al., 2012. Imaging Ultrafast Molecular Dynamics with Laser-Induced Electron Diffraction. Nature, 483(7388):194-197. https://doi.org/10.1038/nature10820 |
Bultreys, T., De Boever, W., Cnudde, V., 2016. Imaging and Image-Based Fluid Transport Modeling at the Pore Scale in Geological Materials:A Practical Introduction to the Current State-of-the-Art. Earth-Science Reviews, 155:93-128. https://doi.org/10.1016/j.earscirev.2016.02.001 |
Bustin, R. M., 2012. Shale Gas and Shale Oil Petrology and Petrophysics. International Journal of Coal Geology, 103:1-2. https://doi.org/10.1016/j.coal.2012.09.003 |
Chalmers, G. R., Bustin, R. M., Power, I. M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6):1099-1119. https://doi.org/10.1306/10171111052 |
Chi, G. X., Xue, C. J., Sun, X. D., et al., 2017. Formation of a Giant Zn-Pb Deposit from Hot Brines Injecting into a Shallow Oil-Gas Reservoir in Sandstones, Jinding, Southwestern China. Terra Nova, 29(5):312-320. https://doi.org/10.1111/ter.12279 |
Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86(11):1921-1938 http://www.nrcresearchpress.com/servlet/linkout?suffix=refg13/ref13&dbid=16&doi=10.1139%2Fcjes-2014-0188&key=10.1306%2F61EEDDBE-173E-11D7-8645000102C1865D |
Fu, X. F., Wang, Z., Lu, S. F., 1996. Mechanisms and Solubility Equations of Gas Dissolving in Water. Science in China, Series B:Chemistry, 39:500-508. https://doi.org/10.1360/yb1996-39-5-500 |
Gasparik, M., Bertier, P., Gensterblum, Y., et al., 2014. Geological Controls on the Methane Storage Capacity in Organic-Rich Shales. International Journal of Coal Geology, 123:34-51. https://doi.org/10.1016/j.coal.2013.06.010 |
Goldstein, R. H., Reynolds, T. J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals, Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM (Society for Sedimentary Geology), 31:69-85. https://doi.org/10.2110/scn.94.31 |
Gorbanenko, O. O., Ligouis, B., 2014. Changes in Optical Properties of Liptinite Macerals from Early Mature to Post Mature Stage in Posidonia Shale (Lower Toarcian, NW Germany). International Journal of Coal Geology, 133:47-59. https://doi.org/10.1016/j.coal.2014.09.007 |
Huang, Z. L., Ma, J., Wu, H. Z., et al., 2012. Fluid Pressure and Primary Migration Characteristics of Shale Oil of Lucaogou Formation in Malang Sag. Journal of China University of Petroleum (Edition of Natural Science), 36(5):7-11. https://doi.org/10.3969/j.issn.1673-5005.2012.05.002 |
Katz, B. J., Arango, I., 2018. Organic Porosity:A Geochemistʼs View of the Current State of Understanding. Organic Geochemistry, 123:1-16. https://doi.org/10.1016/j.orggeochem.2018.05.015 |
Kus, J., 2015. Application of Confocal Laser-Scanning Microscopy (CLSM) to Autofluorescent Organic and Mineral Matter in Peat, Coals and Siliciclastic Sedimentary Rocks-A Qualitative Approach. International Journal of Coal Geology, 137:1-18. https://doi.org/10.1016/j.coal.2014.10.014 |
Li, Y. Q., Yang, Y., Sun, X. D., et al., 2014. The Application of Laser Confocal Method in Microscopic Oil Analysis. Journal of Petroleum Science and Engineering, 120:52-60. https://doi.org/10.1016/j.petrol.2014.04.005 |
Liu, B., Bechtel, A., Gross, D., et al., 2018. Middle Permian Environmental Changes and Shale Oil Potential Evidenced by High-Resolution Organic Petrology, Geochemistry and Mineral Composition of the Sediments in the Santanghu Basin, Northwest China. International Journal of Coal Geology, 185:119-137. https://doi.org/10.1016/j.coal.2017.11.015 |
Liu, B., Wang, H. L., Fu, X. F., et al., 2019. Lithofacies and Depositional Setting of a Highly Prospective Lacustrine Shale Oil Succession from the Upper Cretaceous Qingshankou Formation in the Gulong Sag, Northern Songliao Basin, Northeast China. AAPG Bulletin, 103(2):405-432. https://doi.org/10.1306/08031817416 |
Liu, B., Yang, Y. Q., Li, J. T., et al., 2020. Stress Sensitivity of Tight Reservoirs and Its Effect on Oil Saturation:A Case Study of Lower Cretaceous Tight Clastic Reservoirs in the Hailar Basin, Northeast China. Journal of Petroleum Science and Engineering, 184:106484. https://doi.org/10.1016/j.petrol.2019.106484 |
Liu, C. L., Wang, Z. L., Guo, Z. Q., et al., 2017. Enrichment and Distribution of Shale Oil in the Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Marine and Petroleum Geology, 86:751-770. https://doi.org/10.1016/j.marpetgeo.2017.06.034 |
Lu, S. F., Huang, W. B., Chen, F. W., et al., 2012. Classification and Evaluation Criteria of Shale Oil and Gas Resources:Discussion and Application. Petroleum Exploration and Development, 39(2):268-276. https://doi.org/10.1016/s1876-3804(12)60042-1 |
Mandelbrot, B., 1967. How Long is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science, 156(3775):636-638. https://doi.org/10.1126/science.156.3775.636 |
Mauko, A., Muck, T., Mirtič, B., et al., 2009. Use of Confocal Laser Scanning Microscopy (CLSM) for the Characterization of Porosity in Marble. Materials Characterization, 60(7):603-609. https://doi.org/10.1016/j.matchar.2009.01.008 |
Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2):177-200. https://doi.org/10.1306/07231212048 |
Misch, D., Riedl, F., Liu, B., et al., 2019. Petrographic and Sorption-Based Characterization of Bituminous Organic Matter in the Mandal Formation, Central Graben (Norway). International Journal of Coal Geology, 211:103229. https://doi.org/10.1016/j.coal.2019.103229 |
Montes, I., Lai, C. Q., Sanabria, D., 2003. Like Dissolves Like:A Guided Inquiry Experiment for Organic Chemistry. Journal of Chemical Education, 80(4):447. https://doi.org/10.1021/ed080p447 |
Munz, I. A., 2001. Petroleum Inclusions in Sedimentary Basins:Systematics, Analytical Methods and Applications. Lithos, 55(1/2/3/4):195-212. https://doi.org/10.1016/s0024-4937(00)00045-1 |
Orangi, A., Nagarajan, N. R., Honarpour, M. M., et al., 2011. Unconventional Shale Oil and Gas-Condensate Reservoir Production, Impact of Rock, Fluid, and Hydraulic Fractures. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers. https://doi.org/10.2118/140536-ms |
Przyjalgowski, M. A., Ryder, A. G., Feely, M., et al., 2005. Analysis of Hydrocarbon-Bearing Fluid Inclusions (HCFI) Using Time-Resolved Fluorescence Spectroscopy. In: Byrne, H. J., Lewis, E., MacCraith, B. D., et al., eds., Opto-Ireland 2005: Optical Sensing and Spectroscopy. 173. https://doi.org/10.1117/12.605035 |
Shah, S. M., Yang, J., Crawshaw, J. P., et al., 2013. Predicting Porosity and Permeability of Carbonate Rocks from Core-Scale to Pore-Scale Using Medical CT, Confocal Laser Scanning Microscopy and Micro CT. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. https://doi.org/10.2118/166252-MS |
Stasiuk, L. D., Snowdon, L. R., 1997. Fluorescence Micro-Spectrometry of Synthetic and Natural Hydrocarbon Fluid Inclusions:Crude Oil Chemistry, Density and Application to Petroleum Migration. Applied Geochemistry, 12(3):229-241. https://doi.org/10.1016/s0883-2927(96)00047-9 |
Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer Berlin Heidelberg, Berlin, Heidelberg. 699 http://link.springer.com/978-3-642-87813-8 |
Wu, X., Gao, B., Ye, X., et al., 2013. Shale Oil Accumulation Conditions and Exploration Potential of Faulted Basins in the East of China. Oil and Gas Geology, 34(4):455-462. https://doi.org/10.11743/ogg20130405 |
Wu, Y. Q., Tahmasebi, P., Lin, C. Y., et al., 2019. A Comprehensive Study on Geometric, Topological and Fractal Characterizations of Pore Systems in Low-Permeability Reservoirs Based on SEM, MICP, NMR, and X-Ray CT Experiments. Marine and Petroleum Geology, 103:12-28. https://doi.org/10.1016/j.marpetgeo.2019.02.003 |
Xia, X. Y., Tang, Y. C., 2012. Isotope Fractionation of Methane during Natural Gas Flow with Coupled Diffusion and Adsorption/Desorption. Geochimica et Cosmochimica Acta, 77:489-503. https://doi.org/10.1016/j.gca.2011.10.014 |
Zhou, W. D., Xie, S. Y., Bao, Z. Y., et al., 2019. Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. Journal of Earth Science, 30(5):879-892. https://doi.org/10.1007/s12583-019-1013-7 |
Zou, C. N., Yang, Z., Cui, J. W., et al., 2013. Formation Mechanism, Geological Characteristics and Development Strategy of Nonmarine Shale Oil in China. Petroleum Exploration and Development, 40(1):15-27. https://doi.org/10.1016/s1876-3804(13)60002-6 |