Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 4
Aug 2020
Turn off MathJax
Article Contents
Rui Liu, Teng Ma, Wenkai Qiu, Ziqi Peng, Chenxuan Shi. The Environmental Functions and Ecological Effects of Organic Carbon in Silt. Journal of Earth Science, 2020, 31(4): 834-844. doi: 10.1007/s12583-020-1349-z
Citation: Rui Liu, Teng Ma, Wenkai Qiu, Ziqi Peng, Chenxuan Shi. The Environmental Functions and Ecological Effects of Organic Carbon in Silt. Journal of Earth Science, 2020, 31(4): 834-844. doi: 10.1007/s12583-020-1349-z

The Environmental Functions and Ecological Effects of Organic Carbon in Silt

doi: 10.1007/s12583-020-1349-z
More Information
  • Corresponding author: Teng Ma, ORCID:0000-0003-2827-9579.E-mail:mateng@cug.edu.cn
  • Received Date: 03 Apr 2020
  • Accepted Date: 15 May 2020
  • Publish Date: 24 Aug 2020
  • Silt is a kind of unconsolidated sediment consisting of fine particles; silt is generally deposited across wide areas on the surfaces of drainages and in oceans under static or slow-hydrodynamic conditions. The organic carbon (OC) in silt has multiple essential environmental functions. This paper elaborates the morphological and environmental indication functions of OC in silt, and the effect of its own migration and transformation on environmental deterioration. Organic carbon exists in silt in two forms, free and mineral-binding. Meanwhile, based on its formation and structure, OC can be divided into light and heavy fraction of OC. Environmental information including data related to paleoclimates, ancient levels of productivity level, and variations in regional organism abundance can be discovered from total organic carbon, the C/N ratio, and OC isotope content. Degradation of OC is believed to participate in the emission of greenhouse gases, release of heavy metals and other contaminants. Finally, from the view of silt deposition, the possible influence of complex water-rock interaction in which OC is involved during the evolution of silt to a clayey aquitard on the hydrochemical composition of groundwater is discussed, which provides a new perspective for future research on the carbon cycle in nature.

     

  • loading
  • Adhikari, D., Poulson, S. R., Sumaila, S., et al., 2016. Asynchronous Reductive Release of Iron and Organic Carbon from Hematite-Humic Acid Complexes. Chemical Geology, 430:13-20. https://doi.org/10.1016/j.chemgeo.2016.03.013
    Ai, J., Zhang, W. J., Chen, F. F., et al., 2019. Catalytic Pyrolysis Coupling to Enhanced Dewatering of Waste Activated Sludge Using KMnO4Fe(Ⅱ) Conditioning for Preparing Multi-Functional Material to Treat Groundwater Containing Combined Pollutants. Water Research, 158:424-437. https://doi.org/10.1016/j.watres.2019.04.044
    Alvarez, D. A., Rosen, M. R., Perkins, S. D., et al., 2012. Bottom Sediment as a Source of Organic Contaminants in Lake Mead, Nevada, USA. Chemosphere, 88(5):605-611. https://doi.org/10.1016/j.chemosphere.2012.03.040
    Andreev, A. A., Tarasov, P. E., Ilyashuk, B. P., et al., 2005. Holocene Environmental History Recorded in Lake Lyadhej-To Sediments, Polar Urals, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology, 223(3/4):181-203. https://doi.org/10.1016/j.palaeo.2005.04.004
    Aplin, A. C., Fleet, A. J., Macquaker, J. H. S., 1999. Muds and Mudstones:Physical and Fluid-Flow Properties. Geological Society, London, Special Publications, 158(1):1-8. https://doi.org/10.1144/gsl.sp.1999.158.01.01
    Aplin, A. C., Macquaker, J. H. S., 2011. Mudstone Diversity:Origin and Implications for Source, Seal, and Reservoir Properties in Petroleum Systems. AAPG Bulletin, 95(12):2031-2059. https://doi.org/10.1306/03281110162
    Bolam, S. G., 2011. Burial Survival of Benthic Macrofauna Following Deposition of Simulated Dredged Material. Environmental Monitoring and Assessment, 181(1/2/3/4):13-27. https://doi.org/10.1007/s10661-010-1809-5
    Bolam, S. G., 2014. Macrofaunal Recovery Following the Intertidal Recharge of Dredged Material:A Comparison of Structural and Functional Approaches. Marine Environmental Research, 97:15-29. https://doi.org/10.1016/j.marenvres.2014.01.008
    Brenner, M., Whitmore, T. J., Curtis, J. H., et al., 1999. Stable Isotopic (δ13C and δ15N) Signatures of Sedimented Organic Matter as Indicators of Historic Lake Trophic State. Journal of Paleolimnology, 22(2):205-221. https://doi.org/10.1023/A:1008078222806
    Broecker, W. S., 1982. Glacial to Interglacial Changes in Ocean Chemistry. Progress in Oceanography, 11(2):151-197. https://doi.org/10.1016/0079-6611(82)90007-6
    Bufflap, S. E., Allen, H. E., 1995. Sediment Pore Water Collection Methods for Trace Metal Analysis:A Review. Water Research, 29(1):165-177. https://doi.org/10.1016/0043-1354(94)e0105-f
    Cao, B. D., Wang, R. L., Zhang, W. J., et al., 2019. Carbon-Based Materials Reinforced Waste Activated Sludge Electro-Dewatering for Synchronous Fuel Treatment. Water Research, 149:533-542. https://doi.org/10.1016/j.watres.2018.10.082
    Chen, C. C., Gong, G. C., Shiah, F. K., 2007. Hypoxia in the East China Sea:One of the Largest Coastal Low-Oxygen Areas in the World. Marine Environmental Research, 64(4):399-408. https://doi.org/10.1016/j.marenvres.2007.01.007
    Christensen, B. T., 1992. Physical Fractionation of Soil and Organic Matter in Primary Particle Size and Density Separates. Advances in Soil Science, 20:2-90. https://doi.org/10.1007/978-1-4612-2930-8_1
    Christensen, B. T., 2001. Physical Fractionation of Soil and Structural and Functional Complexity in Organic Matter Turnover. European Journal of Soil Science, 52(3):345-353. https://doi.org/10.1046/j.1365-2389.2001.00417.x
    Cuevas, J., Ruiz, A. I., de Soto, I. S., et al., 2012. The Performance of Natural Clay as a Barrier to the Diffusion of Municipal Solid Waste Landfill Leachates. Journal of Environmental Management, 95:S175-S181. https://doi.org/10.1016/j.jenvman.2011.02.014
    Fang, J., Chen, A., 2001. Dynamic Forest Biomass Carbon Pools in China and Their Significance. Acta Botanica Sinica, 43(9):967-973. https://doi.org/10.1614/0890-037X(2001)015[0892:SSPCBP]2.0.CO; 2 doi: 10.1614/0890-037X(2001)015[0892:SSPCBP]2.0.CO;2
    GBJ145-90, 2002. Soil Classification Standard. China Architecture & Industry Press, Beijing.
    Gregorich, E. G., Carter, M. R., Angers, D. A., et al., 1994. Towards a Minimum Data Set to Assess Soil Organic Matter Quality in Agricultural Soils. Canadian Journal of Soil Science, 74(4):367-385. https://doi.org/10.4141/cjss94-051
    Hallare, A., Kosmehl, T., Schulze, T., et al., 2005. Assessing Contamination Levels of Laguna Lake Sediments (Philippines) Using a Contact Assay with Zebrafish (Danio Rerio) Embryos. Science of the Total Environment, 347(1/2/3):254-271. https://doi.org/10.1016/j.scitotenv.2004.12.002
    Helmke, J., Bauch, H., 2001. Glacial-Interglacial Relationship between Carbonate Components and Sediment Reflectance in the North Atlantic. Geo-Marine Letters, 21(1):16-22. https://doi.org/10.1007/s003670100067
    Hesse, R., Schacht, U., 2011. Early Diagenesis of Deep-Sea Sediments. Development in Sedimentology, 63:557-713. https://doi.org/10.1016/B978-0-444-53000-4.00009-3
    Houghton, R. A., 2007. Balancing the Global Carbon Budget. Annual Review of Earth And Planetary Sciences, 35:313-347. https://doi.org/10.1093/pcp/pcp090
    Hunter, K. S., Wang, Y. F., van Cappellen, P., 1998. Kinetic Modeling of Microbially-Driven Redox Chemistry of Subsurface Environments:Coupling Transport, Microbial Metabolism and Geochemistry. Journal of Hydrology, 209(1/2/3/4):53-80. https://doi.org/10.1016/s0022-1694(98)00157-7
    Janzen, H. H., Campbell, C. A., Brandt, S. A., et al., 1992. Light-Fraction Organic Matter in Soils from Long-Term Crop Rotations. Soil Science Society of America Journal, 56(6):1799-1806. https://doi.org/10.2136/sssaj1992.03615995005600060025x
    Jiang, Z. X., 2003. Sedimentology. Petroleum Industry Press, Beijing (in Chinese)
    Jiao, J. J., Wang, Y., Cherry, J. A., et al., 2010. Abnormally High Ammonium of Natural Origin in a Coastal Aquifer-Aquitard System in the Pearl River Delta, China. Environmental Science & Technology, 44(19):7470-7475. https://doi.org/10.1021/es1021697
    Judd, A., Hovland, M., 2007. Seabed Fluid Flow: The Impact of Geology, Biology and the Marine Environment. Cambridge University Press, Cambridge
    Kaiser, K., Guggenberger, G., 2003. Mineral Surfaces and Soil Organic Matter. European Journal of Soil Science, 54(2):219-236. https://doi.org/10.1046/j.1365-2389.2003.00544.x
    Kaiser, K., Guggenberger, G., 2007. Sorptive Stabilization of Organic Matter by Microporous Goethite:Sorption into Small Pores vs. Surface Complexation. European Journal of Soil Science, 58(1):45-59. https://doi.org/10.1111/j.1365-2389.2006.00799.x
    Kniskern, T. A., Kuehl, S. A., Harris, C. K., et al., 2010. Sediment Accumulation Patterns and Fine-Scale Strata Formation on the Waiapu River Shelf, New Zealand. Marine Geology, 270(1/2/3/4):188-201. https://doi.org/10.1016/j.margeo.2008.12.003
    Konikow, L. F., Kendy, E., 2005. Groundwater Depletion:A Global Problem. Hydrogeology Journal, 13(1):317-320. https://doi.org/10.1007/s10040-004-0411-8
    Leenheer, J. A., Croué, J. P., 2003. Peer Reviewed:Characterizing Aquatic Dissolved Organic Matter. Environmental Science & Technology, 37(1):18A-26A. https://doi.org/10.1021/es032333c
    Lewan, M. D., Roy, S., 2011. Role of Water in Hydrocarbon Generation from Type-I Kerogen in Mahogany Oil Shale of the Green River Formation. Organic Geochemistry, 42(1):31-41. https://doi.org/10.1016/j.orggeochem.2010.10.004
    Liu, P., 2018. Organic Carbon and Nitrogen Isotopic Characteristics of Tengchong Qinghai Lake Sediments During Last 1 700 a and Paleoenvironmental Reconstruction[Dissertation]. Yunnan Normal University, Kunming. 59 (in Chinese with English Abstract)
    Liu, R., Ma, T., Qiu, W. K., et al., 2020. Effects of Fe Oxides on Organic Carbon Variation in the Evolution of Clayey Aquitard and Environmental Significance. Science of the Total Environment, 701:134776. https://doi.org/10.1016/j.scitotenv.2019.134776
    Liu, X. D., Tiquia, S. M., Holguin, G., et al., 2003. Molecular Diversity of Denitrifying Genes in Continental Margin Sediments within the Oxygen-Deficient Zone off the Pacific Coast of Mexico. Applied and Environmental Microbiology, 69(6):3549-3560. https://doi.org/10.1128/aem.69.6.3549-3560.2003
    Liu, X. Q., 2002. A 16 000-Year Pollen Record of Qinghai Lake and Its Paleocli-Mate and Paleoenvironment. Chinese Science Bulletin, 47(22):1931. https://doi.org/10.1360/02tb9421
    Lucke, A., Brauer, A., 2004. Biogeochemical and Micro-Facial Fingerprints of Ecosystem Response to Rapid Late Glacial Climatic Changes in Varved Sediments of Meerfelder Maar (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 211(1/2):139-155. https://doi.org/10.1016/s0031-0182(04)00259-7
    Lutzow, M. V., Kogel-Knabner, I., Ekschmitt, K., et al., 2006. Stabilization of Organic Matter in Temperate Soils:Mechanisms and Their Relevance under Different Soil Conditions——A Review. European Journal of Soil Science, 57(4):426-445. https://doi.org/10.1111/j.1365-2389.2006.00809.x
    Machiwa, J. F., 2010. Stable Carbon and Nitrogen Isotopic Signatures of Organic Matter Sources in Near-Shore Areas of Lake Victoria, East Africa. Journal of Great Lakes Research, 36(1):1-8. https://doi.org/10.1016/j.jglr.2009.11.005
    Mao, H. F., He, J., Lyu, C, W., et al., 2011. Characteristics of Organic Carbon Forms in the Sediment of Wuliangsuhai and Daihai Lakes. Environmental Science, 32(03):658-666 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201103007
    Morellón, M., Valero-Garcés, B., Vegas-Vilarrúbia, T., et al., 2009. Lateglacial and Holocene Palaeohydrology in the Western Mediterranean Region:The Lake Estanya Record (NE Spain). Quaternary Science Reviews, 28(25/26):2582-2599. https://doi.org/10.1016/j.quascirev.2009.05.014
    Murphy, T. P., Lawson, A., Kumagai, M., et al., 1999. Review of Emerging Issues in Sediment Treatment. Aquatic Ecosystem Health & Management, 2(4):419-434. https://doi.org/10.1080/14634989908656980
    Neff, J. M., 2005. Composition, Environmental Fates, and Biological Effect of Water Based Drilling Muds and Cuttings Discharged to the Marine Environment: A Synthesis and Annotated Bibliography. Technical Report. Battelle, Duxbury, MA, USA
    Niggemyer, A., Spring, S., Stackebrandt, E., et al., 2001. Isolation and Characterization of a Novel As(Ⅴ)-Reducing Bacterium:Implications for Arsenic Mobilization and the Genus Desulfitobacterium. Applied and Environmental Microbiology, 67(12):5568-5580. https://doi.org/10.1128/aem.67.12.5568-5580.2001
    Nygård, R., Gutierrez, M., Gautam, R., et al., 2004. Compaction Behavior of Argillaceous Sediments as Function of Diagenesis. Marine and Petroleum Geology, 21(3):349-362. https://doi.org/10.1016/j.marpetgeo.2004.01.002
    Olk, D. C., Bloom, P. R., de Nobili, M., et al., 2019. Using Humic Fractions to Understand Natural Organic Matter Processes in Soil and Water:Selected Studies and Applications. Journal of Environmental Quality, 48(6):1633-1643. https://doi.org/10.2134/jeq2019.03.0100
    Pan, W. N., Kan, J. J., Inamdar, S., et al., 2016. Dissimilatory Microbial Iron Reduction Release DOC (dissolved Organic Carbon) from Carbon-Ferrihydrite Association. Soil Biology and Biochemistry, 103:232-240. https://doi.org/10.1016/j.soilbio.2016.08.026
    Parker, B. L., Chapman, S. W., Guilbeault, M. A., 2008. Plume Persistence Caused by back Diffusion from Thin Clay Layers in a Sand Aquifer Following TCE Source-Zone Hydraulic Isolation. Journal of Contaminant Hydrology, 102(1/2):86-104. https://doi.org/10.1016/j.jconhyd.2008.07.003
    Peng, J. J., Li, C. H., Huang, X. H., 2004. Causes and Characteristics of Eutrophication in Urban Lakes. Ecologic Science, 23(4):370-373 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stkx200404020
    Polizzotto, M. L., Kocar, B. D., Benner, S. G., et al., 2008. Near-Surface Wetland Sediments as a Source of Arsenic Release to Ground Water in Asia. Nature, 454(7203):505-508. https://doi.org/10.1038/nature07093
    Potter, P. E., Maynard, J. B., Depetris, P. J., 2005. Mud and Mudstones: Introduction and Overview. Springer, New York
    Reszat, T. N., Hendry, M. J., 2007. Complexation of Aqueous Elements by DOC in a Clay Aquitard. Ground Water, 45(5):542-553. https://doi.org/10.1111/j.1745-6584.2007.00338.x
    Sand-Jensen, K., Andersen, M. R., Martinsen, K. T., et al., 2019. Shallow Plant-Dominated Lakes——Extreme Environmental Variability, Carbon Cycling and Ecological Species Challenges. Annals of Botany, 124(3):355-366. https://doi.org/10.1093/aob/mcz084
    Six, J., Conant, R. T., Paul, E. A., et al., 2002. Stabilization Mechanisms of Soil Organic Matter:Implications for C-Saturation of Soils. Plant Soil, 241 (2):155-176. https://doi.org/10.1023/A:1016125726789
    Smit, M. G. D., Holthaus, K. I. E., Trannum, H. C., et al., 2008. Species Sensitivity Distributions for Suspended Clays, Sediment Burial, and Grain Size Change in the Marine Environment. Environmental Toxicology and Chemistry, 27(4):1006. https://doi.org/10.1897/07-339.1
    Stuiver, M., 1975. Climate Versus Changes in 13C Content of the Organic Component of Lake Sediments during the Late Quarternary. Quaternary Research, 5(2):251-262. https://doi.org/10.1016/0033-5894(75)90027-7
    Su, C., Chen, Z. Y., Chen, J., et al., 2014. Mechanics of Aquitard Drainage by Aquifer-System Compaction and Its Implications for Water-Management in the North China Plain. Journal of Earth Science, 25(3):598-604. https://doi.org/10.1007/s12583-014-0440-8
    Świetlik, J., Dąbrowska, A., Raczyk-Stanisławiak, U., et al., 2004. Reactivity of Natural Organic Matter Fractions with Chlorine Dioxide and Ozone. Water Research, 38(3):547-558. https://doi.org/10.1016/j.watres.2003.10.034
    Tenzer, G. E., Meyers, P. A., Robbins, J. A., et al., 1999. Sedimentary Organic Matter Record of Recent Environmental Changes in the St. Marys River Ecosystem, Michigan-Ontario Border. Organic Geochemistry, 30(2/3):133-146. https://doi.org/10.1016/s0146-6380(98)00209-5
    Thurman, E. M., 1985. Organic Geochemistry of Natural Waters. Matinus Nijhoff/Dr. W. Junk, 1-497
    Tuikka, A. I., Schmitt, C., Hoss, S., et al., 2011. Toxicity Assessment of Sediments from Three European River Basins Using a Sediment Contact Test Battery. Ecotoxicology and Environmental Safety, 74 (1):123-131. https://doi.org/10.1016/j.ecoenv.2010.08.038
    Wang, X. S., Jiao, J. J., Wang, Y., et al., 2013. Accumulation and Transport of Ammonium in Aquitards in the Pearl River Delta (China) in the Last 10 000 Years:Conceptual and Numerical Models. Hydrogeology Journal, 21(5):961-976. https://doi.org/10.1007/s10040-013-0976-1
    Wang, Y. X., Ma, T., Ryzhenko, B. N., et al., 2009. Model for the Formation of Arsenic Contamination in Groundwater. 1. Datong Basin, China. Geochemistry International, 47(7):713-724. https://doi.org/10.1134/s0016702909070052
    Wang, Y., Jiao, J. J., Zhang, K., et al., 2016. Enrichment and Mechanisms of Heavy Metal Mobility in a Coastal Quaternary Groundwater System of the Pearl River Delta, China. Science of the Total Environment, 545-546:493-502. https://doi.org/10.1016/j.scitotenv.2015.12.019
    Wei, H., He, Y. C., Li, Q. J., et al., 2007. Summer Hypoxia Adjacent to the Changjiang Estuary. Journal of Marine Systems, 67(3/4):292-303. https://doi.org/10.1016/j.jmarsys.2006.04.014
    Wicks, C. M., Herman, J. S., 1994. The Effect of a Confining Unit on the Geochemical Evolution of Ground Water in the Upper Floridan Aquifer System. Journal of Hydrology, 153(1/2/3/4):139-155. https://doi.org/10.1016/0022-1694(94)90189-9
    Wu, F. C., Cai, Y., Evans, D., et al., 2004. Complexation between Hg(Ⅱ) and Dissolved Organic Matter in Stream Waters:An Application of Fluorescence Spectroscopy. Biogeochemistry, 71(3):339-351. https://doi.org/10.1007/s10533-004-0058-5
    Wu, Y. H., Lücke, A., Jin, Z. D., et al., 2006. Holocene Climate Development on the Central Tibetan Plateau:A Sedimentary Record from Cuoe Lake. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(2/3/4):328-340. https://doi.org/10.1016/j.palaeo.2005.09.017
    Wu, Y. T., Jeff, J. S., Li, F. M., et al., 2004. Concepts and Relative Analytical Techniques of Soil Organic Matter. Chinese Journal of Applied Ecology, 15(4):717-722 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200404036
    Xiao, J. L., Si, B., Zhai, D. Y., et al., 2008. Hydrology of Dali Lake in Central-Eastern Inner Mongolia and Holocene East Asian Monsoon Variability. Journal of Paleolimnology, 40(1):519-528. https://doi.org/10.1007/s10933-007-9179-x
    Xing, G. W., Garg, S., Miller, C. J., et al., 2020. Effect of Chloride and Suwannee River Fulvic Acid on Cu Speciation:Implications to Cu Redox Transformations in Simulated Natural Waters. Environmental Science & Technology, 54(4):2334-2343. https://doi.org/10.1021/acs.est.9b06789
    Xu, D. C., Hu, S. J., Xiong, Y. Q., et al., 2020. Importance of the Structure and Micropores of Sedimentary Organic Matter in the Sorption of Phenanthrene and Nonylphenol. Environmental Pollution, 260:114034. https://doi.org/10.1016/j.envpol.2020.114034
    Yang, P., Li, D. D., Zhang, W. J., et al., 2019. Flocculation-Dewatering Behavior of Waste Activated Sludge Particles under Chemical Conditioning with Inorganic Polymer Flocculant:Effects of Typical Sludge Properties. Chemosphere, 218:930-940. https://doi.org/10.1016/j.chemosphere.2018.11.169
    Yu, K., Gan, Y. Q., Zhou, A. G., et al., 2018. Organic Carbon Sources and Controlling Processes on Aquifer Arsenic Cycling in the Jianghan Plain, Central China. Chemosphere, 208:773-781. https://doi.org/10.1016/j.chemosphere.2018.05.188
    Zakharov, Y. D., Horacek, M., Popov, A. M., et al., 2018. Nitrogen and Carbon Isotope Data of Olenekian to Anisian Deposits from Kamenushka/South Primorye, Far-Eastern Russia and Their Palaeoenvironmental Significance. Journal of Earth Science, 29(4):837-853. https://doi.org/10.1007/s12583-018-0792-6
    Zhang, C. J., Fan, R., Li, J., et al., 2013. Carbon and Oxygen Isotopic Compositions:How Lacustrine Environmental Factors Respond in Northwestern and Northeastern China. Acta Geologica Sinica:English Edition, 87(5):1344-1354. https://doi.org/10.1111/1755-6724.12133
    Zhang, M. Y., Cui, L. J., Sheng, L. X., et al., 2009. Distribution and Enrichment of Heavy Metals among Sediments, Water Body and Plants in Hengshuihu Wetland of Northern China. Ecological Engineering, 35(4):563-569. https://doi.org/10.1016/j.ecoleng.2008.05.012
    Zhao, J., Yan, X., Jia, G., 2008. Simulating the Responses of Forest Net Primary Productivity and Carbon Budget to Climate Change in Northeast China. Acta Ecologica Sinica, 28(1):92-102 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb200801011
    Zhao, Q., Poulson, S. R., Obrist, D., et al., 2016. Iron-Bound Organic Carbon in Forest Soils:Quantification and Characterization. Biogeosciences, 13(16):4777-4788. https://doi.org/10.5194/bg-13-4777-2016
    Zhu, G. W., 2001. Pollution Characteristics of the Sediment of the Hangzhou Section of the Grand, China, and Its Pollution Releasing Mechanism and Ecological Effects[Dissertation]. Zhejiang University, Hangzhou. 16 (in Chinese with English Abstract)
    Zuo, J. X., Peng, S. C., Qi, Y. P., et al., 2018. Carbon-Isotope Excursions Recorded in the Cambrian System, South China:Implications for Mass Extinctions and Sea-Level Fluctuations. Journal of Earth Science, 29(3):479-491. https://doi.org/10.1007/s12583-017-0963-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(526) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return