Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 6
Dec 2020
Turn off MathJax
Article Contents
Sha Wang, Jinhua Zhang, Joseph R Smyth, Junfeng Zhang, Dan Liu, Xi Zhu, Xiang Wang, Yu Ye. Crystal Structure, Thermal Expansivity and High-Temperature Vibrational Spectra on Natural Hydrous Rutile. Journal of Earth Science, 2020, 31(6): 1190-1199. doi: 10.1007/s12583-020-1351-5
Citation: Sha Wang, Jinhua Zhang, Joseph R Smyth, Junfeng Zhang, Dan Liu, Xi Zhu, Xiang Wang, Yu Ye. Crystal Structure, Thermal Expansivity and High-Temperature Vibrational Spectra on Natural Hydrous Rutile. Journal of Earth Science, 2020, 31(6): 1190-1199. doi: 10.1007/s12583-020-1351-5

Crystal Structure, Thermal Expansivity and High-Temperature Vibrational Spectra on Natural Hydrous Rutile

doi: 10.1007/s12583-020-1351-5
More Information
  • Corresponding author: Yu Ye, yeyu@cug.edu.cn
  • Received Date: 25 Apr 2020
  • Accepted Date: 24 May 2020
  • Publish Date: 18 Dec 2020
  • A natural rutle sample was measured by in situ high-temperature X-ray diffraction (XRD) patterns, as well as Raman and Fourier transform infrared (FTIR). Crystal structure is refined on the sample with 1.4 mol.% Fe and 510±120 ppmw. H2O. The unit-cell and TiO6 octahedral volumes are expanded by 0.7%-0.8% for Fe3+ incorporation, as compared with the reported Ti-pure samples. The volumetric thermal expansion coefficient (α, K-1) could be approximated as a linear function of T (K):4.95(3)×10-9×T+21.54(5)×10-6, with the averaged value α0=30.48(5)×10-6 K-1, in the temperature range of 300-1 500 K. The internal Ti-O stretching (A1g and B2g) and O-Ti-O bending (Eg) modes show 'red shift', whereas the multi-phonon process exhibits 'blue shift' at elevated temperature. The rotational mode (B1g) for TiO6 octahedra is nearly insensitive to temperature variations. The OH-stretching bands at 3 279 and 3 297 cm-1 are measured by high-temperature spectroscopy experiments. Both the IR-active and Raman-active OH-stretching modes shift to lower frequencies at higher temperature, with the signal intensities decreasing. And after quenching, we expect about 43% dehydration around 873 K, and 85% dehydration at 1 273 K for this hydrous sample.

     

  • loading
  • Arlt, T., Bermejo, M., Blanco, M. A., et al., 2000. High-Pressure Polymorphs of Anatase TiO2. Physical Review B, 61(21):14414-14419. https://doi.org/10.1103/physrevb.61.14414
    Balachandran, U., Eror, N. G., 1982. Raman Spectra of Titanium Dioxide. Journal of Solid State Chemistry, 42(3):276-282. https://doi.org/10.1016/0022-4596(82)90006-8
    Bromiley, G. D., Hilairet, N., 2005. Hydrogen and Minor Element Incorporation in Synthetic Rutile. Mineralogical Magazine, 69(3):345-358. https://doi.org/10.1180/0026461056930256
    Bromiley, G. D., Shiryaev, A. A., 2006. Neutron Irradiation and Post-Irradiation Annealing of Rutile (TiO2-x):Effect on Hydrogen Incorporation and Optical Absorption. Physics and Chemistry of Minerals, 33(6):426-434. https://doi.org/10.1007/s00269-006-0087-9
    Bromiley, G. D., Hilairet, N., Mccammon, C., 2004. Solubility of Hydrogen and Ferric Iron in Rutile and TiO2 (Ⅱ):Implications for Phase Assemblages during Ultrahigh-Pressure Metamorphism and for the Stability of Silica Polymorphs in the Lower Mantle. Geophysical Research Letters, 31(4):L04610. https://doi.org/10.1029/2004gl019430
    Cao, Y. T., Liu, L., Yang, W. Q., et al., 2019. Reconstruction the Process of Partial Melting of the Retrograde Eclogite from the North Qaidam, Western China:Constraints from Titanite U-Pb Dating and Mineral Chemistry. Journal of Earth Science, 30(6):1166-1177. https://doi.org/10.1007/s12583-019-1253-6
    Cromer, D. T., Mann, J. B., 1968. X-Ray Scattering Factors Computed from Numerical Hartree-Fock Wave Functions. Acta Crystallographica Section A, 24(2):321-324. https://doi.org/10.1107/s0567739468000550
    Deer, W. A., Howie, R. A., Zussman, J., 1963. An Introduction to the Rock-Forming Minerals. Journal of Geology, 71:534-536. https://doi.org/10.1086/626928
    Dolomanov, O. V., Blake, A. J., Champness, N. R., et al., 2003. OLEX:New Software for Visualization and Analysis of Extended Crystal Structures. Journal of Applied Crystallography, 36(5):1283-1284. https://doi.org/10.1107/s0021889803015267
    Downs, R. T., Bartelmehs, K. L., Gibbs, G. V., et al., 1993. Interactive Software for Calculating and Displaying X-Ray or Neutron Powder Diffractometer Patterns of Crystalline Materials. American Mineralogist, 78:1104-1107. https://doi.org/10.1029/93jb01427
    Fei, Y., 1995. Thermal Expansion. In: Ahrens, J. T., ed., Mineral Physics and Crystallography. American Geophysical Union, Washington. 29-44
    Foley, S. F., Barth, M. G., Jenner, G. A., 2000. Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas. Geochimica et Cosmochimica Acta, 64(5):933-938. https://doi.org/10.1016/s0016-7037(99)00355-5
    Guo, H. H., 2017. In-situ Infrared Spectra of OH in Rutile up to 1 000 ℃. Physics and Chemistry of Minerals, 44(8):547-552. https://doi.org/10.1007/s00269-017-0881-6
    Hammer, V. M. F., Beran, A., 1991. Variations in the OH Concentration of Rutiles from Different Geological Environments. Mineralogy and Petrology, 45(1):1-9. https://doi.org/10.1007/bf01164498
    Hara, Y., Nicol, M., 1979. Raman Spectra and the Structure of Rutile at High Pressures. Physica Status Solidi B, 94(1):317-322. https://doi.org/10.1002/pssb.2220940137
    Hazen, R. M., Finger, L. W., 1981. Bulk Moduli and High-Pressure Crystal Structures of Rutile-Type Compounds. Journal of Physics and Chemistry of Solids, 42(3):143-151. https://doi.org/10.1016/0022-3697(81)90074-3
    Hemley, R. J., Mao, H. K., Chao, E. C. T., 1986. Raman Spectrum of Natural and Synthetic Stishovite. Physics and Chemistry of Minerals, 13(5):285-290. https://doi.org/10.1007/bf00308345
    Henderson, C. M. B., Knight, K. S., Lennie, A. R., 2009. Temperature Dependence of Rutile (TiO2) and Geikielite (MgTiO3) Structures Determined Using Neutron Powder Diffraction. The Open Mineralogy Journal, 3(1):1-11. https://doi.org/10.2174/1874456700903010001
    Holland, T. J. B., Redfern, S. A. T., 1997. Unit Cell Refinement from Powder Diffraction Data:The Use of Regression Diagnostics. Mineralogical Magazine, 61(404):65-77. https://doi.org/10.1180/minmag.1997.061.404.07
    Howard, C. J., Sabine, T. M., Dickson, F., 1991. Structural and Thermal Parameters for Rutile and Anatase. Acta Crystallographica Section B Structural Science, 47(4):462-468. https://doi.org/10.1107/s010876819100335x
    Hummer, D. R., Heaney, P. J., Post, J. E., 2007. Thermal Expansion of Anatase and Rutile between 300 and 575 K Using Synchrotron Powder X-Ray Diffraction. Powder Diffraction, 22:352-357. https://doi.org/10.1154/1.2790965
    Isaak, D. G., Carnes, J. D., Anderson, O. L., et al., 1998. Elasticity of TiO2 Rutile to 1 800 K. Physics and Chemistry of Minerals, 26(1):31-43. https://doi.org/10.1007/s002690050158
    Johnson, O. W., Ohlsen, W. D., Kingsbury, P. I., 1968. Defects in Rutile Ⅲ. Optical and Electronic Properties of Impurities and Charge Carriers. Physical Review, 175:1102-1109. https://doi.org/10.1103/physrev.185.1230.2
    Johnson, O. W., DeFord, J., Shaner, J. W., 1973. Experimental Technique for the Precise Determination of H and D Concentration in Rutile (TiO2). Journal of Applied Physics, 44(7):3008-3012. https://doi.org/10.1063/1.1662697
    Klemme, S., Blundy, J. D., Wood, B. J., 2002. Experimental Constraints on Major and Trace Element Partitioning during Partial Melting of Eclogite. Geochimica et Cosmochimica Acta, 66(17):3109-3123. https://doi.org/10.1016/s0016-7037(02)00859-1
    Koudriachova, M. V., de Leeuw, S. W., Harrison, N. M., 2004. First-Principles Study of H Intercalation in Rutile TiO2. Physical Review B, 70(16):165421. https://doi.org/10.1103/physrevb.70.165421
    Kumar, M., 1995. High Pressure Equation of State for Solids. Physica B:Condensed Matter, 212(4):391-394. https://doi.org/10.1016/0921-4526(95)00361-c
    Kumar, M., 1996. Application of High Pressure Equation of State for Different Classes of Solids. Physica B:Condensed Matter, 217(1/2):143-148. https://doi.org/10.1016/0921-4526(95)00448-3
    Kumar, M., 2003. Thermoelastic Properties of Minerals. Physics and Chemistry of Minerals, 30:556-558. https://doi.org/10.1007/s00269-003-0344-0
    Lan, T., Tang, X. L., Fultz, B., 2012. Phonon Anharmonicity of Rutile TiO2 Studied by Raman Spectrometry and Molecular Dynamics Simulations. Physical Review B, 85(9):094305. https://doi.org/10.1103/physrevb.85.094305
    Li, K. Y., Xue, D. F., 2006. Estimation of Electronegativity Values of Elements in Different Valence States. The Journal of Physical Chemistry A, 110(39):11332-11337. https://doi.org/10.1021/jp062886k
    Libowitzky, E., 1999. Correlation of O-H Stretching Frequencies and O-H…O Hydrogen Bond Lengths in Minerals. Monatshefte für Chemie, 130(8):1047-1059. https://doi.org/10.1007/bf03354882
    Litasov, K. D., Kagi, H., Shatskiy, A., et al., 2007. High Hydrogen Solubility in Al-Rich Stishovite and Water Transport in the Lower Mantle. Earth and Planetary Science Letters, 262(3/4):620-634. https://doi.org/10.1016/j.epsl.2007.08.015
    Lucassen, F., Koch-Muller, M., Taran, M., et al., 2012. Coupled H and Nb, Cr, and V Trace Element Behavior in Synthetic Rutile at 600 ℃, 400 MPa and Possible Geological Application. American Mineralogist, 98(1):7-18. https://doi.org/10.2138/am.2013.4183
    Maldener, J., Rauch, F., Gavranic, M., et al., 2001. OH Absorption Coefficients of Rutile and Cassiterite Deduced from Nuclear Reaction Analysis and FTIR Spectroscopy. Mineralogy and Petrology, 71(1/2):21-29. https://doi.org/10.1007/s007100170043
    Mammone, J. F., Sharma, S. K., Nicol, M., 1980. Raman Study of Rutile (TiO2) at High Pressures. Solid State Communications, 34(10):799-802. https://doi.org/10.1016/0038-1098(80)91055-8
    Meagher, E. P., Lager, G. A., 1979. Polyhedral Thermal Expansion in the TiO2 Polymorphs:Refinement of the Crystal Structure of Rutile and Brookite at High Temperature. The Canadian Mineralogist, 17:77-85 http://www.researchgate.net/publication/299160965_Polyhedral_thermal_expansion_in_the_TiO2_polymorphs_Refinement_of_the_crystal_structures_of_rutile_and_brookite_at_high_temperature
    Miao, Y. F., Pang, Y. W., Ye, Y., et al., 2019. Crystal Structures and High-Temperature Vibrational Spectra for Synthetic Boron and Aluminum Doped Hydrous Coesite. Crystals, 9(12):642. https://doi.org/10.3390/cryst9120642
    Ming, L. C., Manghnani, M. H., 1979. Isothermal Compression of TiO2 (Rutile) under Hydrostatic Pressure to 106 kbar. Journal of Geophysical Research, 84(B9):4777-4779. https://doi.org/10.1029/jb084ib09p04777
    Mookherjee, M., Redfern, S. A. T., Zhang, M., 2001. Thermal Response of Structure and Hydroxyl Ion of Phengite-2M1:An in situ Neutron Diffraction and FTIR Study. European Journal of Mineralogy, 13(3):545-555. https://doi.org/10.1127/0935-1221/2001/0013-0545
    Nie, J. Z., Liu, Y. C., Yang, Y., 2018. Phase Equilibria Modeling and P-T Evolution of the Mafic Lower-Crustal Xenoliths from the Southeastern Margin of the North China Craton. Journal of Earth Science, 29(5):1236-1253. https://doi.org/10.1007/s12583-018-0849-6
    Pawley, A. R., McMillan, P. F., Holloway, J. R., 1993. Hydrogen in Stishovite, with Implications for Mantle Water Content. Science, 261(5124):1024-1026. https://doi.org/10.1126/science.261.5124.1024
    Porto, S. P. S., Fleury, P. A., Damen, T. C., 1967. Raman Spectra of TiO2, MgF2, ZnF2, FeF2 and MnF2. Physical Review, 154(2):522-526. https://doi.org/10.1103/physrev.154.522
    Rao, K. V. K., Naidu, S. V. N., Iyengar, L., 1970. Thermal Expansion of Rutile and Anatase. Journal of the American Ceramic Society, 53(3):124-126. https://doi.org/10.1111/j.1151-2916.1970.tb12051.x
    Rossman, G. R., Smyth, J. R., 1990. Hydroxyl Content of Accessory Minerals in Mantle Eclogites and Related Rocks. American Mineralogist, 75:775-780 http://ci.nii.ac.jp/naid/80005531407
    Samara, G. A., Peercy, P. S., 1973. Pressure and Temperature Dependence of the Static Dielectric Constants and Raman Spectra of TiO2 (Rutile). Physical Review B, 7(3):1131-1148. https://doi.org/10.1103/physrevb.7.1131
    Sato, Y., 1977. Equation of State of Mantle Minerals Determined through High-Pressure X-Day Study. High Pressure Research Applications in Geophysics, (1977):307-323. https://doi.org/10.1016/b978-0-12-468750-9.50028-0
    Saxena, S. K., Chatterjee, N., Fei, Y., et al., 1993. Thermodynamic Data on Oxides and Silicates:An Assessed Data Set Based on Thermochemistry and High Pressure Phase Equilibrium. Springer-Verlag, Berlin, Heidelberg, New York
    Sheng, Y. M., Xia, Q. K., Hao, Y. T., 2007. Water in Rutiles from UHP Eclogites in the Dabie Orogen. Acta Petrologica et Mineralogica, 26:269-274 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200703009.htm
    Soffer, B. H., 1961. Studies of the Optical and Infrared Absorption Spectra of Rutile Single Crystals. The Journal of Chemical Physics, 35(3):940-945. https://doi.org/10.1063/1.1701242
    Song, Y. R., Jin, Z. M., 2002. Nanometer-Sized UHP Rutile:Tracing the Depth of Continental Deep Subduction. Earth Science Frontiers, 9:267-272 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200204008.htm
    Su, W., Li, J. L., Mao, Q., et al., 2018. Rutile in HP Rocks from the Western Tianshan, China:Mineralogy and Its Economic Implications. Journal of Earth Science, 29(5):1049-1059. https://doi.org/10.1007/s12583-018-0848-7
    Sugiyama, K., Takéuchi, Y., 1991. The Crystal Structure of Rutile as a Function of Temperature up to 1 600℃. Zeitschrift für Kristallographie-Crystalline Materials, 194(1/2/3/4):305-313. https://doi.org/10.1524/zkri.1991.194.14.305
    Suzuki, I., 1975. Thermal Expansion of Periclase and Olivine, and Their Anharmonic Properties. Journal of Physics of the Earth, 23(2):145-159. https://doi.org/10.4294/jpe1952.23.145
    Suzuki, I., Okajima, S. I., Seya, K., 1979. Thermal Expansion of Single-Crystal Manganosite. Journal of Physics of the Earth, 27(1):63-69. https://doi.org/10.4294/jpe1952.27.63
    Swope, R. J., Smyth, J. R., Larson, A. C., 1995. H in Rutile-Type Compounds:I. Single-Crystal Neutron and X-Ray Diffraction Study of H in Rutile. American Mineralogist, 80(5/6):448-453. https://doi.org/10.2138/am-1995-5-604
    Tokonami, M., 1965. Atomic Scattering Factor for O2-. Acta Crystallographica, 19(3):486-486. https://doi.org/10.1107/s0365110x65003729
    Touloukian, Y. S., Kirby, R. K., 1977. Thermophysical Properties of Matter; Volume 13:Thermal Expansion; Nonmetallic Solids. IFI/Plenum, New York, Washington
    Vlassopoulos, D., Rossman, G. R., Haggerty, S. E., 1993. Coupled Substitution of High and Minor Elements in Rutile and the Implications of High OH Contents in Nb-and Cr-Rich Rutile from the Upper Mantle. American Mineralogist, 78:1181-1191 http://ammin.geoscienceworld.org/content/78/11-12/1181
    Wang, X., Xu, X. X., Ye, Y., et al., 2019. In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite:Anharmonic Contribution to the Thermodynamic Properties. Journal of Earth Science, 30(5):964-976. https://doi.org/10.1007/s12583-019-1236-7
    Xie, Z. J., Liu, X. W., Jin, Z. M., et al., 2020. Microstructures and Phase Transition in Omphacite:Constraints on the P-T Path of Shuanghe Eclogite (Dabie Orogen). Journal of Earth Science, 31(2):254-261. https://doi.org/10.1007/s12583-019-1279-9
    Xiong, X. L., Adam, J., Green, T. H., 2005. Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt:Implications for TTG Genesis. Chemical Geology, 218(3/4):339-359. https://doi.org/10.1016/j.chemgeo.2005.01.014
    Xiong, X. L., Keppler, H., Audétat, A., et al., 2011. Partitioning of Nb and Ta between Rutile and Felsic Melt and the Fractionation of Nb/Ta during Partial Melting of Hydrous Metabasalt. Geochimica et Cosmochimica Acta, 75(7):1673-1692. https://doi.org/10.1016/j.gca.2010.06.039
    Yang, Y., Xia, Q., Feng, M., et al., 2011. In situ FTIR Investigations at Varying Temperatures on Hydrous Components in Rutile. American Mineralogist, 96(11/12):1851-1855. https://doi.org/10.2138/am.2011.3826
    Zack, T., Kronz, A., Foley, S. F., et al., 2002. Trace Element Abundances in Rutiles from Eclogites and Associated Garnet Mica Schists. Chemical Geology, 184(1/2):97-122. https://doi.org/10.1016/s0009-2541(01)00357-6
    Zaffiro, G., Angel, R. J., Alvaro, M., 2019. Constraints on the Equations of State of Stiff Anisotropic Minerals:Rutile, and the Implications for Rutile Elastic Barometry. Mineralogical Magazine, 83(3):339-347. https://doi.org/10.1180/mgm.2019.24
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(149) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return