Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 6
Dec 2021
Turn off MathJax
Article Contents
Zhuliang Lei, Gang Zeng, Jianqiang Liu, Xiaojun Wang, Lihui Chen, Xiaoyu Zhang, Jinhua Shi. Melt-Lithosphere Interaction Controlled Compositional Variations in Mafic Dikes from Fujian Province, Southeastern China. Journal of Earth Science, 2021, 32(6): 1445-1453. doi: 10.1007/s12583-020-1358-y
Citation: Zhuliang Lei, Gang Zeng, Jianqiang Liu, Xiaojun Wang, Lihui Chen, Xiaoyu Zhang, Jinhua Shi. Melt-Lithosphere Interaction Controlled Compositional Variations in Mafic Dikes from Fujian Province, Southeastern China. Journal of Earth Science, 2021, 32(6): 1445-1453. doi: 10.1007/s12583-020-1358-y

Melt-Lithosphere Interaction Controlled Compositional Variations in Mafic Dikes from Fujian Province, Southeastern China

doi: 10.1007/s12583-020-1358-y
More Information
  • Corresponding author: Gang Zeng, zgang@nju.edu.cn; Jianqiang Liu, liujq@hhu.edu.cn
  • Received Date: 20 Feb 2020
  • Accepted Date: 18 May 2020
  • Publish Date: 30 Dec 2021
  • Late Mesozoic magmatism in southeastern China has been widely considered to be related to the subduction of the Paleo-Pacific Plate. However, it remains controversial whether mafic rocks are derived from the lithosphere or the asthenosphere. Here we present a comprehensive study on mafic dikes from Fujian Province in southeastern China, aiming to understand their source. Two types of mafic rocks have been recognized based on their trace-element features. Type-I rocks show arc-like trace-elemental characteristics, while type-II rocks are distinguished by their relatively flat patterns in primitive-mantle-normalized trace-element diagram. Despite such differences between two types of rocks, these mafic dikes show two trends in the plots of 87Sr/86Sr(i) versus La/Nb, which can be explained by the influences of crustal contamination and melt-lithospheric mantle interaction, respectively. 87Sr/86Sr(i), La/Nb, Sr/Y and Zr/Y ratios of type-I rocks are significantly correlated to the thickness of the underlying lithosphere, and the signals of lithosphere are clearer with increasing lithospheric thickness. This highlights the important influences of melt-lithosphere interaction during their formation. Such observations also indicate that these mafic rocks are more likely to have been originated from the asthenosphere rather than the lithospheric mantle.

     

  • loading
  • An, M., Shi, Y., 2006. Lithospheric Thickness of the Chinese Continent. Physics of the Earth and Planetary Interiors, 159(3/4): 257-266. https://doi.org/10.1016/j.pepi.2006.08.002 doi: 10.1016/j.pepi.2006.08.002
    Chauvel, C., Lewin, E., Carpentier, M., et al., 2008. Role of Recycled Oceanic Basalt and Sediment in Generating the Hf-Nd Mantle Array. Nature Geoscience, 1(1): 64-67. https://doi.org/10.1038/ngeo.2007.51
    Chen, C. H., Lee, C. Y., Shinjo, R., 2008. Was there Jurassic Paleo-Pacific Subduction in South China?: Constraints from 40Ar/39Ar Dating, Elemental and Sr-Nd-Pb Isotopic Geochemistry of the Mesozoic Basalts. Lithos, 106(1/2): 83-92. https://doi.org/10.1016/j.lithos.2008.06.009 doi: 10.1016/j.lithos.2008.06.009
    Chen, J. F., Jahn, B. M., 1998. Crustal Evolution of Southeastern China: Nd and Sr Isotopic Evidence. Tectonophysics, 284(1/2): 101-133. https://doi.org/10.1016/s0040-1951(97)00186-8 doi: 10.1016/s0040-1951(97)00186-8
    Chen, W. S., Yang, H. C., Wang, X., et al., 2002. Tectonic Setting and Exhumation History of the Pingtan-Dongshan Metamorphic Belt along the Coastal Area, Fujian Province, Southeast China. Journal of Asian Earth Sciences, 20(7): 829-840. https://doi.org/10.1016/s1367-9120(01)00066-9 doi: 10.1016/S1367-9120(01)00066-9
    Dai, B. Z., 2007. Geochronology and Geochemistry of the Mesozoic Mafic Magmatisms in Southern Hunan Province, China: Implications for Multi-Stage Lithospheric Extension in South China: [Dissertation]. Nanjing University, Nanjing. 1-141 (in Chinese with English Abstract)
    Dasgupta, R., Hirschmann, M. M., Withers, A. C., 2004. Deep Global Cycling of Carbon Constrained by the Solidus of Anhydrous, Carbonated Eclogite under Upper Mantle Conditions. Earth and Planetary Science Letters, 227(1/2): 73-85. https://doi.org/10.1016/j.epsl.2004.08.004 doi: 10.1016/j.epsl.2004.08.004
    Davies, D. R., Rawlinson, N., Iaffaldano, G., et al., 2015. Lithospheric Controls on Magma Composition along Earth's Longest Continental Hotspot Track. Nature, 525(7570): 511-514. https://doi.org/10.1038/nature14903
    Dong, C. W., Zhou, C., Gu, H. Y., et al., 2011. The Age Difference, Geochemistry and Petrogenesis of Mafic Dikes and Host Granites from Meizhou Island in Fujian Province. Journal of Jilin University (Earth Science Edition), 41(3): 735-744 (in Chinese with English Abstract) http://www.researchgate.net/publication/283879360_The_age_difference_geochemistry_and_petrogenesis_of_mafic_dikes_and_host_granites_from_Meizhou_Island_in_Fujian_Province
    Fan, Q. C., Liu, R. X., Xie, H. S., et al., 1997. Experimental Study of Spinel-Garnet Phase Transition in Upper Mantle and Its Significance. Science in China Series D: Earth Sciences, 40(4): 383-389. https://doi.org/10.1007/bf02877569 doi: 10.1007/BF02877569
    Feng, M., van der Lee, S., An, M. J., et al., 2010. Lithospheric Thickness, Thinning, Subduction, and Interaction with the Asthenosphere beneath China from the Joint Inversion of Seismic S-Wave Train Fits and Rayleigh-Wave Dispersion Curves. Lithos, 120(1/2): 116-130. https://doi.org/10.1016/j.lithos.2009.11.017 doi: 10.1016/j.lithos.2009.11.017
    Foley, S. F., Barth, M. G., Jenner, G. A., 2000. Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas. Geochimica et Cosmochimica Acta, 64(5): 933-938. https://doi.org/10.1016/s0016-7037(99)00355-5 doi: 10.1016/S0016-7037(99)00355-5
    Halliday, A. N., Lee, D. C., Tommasini, S., et al., 1995. Incompatible Trace Elements in OIB and MORB and Source Enrichment in the Sub-Oceanic Mantle. Earth and Planetary Science Letters, 133(3/4): 379-395. https://doi.org/10.1016/0012-821x(95)00097-v doi: 10.1016/0012-821x(95)00097-v
    He, Z. Y., Xu, X. S., 2012. Petrogenesis of the Late Yanshanian Mantle-Derived Intrusions in Southeastern China: Response to the Geodynamics of Paleo-Pacific Plate Subduction. Chemical Geology, 328: 208-221. https://doi.org/10.1016/j.chemgeo.2011.09.014
    Herzberg, C., 2011. Identification of Source Lithology in the Hawaiian and Canary Islands: Implications for Origins. Journal of Petrology, 52(1): 113-146. https://doi.org/10.1093/petrology/egq075
    Hoernle, K., Tilton, G., Le Bas, M. J., et al., 2002. Geochemistry of Oceanic Carbonatites Compared with Continental Carbonatites: Mantle Recycling of Oceanic Crustal Carbonate. Contributions to Mineralogy and Petrology, 142(5): 520-542. https://doi.org/10.1007/s004100100308
    Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. https://doi.org/10.1016/0012-821x(88)90132-x doi: 10.1016/0012-821X(88)90132-X
    Humphreys, E. R., Niu, Y. L., 2009. On the Composition of Ocean Island Basalts (OIB): The Effects of Lithospheric Thickness Variation and Mantle Metasomatism. Lithos, 112(1/2): 118-136. https://doi.org/10.1016/j.lithos.2009.04.038 doi: 10.1016/j.lithos.2009.04.038
    Jahn, B. M., 1974. Mesozoic Thermal Events in Southeast China. Nature, 248(5448): 480-483. https://doi.org/10.1038/248480a0
    Jahn, B. M., Zhou, X. H., Li, J. L., 1990. Formation and Tectonic Evolution of Southeastern China and Taiwan: Isotopic and Geochemical Constraints. Tectonophysics, 183(1/2/3/4): 145-160. https://doi.org/10.1016/0040-1951(90)90413-3 doi: 10.1016/0040-1951(90)90413-3
    Jia, Z. B., Chen, H., Xia, Q. K., et al., 2020. Influence of the Subduction of the Pacific Plate on the Mantle Characteristics of South China: Constraints from the Temporal Geochemical Evolution of the Mesozoic Basalts in the Jitai Basin. Lithos, 352/353: 105253. https://doi.org/10.1016/j.lithos.2019.105253
    Jochum, K. P., Weis, U., Schwager, B., et al., 2016. Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials. Geostandards and Geoanalytical Research, 40(3): 333-350. https://doi.org/10.1111/j.1751-908x.2015.00392.x doi: 10.1111/j.1751-908X.2015.00392.x
    Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745
    Lei, H. L., Yang, T., Jiang, S. Y., et al., 2019. A Simple Two-Stage Column Chromatographic Separation Scheme for Strontium, Lead, Neodymium and Hafnium Isotope Analyses in Geological Samples by Thermal Ionization Mass Spectrometry or Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Separation Science, 42(20): 3261-3275. https://doi.org/10.1002/jssc.201900579
    Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1 doi: 10.1130/G23193A.1
    Litasov, K., Ohtani, E., 2010. The Solidus of Carbonated Eclogite in the System CaO-Al2O3-MgO-SiO2-Na2O-CO2 to 32 GPa and Carbonatite Liquid in the Deep Mantle. Earth and Planetary Science Letters, 295(1/2): 115-126. https://doi.org/10.1016/j.epsl.2010.03.030 doi: 10.1016/j.epsl.2010.03.030
    Liu, J. Q., Chen, L. H., Wang, X. J., et al., 2017. The Role of Melt-Rock Interaction in the Formation of Quaternary High-MgO Potassic Basalt from the Greater Khingan Range, Northeast China. Journal of Geophysical Research: Solid Earth, 122(1): 262-280. https://doi.org/10.1002/2016jb013605 doi: 10.1002/2016JB013605
    Liu, J. Q., Chen, L. H., Zeng, G., et al., 2016. Lithospheric Thickness Controlled Compositional Variations in Potassic Basalts of Northeast China by Melt-Rock Interactions. Geophysical Research Letters, 43(6): 2582-2589. https://doi.org/10.1002/2016gl068332 doi: 10.1002/2016GL068332
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4 doi: 10.1016/0009-2541(94)00140-4
    McKenzie, D., OʼNions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021
    Meng, L. F., Li, Z. X., Chen, H. L., et al., 2012. Geochronological and Geochemical Results from Mesozoic Basalts in Southern South China Block Support the Flat-Slab Subduction Model. Lithos, 132/133: 127-140. https://doi.org/10.1016/j.lithos.2011.11.022
    Niu, Y. L., Collerson, K. D., Batiza, R., et al., 1999. Origin of Enriched-Type Mid-Ocean Ridge Basalt at Ridges Far from Mantle Plumes: The East Pacific Rise at 11°20'N. Journal of Geophysical Research: Solid Earth, 104(B4): 7067-7087. https://doi.org/10.1029/1998jb900037 doi: 10.1029/1998JB900037
    Niu, Y. L., Wilson, M., Humphreys, E. R., et al., 2011. The Origin of Intra-Plate Ocean Island Basalts (OIB): The Lid Effect and Its Geodynamic Implications. Journal of Petrology, 52(7/8): 1443-1468. https://doi.org/10.1093/petrology/egr030 doi: 10.1093/petrology/egr030
    Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
    Qin, S. C., Fan, W. M., Guo, F., et al., 2010. Petrogenesis of Late Mesozoic Diabase Dikes in Zhejiang-Fujian Provinces: Constraints from Ar-Ar Dating and Geochemistry. Acta Petrologica Sinica, 26(11): 3295-3306 (in Chinese with English Abstract) http://www.researchgate.net/publication/281211081_Late_Mesozoic_extension_in_the_coastal_area_of_Zhejiang_and_Fujian_Provinces_An_indicator_from_the_basic-intermediate_dikes_coastland_of_Fujian_Province
    Shen, X. Z., Kind, R., Huang, Z. C., et al., 2019. Imaging the Mantle Lithosphere below the China Cratons Using S-to-P Converted Waves. Tectonophysics, 754: 73-79. https://doi.org/10.1016/j.tecto.2019.02.002
    Sobolev, A. V., Hofmann, A. W., Kuzmin, D. V., et al., 2007. The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science, 316(5823): 412-417. https://doi.org/10.1126/science.1138113 doi: 10.1126/science. 1138113
    Wan, T. F., Tong, Y. F., Zheng, W. W., 1987. Thermal Structure of Lithosphere in Fujian, China. Geoscience, 1(3/4): 412-423 (in Chinese with English Abstract) http://adsabs.harvard.edu/abs/1989JGR....94.1888T
    Wan, Y. S., Liu, D. Y., Xu, M. H., et al., 2007. SHRIMP U-Pb Zircon Geochronology and Geochemistry of Metavolcanic and Metasedimentary Rocks in Northwestern Fujian, Cathaysia Block, China: Tectonic Implications and the Need to Redefine Lithostratigraphic Units. Gondwana Research, 12(1/2): 166-183. https://doi.org/10.1016/j.gr.2006.10.016 doi: 10.1016/j.gr.2006.10.016
    Wang, X. Y., Yang, Z., Chen, N. S., et al., 2018. Petrogenesis and Ore Genesis of the Late Yanshanian Granites and Associated Porphyry-Skarn W-Mo Deposits from the Yunkai Area of South China: Evidence from the Zircon U-Pb Ages, Hf Isotopes and Sulfide S-Fe Isotopes. Journal of Earth Science, 29(4): 939-959. https://doi.org/10.1007/s12583-017-0901-1
    Wang, Y. J., Fan, W. M., Guo, F., et al., 2003. Geochemistry of Mesozoic Mafic Rocks Adjacent to the Chenzhou-Linwu Fault, South China: Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks. International Geology Review, 45(3): 263-286. https://doi.org/10.2747/0020-6814.45.3.263
    Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1/2): 53-72. https://doi.org/10.1016/j.epsl.2004.12.005 doi: 10.1016/j.epsl.2004.12.005
    Yang, Y. F., 2008. Chronology and Geochemistry of Late Mesozoic Basic-Intermediate Dike Swarms from the Coastland of Fujian Province: [Dissertation]. Zhejiang University, Hangzhou. 1-67 (in Chinese with English Abstract)
    Yasuda, A., Fujii, T., Kurita, K., 1994. Melting Phase Relations of an Anhydrous Mid-Ocean Ridge Basalt from 3 to 20 GPa: Implications for the Behavior of Subducted Oceanic Crust in the Mantle. Journal of Geophysical Research: Solid Earth, 99(B5): 9401-9414. https://doi.org/10.1029/93jb03205 doi: 10.1029/93JB03205
    Yu, J. H., Xu, X. S., OʼReilly, S. Y., et al., 2003. Granulite Xenoliths from Cenozoic Basalts in SE China Provide Geochemical Fingerprints to Distinguish Lower Crust Terranes from the North and South China Tectonic Blocks. Lithos, 67(1/2): 77-102. https://doi.org/10.1016/s0024-4937(02)00253-0 doi: 10.1016/s0024-4937(02)00253-0
    Zeng, G., Chen, L. H., Hu, S. L., et al., 2013. Genesis of Cenozoic Low-Ca Alkaline Basalts in the Nanjing Basaltic Field, Eastern China: The Case for Mantle Xenolith-Magma Interaction. Geochemistry, Geophysics, Geosystems, 14(5): 1660-1677. https://doi.org/10.1002/ggge.20127
    Zeng, G., Chen, L. H., Xu, X. S., et al., 2010. Carbonated Mantle Sources for Cenozoic Intra-Plate Alkaline Basalts in Shandong, North China. Chemical Geology, 273(1/2): 35-45. https://doi.org/10.1016/j.chemgeo.2010.02.009 doi: 10.1016/j.chemgeo.2010.02.009
    Zeng, G., He, Z. Y., Li, Z., et al., 2016. Geodynamics of Paleo-Pacific Plate Subduction Constrained by the Source Lithologies of Late Mesozoic Basalts in Southeastern China. Geophysical Research Letters, 43(19): 10189-10197. https://doi.org/10.1002/2016gl070346 doi: 10.1002/2016GL070346
    Zhang, B., Guo, F., Zhang, X. B., et al., 2019. Early Cretaceous Subduction of Paleo-Pacific Ocean in the Coastal Region of SE China: Petrological and Geochemical Constraints from the Mafic Intrusions. Lithos, 334/335:8-24. https://doi.org/10.1016/j.lithos.2019.03.010 doi: 10.1016/j.lithos.2019.03.010
    Zhang, G. L., Chen, L. H., Jackson, M. G., et al., 2017. Evolution of Carbonated Melt to Alkali Basalt in the South China Sea. Nature Geoscience, 10(3): 229-235. https://doi.org/10.1038/ngeo2877
    Zhang, G. S., 2006. Chronology, Geochemistry, and Geodynamic Significance of the Mafic-Ultramafic Rocks in Fujian Province since Late Mesozoic: [Dissertation]. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang. 1-138 (in Chinese with English Abstract)
    Zhang, H. F., Goldstein, S. L., Zhou, X. H., et al., 2008. Evolution of Subcontinental Lithospheric Mantle beneath Eastern China: Re-Os Isotopic Evidence from Mantle Xenoliths in Paleozoic Kimberlites and Mesozoic Basalts. Contributions to Mineralogy and Petrology, 155(3): 271-293. https://doi.org/10.1007/s00410-007-0241-5
    Zhao, J. H., 2004. Chronology and Geochemistry of Mafic Rocks from Fujian Province: Implications for the Mantle Evolution of SE China since Late Mesozoic: [Dissertation]. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang. 1-116 (in Chinese with English Abstract)
    Zhao, J. H., Hu, R. Z., Liu, S., 2004. Geochemistry, Petrogenesis, and Tectonic Significance of Mesozoic Mafic Dikes, Fujian Province, Southeastern China. International Geology Review, 46(6): 542-557. https://doi.org/10.2747/0020-6814.46.6.542
    Zhao, J. H., Hu, R. Z., Zhou, M. F., et al., 2007. Elemental and Sr-Nd-Pb Isotopic Geochemistry of Mesozoic Mafic Intrusions in Southern Fujian Province, SE China: Implications for Lithospheric Mantle Evolution. Geological Magazine, 144(6): 937-952. https://doi.org/10.1017/s0016756807003834 doi: 10.1017/S0016756807003834
    Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3/4): 269-287. https://doi.org/10.1016/s0040-1951(00)00120-7 doi: 10.1016/s0040-1951(00)00120-7
    Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(297) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return