Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 4
Aug 2021
Turn off MathJax
Article Contents
Zhen Qiu, Huifei Tao, Bin Lu, Zhenhong Chen, Songtao Wu, Hanlin Liu, Junli Qiu. Controlling Factors on Organic Matter Accumulation of Marine Shale across the Ordovician-Silurian Transition in South China: Constraints from Trace-Element Geochemistry. Journal of Earth Science, 2021, 32(4): 887-900. doi: 10.1007/s12583-020-1359-x
Citation: Zhen Qiu, Huifei Tao, Bin Lu, Zhenhong Chen, Songtao Wu, Hanlin Liu, Junli Qiu. Controlling Factors on Organic Matter Accumulation of Marine Shale across the Ordovician-Silurian Transition in South China: Constraints from Trace-Element Geochemistry. Journal of Earth Science, 2021, 32(4): 887-900. doi: 10.1007/s12583-020-1359-x

Controlling Factors on Organic Matter Accumulation of Marine Shale across the Ordovician-Silurian Transition in South China: Constraints from Trace-Element Geochemistry

doi: 10.1007/s12583-020-1359-x
More Information
  • Corresponding author: Huifei Tao, tophic3@yeah.net
  • Received Date: 08 Apr 2020
  • Accepted Date: 15 Jun 2020
  • Publish Date: 16 Aug 2021
  • In recent years, significant progress in shale gas exploration has been achieved in the Upper Ordovician (Wufeng Formation)-Lower Silurian (Longmaxi Formation) shales in the Upper Yangtze area, South China. Although many studies have been carried out on the Upper Ordovician-Lower Silurian shales, the controlling factors causing organic matter accumulation of these shales remain controversial. This study uses trace-element geochemistry and sedimentological methods to evaluate terrigenous input, redox conditions and primary productivity to explore the mechanisms of organic matter accumulation. The variation of terrigenous fraction elements (Al, Th and Sc) concentrations reflect a mixed influence of sea-level change and weathering. The sea-level of the Upper Yangtze Sea went through two cycles of transgression to regression during the Ordovician-Silurian transition. The Linxiang Formation, Kuanyinchiao Bed and the upper part of Longmaxi Formation developed during the periods of regression, whereas the Wufeng Formation and the lower part of the Longmaxi Formation developed during the periods of transgression. The paleo-productivity indexes of TOC content, ratios of Ba/Al and P/Al, and redox conditions proxies of Mo concentration, ratios of U/Th and V/Cr generally display similar variation patterns with respect to the sea-level changes. High TOC contents and Ba/Al and P/Al ratios indicate the paleo-productivity was high on the sea surface, as shown by relatively good positive correlations between Th vs. TOC, and Sc vs. TOC. This indicates that the paleo-productivity was controlled by the nutrients input through weathering. The good positive correlations between redox conditions indexes (U/Th and V/Cr ratios) with TOC content reflects reductive preservation conditions (anoxic to euxinic), thus implying they were an important controlling factor for organic matter accumulation. Nevertheless, redox conditions were closely associated with sea level change and organic matter decomposition. Therefore, the sea-level change and weathering were the primary controlling factors for organic matter enrichment across the Ordovician to Silurian transition.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S3 and Figs. S1–S3) are available in the online version of this article at https://doi.org/10.1007/s12583-020-1359-x.
  • loading
  • Algeo, T. J., Kuwahara, K., Sano, H., et al., 2011. Spatial Variation in Sediment Fluxes, Redox Conditions, and Productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1/2): 65-83. https://doi.org/10.1016/j.palaeo.2010.07.007
    Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): 1112. https://doi.org/10.1029/2004pa001112
    Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3/4): 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009
    Algeo, T. J., Maynard, J. B., 2008. Trace-Metal Covariation as a Guide to Water-Mass Conditions in Ancient Anoxic Marine Environments. Geosphere, 4(5): 872-887. https://doi.org/10.1130/ges00174.1
    Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3/4): 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001
    Arthur, M. A., Sageman, B. B., 1994. Marine Black Shales: Depositional Mechanisms and Environments of Ancient Deposits. Annual Review of Earth and Planetary Sciences, 22(1): 499-551. https://doi.org/10.1146/annurev.ea.22.050194.002435
    Brenchley, P. J., Marshall, J. D., Carden, G. A. F., et al., 1994. Bathymetric and Isotopic Evidence for a Short-Lived Late Ordovician Glaciation in a Greenhouse Period. Geology, 22(4): 295-298. https://doi.org/10.1130/0091-7613(1994)0220295:baiefa>2.3.co;2 doi: 10.1130/0091-7613(1994)0220295:baiefa>2.3.co;2
    Burdige, D. J., 2007. Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?. Chemical Reviews, 107(2): 467-485. https://doi.org/10.1021/cr050347q
    Calvert, S. E., Pedersen, T. F., 1993. Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications for the Geological Record. Marine Geology, 113(1/2): 67-88. https://doi.org/10.1016/0025-3227(93)90150-t
    Caplan, M. L., Bustin, R. M., 1999. Palaeoceanographic Controls on Geochemical Characteristics of Organic-Rich Exshaw Mudrocks: Role of Enhanced Primary Production. Organic Geochemistry, 30(2/3): 161-188. https://doi.org/10.1016/s0146-6380(98)00202-2
    Chen, C., Mu, C. L., Zhou, K. K., et al., 2016. The Geochemical Characteristics and Factors Controlling the Organic Matter Accumulation of the Late Ordovician-Early Silurian Black Shale in the Upper Yangtze Basin, South China. Marine and Petroleum Geology, 76: 159-175. https://doi.org/10.1016/j.marpetgeo.2016.04.022
    Chen, X., Rong, J. Y., Fan, J. X., et al., 2006. The Global Boundary Stratotype Section and Point (GSSP) for the Base of the Hirnantian Stage (the Uppermost of the Ordovician System). Episodes, 29(3): 183-196. https://doi.org/10.18814/epiiugs/2006/v29i3/004
    Chen, X., Rong, J. Y., Li, Y., et al., 2004. Facies Patterns and Geography of the Yangtze Region, South China, through the Ordovician and Silurian Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3/4): 353-372. https://doi.org/10.1016/s0031-0182(03)00736-3
    Chen, X., Rong, J. Y., Mitchell, C. E., et al., 2000. Late Ordovician to Earliest Silurian Graptolite and Brachiopod Biozonation from the Yangtze Region, South China, with a Global Correlation. Geological Magazine, 137(6): 623-650. https://doi.org/10.1017/s0016756800004702
    Chen, X., Rong, J. Y., Zhou, Z. Y., et al., 2001. The Central Guizhou and Yi-Chang Uplifts, Upper Yangtze Region, between Ordovician and Silurian. Chinese Science Bulletin, 46(18): 1580-1584. https://doi.org/10.1007/bf02900587
    Crombez, V., Baudin, F., Rohais, S., et al., 2017. Basin Scale Distribution of Organic Matter in Marine Fine-Grained Sedimentary Rocks: Insight from Sequence Stratigraphy and Multi-Proxies Analysis in the Montney and Doig Formations. Marine and Petroleum Geology, 83: 382-401. https://doi.org/10.1016/j.marpetgeo.2016.10.013
    Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 145(1/2/3/4): 65-78. https://doi.org/10.1016/s0012-821x(96)00204-x
    Delabroye, A., Vecoli, M., 2010. The End-Ordovician Glaciation and the Hirnantian Stage: A Global Review and Questions about Late Ordovician Event Stratigraphy. Earth-Science Reviews, 98(3/4): 269-282. https://doi.org/10.1016/j.earscirev.2009.10.010
    Demaison, G. J., Moore, G. T., 1980. Anoxic Environments and Oil Source Bed Genesis. Organic Geochemistry, 2(1): 9-31. https://doi.org/10.1016/0146-6380(80)90017-0
    Deuser, W. G., 1971. Organic-Carbon Budget of the Black Sea. Deep Sea Research and Oceanographic Abstracts, 18(10): 995-1004. https://doi.org/10.1016/0011-7471(71)90004-0
    Dymond, J., Suess, E., Lyle, M., 1992. Barium in Deep-Sea Sediment: A Geochemical Proxy for Paleoproductivity. Paleoceanography, 7(2): 163-181. https://doi.org/10.1029/92pa00181
    Finnegan, S., Bergmann, K., Eiler, J. M., et al., 2011. The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation. Science, 331(6019): 903-906. https://doi.org/10.1126/science.1200803
    François, R., Honjo, S., Manganini, S. J., et al., 1995. Biogenic Barium Fluxes to the Deep Sea: Implications for Paleoproductivity Reconstruction. Global Biogeochemical Cycles, 9(2): 289-303. https://doi.org/10.1029/95gb00021
    Gallego-Torres, D., Martínez-Ruiz, F., Paytan, A., et al., 2007. Pliocene- Holocene Evolution of Depositional Conditions in the Eastern Mediterranean: Role of Anoxia vs. Productivity at Time of Sapropel Deposition. Palaeogeography, Palaeoclimatology, Palaeoecology, 246(2/3/4): 424-439. https://doi.org/10.1016/j.palaeo.2006.10.008
    Gingele, F., Dahmke, A., 1994. Discrete Barite Particles and Barium as Tracers of Paleoproductivity in South Atlantic Sediments. Paleoceanography, 9(1): 151-168. https://doi.org/10.1029/93pa02559
    González-Álvarez, I., Kerrich, R., 2011. Trace Element Mobility in Dolomitic Argillites of the Mesoproterozoic Belt-Purcell Supergroup, Western North America. Geochimica et Cosmochimica Acta, 75(7): 1733-1756. https://doi.org/10.1016/j.gca.2011.01.006
    Gouldey, J. C., Saltzman, M. R., Young, S. A., et al., 2010. Strontium and Carbon Isotope Stratigraphy of the Llandovery (Early Silurian): Implications for Tectonics and Weathering. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(3/4): 264-275. https://doi.org/10.1016/j.palaeo.2010.05.035
    Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007. Trace Element Chemostratigraphy of Two Ediacaran-Cambrian Successions in South China: Implications for Organo-Sedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 194-216. https://doi.org/10.1016/j.palaeo.2007.03.016
    Guo, T. L., Zhang, H. R., 2014. Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin. Petroleum Exploration and Development, 41(1): 31-40. https://doi.org/10.1016/s1876-3804(14)60003-3
    Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. https://doi.org/10.1306/02141312091
    Hartnett, H. E., Devol, A. H., 2003. Role of a Strong Oxygen-Deficient Zone in the Preservation and Degradation of Organic Matter: A Carbon Budget for the Continental Margins of Northwest Mexico and Washington State. Geochimica et Cosmochimica Acta, 67(2): 247-264. https://doi.org/10.1016/s0016-7037(02)01076-1
    Huff, W. D., Bergström, S. M., Kolata, D. R., 2010. Ordovician Explosive Volcanism. The Ordovician Earth System. In: Finney, S. C., Berry, W. B. N., eds., The Ordovician Earth System. Geological Society of America Special Paper, 466: 13-28. https://doi.org/10.1130/2010.2466(02)
    Isozaki, Y., Servais, T., 2018. The Hirnantian (Late Ordovician) and End-Guadalupian (Middle Permian) Mass-Extinction Events Compared. Lethaia, 51(2): 173-186. https://doi.org/10.1111/let.12252
    Jacobs, L., Emerson, S., Skei, J., 1985. Partitioning and Transport of Metals across the O2H2S Interface in a Permanently Anoxic Basin: Framvaren Fjord, Norway. Geochimica et Cosmochimica Acta, 49(6): 1433-1444. https://doi.org/10.1016/0016-7037(85)90293-5
    Jagoutz, O., MacDonald, F. A., Royden, L., 2016. Low-Latitude Arc-Continent Collision as a Driver for Global Cooling. Proceedings of the National Academy of Sciences of the United States of America, 113(18): 4935-4940. https://doi.org/10.1073/pnas.1523667113
    Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1/2/3/4): 111-129. https://doi.org/10.1016/0009-2541(94)90085-x
    Katz, B. J., 2005. Controlling Factors on Source Rock Development-A Review of Productivity, Preservation, and Sedimentation Rate. Deposition of Organic-Carbon-Rich Sediments: Models. SEPM (Society for Sedimentary Geology), 132: 7-16. https://doi.org/10.2110/pec.05.82.0007
    Kimura, H., Watanabe, Y., 2001. Oceanic Anoxia at the Precambrian-Cambrian Boundary. Geology, 29(11): 995-998. https://doi.org/10.1130/0091-7613(2001)0290995:oaatpc>2.0.co;2 doi: 10.1130/0091-7613(2001)0290995:oaatpc>2.0.co;2
    Kump, L. R., Arthur, M. A., Patzkowsky, M. E., et al., 1999. A Weathering Hypothesis for Glaciation at High Atmospheric pCO2 during the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1/2): 173-187. https://doi.org/10.1016/s0031-0182(99)00046-2
    Lash, G. G., Blood, D. R., 2014. Organic Matter Accumulation, Redox, and Diagenetic History of the Marcellus Formation, Southwestern Pennsylvania, Appalachian Basin. Marine and Petroleum Geology, 57: 244-263. https://doi.org/10.1016/j.marpetgeo.2014.06.001
    Li, X. H., 1997. Geochemistry of the Longsheng Ophiolite from the Southern Margin of Yangtze Craton, SE China. Geochemical Journal, 31(5): 323-337. https://doi.org/10.2343/geochemj.31.323
    Li, Y. F., Schieber, J., Fan, T. L., et al., 2017. Regional Depositional Changes and Their Controls on Carbon and Sulfur Cycling across the Ordovician-Silurian Boundary, Northwestern Guizhou, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 816-832. https://doi.org/10.1016/j.palaeo.2017.07.039
    Li, Y., Shao, D., Lu, H., et al., 2015. A Relationship between Elemental Geochemical Characteristics and Organic Matter Enrichment in Marine Shale of Wufeng Formation-Longmaxi Formation, Sichuan Basin. Acta Petrolei Sinica, 36: 1470-1483 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201512002.htm
    Li, Z. M., Gong, S. Y., Chen, J. Q., et al., 1997. Ordovician-Silurian Depositional Sequences and Their Relations with Tectonic Movement in South China. Earth Science, 22(5): 526-530 (in Chinese with English Abstract)
    Liu, Z. H., Algeo, T. J., Guo, X. S., et al., 2017. Paleo-Environmental Cyclicity in the Early Silurian Yangtze Sea (South China): Tectonic or Glacio-Eustatic Control?. Palaeogeography, Palaeoclimatology, Palaeoecology, 466: 59-76. https://doi.org/10.1016/j.palaeo.2016.11.007
    Long, P. Y., Zhang, J. C., Jiang, W. L., et al., 2012. Analysis on Pores Forming Features and Its Influence Factors of Reservoir Well Yuye-1. Journal of Central South University (Science and Technology), 43(10): 3954-3963 (in Chinese with English Abstract) http://qikan.cqvip.com/Qikan/Article/Detail?id=43803892
    Ma, X. H., Xie, J., 2018. The Progress and Prospects of Shale Gas Exploration and Development in Southern Sichuan Basin, SW China. Petroleum Exploration and Development, 45(1): 172-182. https://doi.org/10.1016/S1876-3804(18)30018-1
    Metcalfe, I., 1994. Late Palaeozoic and Mesozoic Palaeogeography of Eastern Pangea and Tethys. Canadian Society of Petroleum Geologists Memoir, 17: 97-111
    Monnin, C., 1999. A Thermodynamic Model for the Solubility of Barite and Celestite in Electrolyte Solutions and Seawater to 200 ℃ and to 1 kbar. Chemical Geology, 153(1/2/3/4): 187-209. https://doi.org/10.1016/s0009-2541(98)00171-5
    Morford, J. L., Emerson, S., 1999. The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta, 63(11/12): 1735-1750. https://doi.org/10.1016/s0016-7037(99)00126-x
    Morford, J. L., Russell, A. D., Emerson, S., 2001. Trace Metal Evidence for Changes in the Redox Environment Associated with the Transition from Terrigenous Clay to Diatomaceous Sediment, Saanich Inlet, BC. Marine Geology, 174(1/2/3/4): 355-369. https://doi.org/10.1016/s0025-3227(00)00160-2
    Mort, H., Jacquat, O., Adatte, T., et al., 2007. The Cenomanian/Turonian Anoxic Event at the Bonarelli Level in Italy and Spain: Enhanced Productivity and/or Better Preservation?. Cretaceous Research, 28(4): 597-612. https://doi.org/10.1016/j.cretres.2006.09.003
    Murphy, A. E., Sageman, B. B., Hollander, D. J., et al., 2000. Black Shale Deposition and Faunal Overturn in the Devonian Appalachian Basin: Clastic Starvation, Seasonal Water-Column Mixing, and Efficient Biolimiting Nutrient Recycling. Paleoceanography, 15(3): 280-291. https://doi.org/10.1029/1999pa000445
    Murray, R. W., Leinen, M., 1993. Chemical Transport to the Seafloor of the Equatorial Pacific Ocean across a Latitudinal Transect at 135°W: Tracking Sedimentary Major, Trace, and Rare Earth Element Fluxes at the Equator and the Intertropical Convergence Zone. Geochimica et Cosmochimica Acta, 57(17): 4141-4163. https://doi.org/10.1016/0016-7037(93)90312-k
    Neira, C., Sellanes, J., Levin, L. A., et al., 2001. Meiofaunal Distributions on the Peru Margin: Relationship to Oxygen and Organic Matter Availability. Deep Sea Research Part I: Oceanographic Research Papers, 48(11): 2453-2472. https://doi.org/10.1016/s0967-0637(01)00018-8
    Ocubalidet, S. G., Rimmer, S. M., Conder, J. A., 2018. Redox Conditions Associated with Organic Carbon Accumulation in the Late Devonian New Albany Shale, West-Central Kentucky, Illinois Basin. International Journal of Coal Geology, 190: 42-55. https://doi.org/10.1016/j.coal.2017.11.017
    Opsahl, S., Benner, R., 1997. Distribution and Cycling of Terrigenous Dissolved Organic Matter in the Ocean. Nature, 386(6624): 480-482. https://doi.org/10.1038/386480a0
    Paytan, A., Averyt, K., Faul, K., et al., 2007. Barite Accumulation, Ocean Productivity, and Sr/Ba in Barite across the Paleocene-Eocene Thermal Maximum. Geology, 35(12): 1139-1142. https://doi.org/10.1130/g24162a.1
    Pedersen, T. F., Calvert, S. E., 1990. Anoxia vs. Productivity: What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary Rocks?. (I). AAPG Bulletin, 74: 454-466. https://doi.org/10.1306/0c9b232b-1710-11d7-8645000102c1865d
    Prakash, B. C., Brumsack, H. J., Schnetger, B., et al., 2002. Barium as a Productivity Proxy in Continental Margin Sediments: A Study from the Eastern Arabian Sea. Marine Geology, 184(3/4): 189-206. https://doi.org/10.1016/s0025-3227(01)00286-9
    Qiu, Z., Dong, D. Z., Lu, B., et al., 2016. Discussion on the Relationship between Graptolite Abundance and Organic Enrichment in Shales from the Wufeng and Longmaxi Formation, South China. Acta Sedimentologica Sinica, 34(6): 1011-1020. https://doi.org/10.14027/j.cnki.cjxb.2016.06.001 (in Chinese with English Abstract)
    Qiu, Z., Zou, C. N., 2020a. Controlling Factors on the Formation and Distribution of "Sweet-Spot Areas" of Marine Gas Shales in South China and a Preliminary Discussion on Unconventional Petroleum Sedimentology. Journal of Asian Earth Sciences, 194: 103989. https://doi.org/10.1016/j.jseaes.2019.103989
    Qiu, Z., Zou, C. N., 2020b. Unconventional Petroleum Sedimentology: Connotation and Prospect. Acta Sedimentologica Sinica, 38: 1-29 (in Chinese with English Abstract)
    Qiu, Z., Zou, C. N., Li, J. Z., et al., 2013. Unconventional Petroleum Resources Assessment: Progress and Future Prospects. Natural Gas Geoscience, 24(2): 238-246 (in Chinese with English Abstract) http://www.ga.gov.au/scientific-topics/energy/resources/petroleum-resources/unconventional-resources
    Qiu, Z., Zou, C. N., Wang, H. Y., et al., 2020. Discussion on the Characteristics and Controlling Factors of Differential Enrichment of Shale Gas in the Wufeng-Longmaxi Formations in South China. Journal of Natural Gas Geoscience, 5(3): 117-128. https://doi.org/10.1016/j.jnggs.2020.05.004
    Ran, B., Liu, S. G., Jansa, L., et al., 2015. Origin of the Upper Ordovician-Lower Silurian Cherts of the Yangtze Block, South China, and Their Palaeogeographic Significance. Journal of Asian Earth Sciences, 108: 1-17. https://doi.org/10.1016/j.jseaes.2015.04.007
    Riboulleau, A., Baudin, F., Deconinck, J. F., et al., 2003. Depositional Conditions and Organic Matter Preservation Pathways in an Epicontinental Environment: The Upper Jurassic Kashpir Oil Shales (Volga Basin, Russia). Palaeogeography, Palaeoclimatology, Palaeoecology, 197(3/4): 171-197. https://doi.org/10.1016/s0031-0182(03)00460-7
    Rimmer, S. M., 2004. Geochemical Paleoredox Indicators in Devonian-Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 206(3/4): 373-391. https://doi.org/10.1016/ j.chemgeo.2003.12.029 doi: 10.1016/j.chemgeo.2003.12.029
    Rong, J. Y., 1984. Ecostratigraphic Evidence of Regression and Influence of Glaciation of Late Ordovician in the Upper Yangtze Area. Stratigraphy Journal, 8: 9-20 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ198401002.htm
    Rong, J. Y., Wang, Y., Zhan, R. B., et al., 2019. Silurian Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 89-111. https://doi.org/10.1007/s11430-017-9258-0
    Sageman, B. B., Murphy, A. E., Werne, J. P., et al., 2003. A Tale of Shales: The Relative Roles of Production, Decomposition, and Dilution in the Accumulation of Organic-Rich Strata, Middle-Upper Devonian, Appalachian Basin. Chemical Geology, 195(1/2/3/4): 229-273. https://doi.org/10.1016/s0009-2541(02)00397-2
    Schenau, S. J., Reichart, G. J., de Lange, G. J., 2005. Phosphorus Burial as a Function of Paleoproductivity and Redox Conditions in Arabian Sea Sediments. Geochimica et Cosmochimica Acta, 69(4): 919-931. https://doi.org/10.1016/j.gca.2004.05.044
    Schoepfer, S. D., Shen, J., Wei, H. Y., et al., 2015. Total Organic Carbon, Organic Phosphorus, and Biogenic Barium Fluxes as Proxies for Paleomarine Productivity. Earth-Science Reviews, 149: 23-52. https://doi.org/10.1016/j.earscirev.2014.08.017
    Shen, J., Zhou, L., Feng, Q. L., et al., 2014. Paleo-Productivity Evolution across the Permian-Triassic Boundary and Quantitative Calculation of Primary Productivity of Black Rock Series from the Dalong Formation, South China. Science China Earth Sciences, 57(7): 1583-1594. https://doi.org/10.1007/s11430-013-4780-5
    Su, W. B., Huff, W. D., Ettensohn, F. R., et al., 2009. K-Bentonite, Black-Shale and Flysch Successions at the Ordovician-Silurian Transition, South China: Possible Sedimentary Responses to the Accretion of Cathaysia to the Yangtze Block and Its Implications for the Evolution of Gondwana. Gondwana Research, 15(1): 111-130. https://doi.org/10.1016/j.gr.2008.06.004
    Su, W. B., Li, Z. M., Chen, J. Q., et al., 1999. A Reliable Example for Eustacy Ordovician Sequence Stratigraphy on the Southeastern Margin of the Upper Yangtze Platform. Acta Sedimentologica Sinica, 17(3): 345-353 (in Chinese with English Abstract)
    Swanson-Hysell, N. L., MacDonald, F. A., 2017. Tropical Weathering of the Taconic Orogeny as a Driver for Ordovician Cooling. Geology, 45: 719-722. https://doi.org/10.1130/g38985.1
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, London. 57-72
    Tian, H., Pan, L., Xiao, X. M., et al., 2013. A Preliminary Study on the Pore Characterization of Lower Silurian Black Shales in the Chuandong Thrust Fold Belt, Southwestern China Using Low Pressure N2 Adsorption and FE-SEM Methods. Marine and Petroleum Geology, 48: 8-19. https://doi.org/10.1016/j.marpetgeo.2013.07.008
    Tømmerås, A., Mann, U., 2008. Improved Hydrocarbon Charge Prediction by Source-Rock Modelling. Petroleum Geoscience, 14(3): 291-299. https://doi.org/10.1144/1354-079308-766
    Torres, M. E., Brumsack, H. J., Bohrmann, G., et al., 1996. Barite Fronts in Continental Margin Sediments: A New Look at Barium Remobilization in the Zone of Sulfate Reduction and Formation of Heavy Barites in Diagenetic Fronts. Chemical Geology, 127(1/2/3): 125-139. https://doi.org/10.1016/0009-2541(95)00090-9
    Torsvik, T. H., Cocks, L. R., 2013. New Global Paleogeographical Reconstructions for the Early Palaeozoic and Their Generation. In: Harper, D. A. T., Servais, T., eds., Early Palaeozoic Biogeography and Palaeogeography. Geological Society London Memoirs, 38: 5-24
    Tribovillard, N., Algeo, T. J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based Onmolybdenum-Uranium Covariation- Applications to Mesozoic Paleoceanography. Chemical Geology, 324/325: 46-58. https://doi.org/10.1016/j.chemgeo.2011.09.009
    Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
    Tyson, R. V., 2005. The "Productivity versus Preservation" Controversy: Cause, Flaws, and Resolution. Deposition of Organic-Carbon-Rich Sediments: Models. SEPM (Society for Sedimentary Geology), 82: 17-33. https://doi.org/10.2110/pec.05.82.0017
    van Os, B. J. H., Middelburg, J. J., de Lange, G. J., 1991. Possible Diagenetic Mobilization of Barium in Sapropelic Sediment from the Eastern Mediterranean. Marine Geology, 100(1/2/3/4): 125-136. https://doi.org/10.1016/0025-3227(91)90229-w
    van Santvoort, P. J. M., de Lange, G. J., Thomson, J., et al., 1996. Active Post-Depositional Oxidation of the Most Recent Sapropel (S1) in Sediments of the Eastern Mediterranean Sea. Geochimica et Cosmochimica Acta, 60(21): 4007-4024. https://doi.org/10.1016/s0016-7037(96)00253-0
    Wang, H., 1985. Atlas of the Palaeogeography of China. Cartographic Publishing House, Beijing. 1-143 (in Chinese)
    Wang, Y. X., Xu, S., Hao, F., et al., 2019. Geochemical and Petrographic Characteristics of Wufeng-Longmaxi Shales, Jiaoshiba Area, Southwest China: Implications for Organic Matter Differential Accumulation. Marine and Petroleum Geology, 102: 138-154. https://doi.org/10.1016/j.marpetgeo.2018.12.038
    Wang, Y., Zhu, Y. M., Chen, S. B., et al., 2014. Characteristics of the Nanoscale Pore Structure in Northwestern Hunan Shale Gas Reservoirs Using Field Emission Scanning Electron Microscopy, High-Pressure Mercury Intrusion, and Gas Adsorption. Energy & Fuels, 28(2): 945-955. https://doi.org/10.1021/ef402159e
    Wei, H. Y., Chen, D. Z., Wang, J. G., et al., 2012. Organic Accumulation in the Lower Chihsia Formation (Middle Permian) of South China: Constraints from Pyrite Morphology and Multiple Geochemical Proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 353/354/355: 73-86. https://doi.org/10.1016/j.palaeo.2012.07.005
    Wei, H. Y., Jiang, X. C., 2019. Early Cretaceous Ferruginous and Its Control on the Lacustrine Organic Matter Accumulation: Constrained by Multiple Proxies from the Bayingebi Formation in the Bayingebi Basin, Inner Mongolia, NW China. Journal of Petroleum Science and Engineering, 178: 162-179. https://doi.org/10.1016/j.petrol.2019.03.037
    Wei, H. Y., Wei, X. M., Qiu, Z., et al., 2016. Redox Conditions across the G-L Boundary in South China: Evidence from Pyrite Morphology and Sulfur Isotopic Compositions. Chemical Geology, 440: 1-14. https://doi.org/10.1016/j.chemgeo.2016.07.009
    Wu, L. Y., Lu, Y. C., Jiang, S., et al., 2018. Effects of Volcanic Activities in Ordovician Wufeng-Silurian Longmaxi Period on Organic-Rich Shale in the Upper Yangtze Area, South China. Petroleum Exploration and Development, 45(5): 862-872. https://doi.org/10.1016/s1876-3804(18)30089-2
    Yan, D., Wang, H., Fu, Q. L., et al., 2015. Organic Matter Accumulation of Late Ordovician Sediments in North Guizhou Province, China: Sulfur Isotope and Trace Element Evidences. Marine and Petroleum Geology, 59: 348-358. https://doi.org/10.1016/j.marpetgeo.2014.09.017
    Zhang, H. Q., Xu, X. S., Liu, W., et al., 2013. Late Ordovician-Early Silurian Sedimentary Facies and Palaeogeographic Evolution and Its Bearings on the Black Shales in the Middle-Upper Yangtze Area. Sedimentary Geology and Tethyan Geology, 33(2): 17-24 (in Chinese with English Abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_sedimentary-geology-tethyan_thesis/0201252083524.html
    Zhao, J. H., Jin, Z. K., Geng, Y. K., et al., 2016. Main Diagenesis Controlling Factors for Longmaxi Formation Organic Matter-Rich Shale in Sichuan Basin. Petroleum Geology & Oilfield Development in Daqing, 35(2): 140-147 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-DQSK201602026.htm
    Zhou, L. L., Friis, H., Poulsen, M. L. K., 2015. Geochemical Evaluation of the Late Paleocene and Early Eocene Shales in Siri Canyon, Danish-Norwegian Basin. Marine and Petroleum Geology, 61: 111-122. https://doi.org/10.1016/j.marpetgeo.2014.12.014
    Zhou, W. D., Xie, S. Y., Bao, Z. Y., et al., 2019. Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. Journal of Earth Science, 30(5): 879-892. https://doi.org/10.1007/s12583-019-1013-7
    Zhu, B., Jiang, S. Y., Pi, D. H., et al., 2018. Trace Elements Characteristics of Black Shales from the Ediacaran Doushantuo Formation, Hubei Province, South China: Implications for Redox and Open vs. Restricted Basin Conditions. Journal of Earth Science, 29(2): 342-352. https://doi.org/10.1007/s12583-017-0907-5
    Zonneveld, K. A. F., Versteegh, G. J. M., Kasten, S., et al., 2010. Selective Preservation of Organic Matter in Marine Environments: Processes and Impact on the Sedimentary Record. Biogeosciences, 7(2): 483-511. https://doi.org/10.5194/bg-7-483-2010
    Zou, C. N., Dong, D. Z., Wang, S. J., et al., 2010. Geological Characteristics and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6): 641-653. https://doi.org/10.1016/s1876-3804(11)60001-3
    Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects (I). Petroleum Exploration and Development, 42(6): 753-767. https://doi.org/10.1016/s1876-3804(15)30072-0
    Zou, C. N., Qiu, Z., Poulton, S. W., et al., 2018a. Ocean Euxinia and Climate Change "Double Whammy" Drove the Late Ordovician Mass Extinction. Geology, 46(6): 535-538. https://doi.org/10.1130/g40121.1
    Zou, C. N., Qiu, Z., Wei, H. Y., et al., 2018b. Euxinia Caused the Late Ordovician Extinction: Evidence from Pyrite Morphology and Pyritic Sulfur Isotopic Composition in the Yangtze Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 511: 1-11. https://doi.org/10.1016/j.palaeo.2017.11.033
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(621) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return