Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 2
Apr 2022
Turn off MathJax
Article Contents
Penglei Liu, Zhenmin Jin. Metamorphic Evolution of a Tremolite Marble from the Dabie UHP Terrane, China: A Focus on Zircon. Journal of Earth Science, 2022, 33(2): 493-506. doi: 10.1007/s12583-020-1363-1
Citation: Penglei Liu, Zhenmin Jin. Metamorphic Evolution of a Tremolite Marble from the Dabie UHP Terrane, China: A Focus on Zircon. Journal of Earth Science, 2022, 33(2): 493-506. doi: 10.1007/s12583-020-1363-1

Metamorphic Evolution of a Tremolite Marble from the Dabie UHP Terrane, China: A Focus on Zircon

doi: 10.1007/s12583-020-1363-1
More Information
  • Corresponding author: Penglei Liu, liupengleiincug@aliyun.com
  • Received Date: 05 Jul 2020
  • Accepted Date: 30 Oct 2020
  • Publish Date: 30 Apr 2022
  • In this study, a tremolite marble from the Dabie ultrahigh-pressure (UHP) terrane, east-central China was investigated for its metamorphic evolution by focusing on zircon. The marble contains an amphibolite-facies assemblage of dolomite, Mg-calcite, tremolite, biotite, and plagioclase, while zircon in the marble witnesses a complex recrystallization and growth history under both amphibolite-and eclogite-facies conditions. Cathodoluminescence reveals eight characteristic zones for zircon. As indicated by mineral inclusions in zircon, two zones formed no earlier than amphibolite-facies retrogression and are too thin to date. The other six zones contain inclusions of dolomite, aragonite, diopside (XNa=Na/(Na+Ca)=0.11-0.14), garnet (XCa=0.51-0.62, XMg=0.21-0.23, XFe=0.17-0.26, XMn=0.01), phengite and rutile, and formed under eclogite-facies conditions. Phase equilibria calculations illustrat that the Na-richest diopside formed under UHP conditions. Being an accessory eclogite-facies mineral in the marble, the analyzed chemistry of garnet inclusions cannot be reproduced by phase equilibria calculations because solid-solution models for many other minerals don't incorporate Mn-endmembers. The eclogite-facies zircon zones show low HREE contents and flat MREE-HREE distribution patterns, which are interpreted to have been determined by the low bulk-rock HREE content instead of the presence of accessary garnet in the marble. U-Pb dating yielded a large age dataset ranging from about 250 to 210 Ma for the eclogite-facies zircon zones. Statistically, the eclogite-facies ages are characterized by a Gaussian distribution with a median peak at 232 Ma. We propose that zircon experienced a "protracted" recrystallization and/or growth history in the tremolite marble during the Triassic subduction and exhumation.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1, S2, S3) are available in the online version of this article at https://doi.org/10.1007/s12583-020-1363-1.
  • loading
  • Anovitz, L. M., Essene, E. J., 1987. Phase Equilibria in the System CaCO3-MgCO3-FeCO3. Journal of Petrology, 28(2): 389-415. https://doi.org/10.1093/petrology/28.2.389
    Bingen, B., Austrheim, H., Whitehouse, M., 2001. Ilmenite as a Source for Zirconium during High-Grade Metamorphism? Textural Evidence from the Caledonides of Western Norway and Implications for Zircon Geochronology. Journal of Petrology, 42(2): 355-375. https://doi.org/10.1093/petrology/42.2.355
    Castelli, D., Rolfo, F., Groppo, C., et al., 2007. Impure Marbles from the UHP Brossasco-Isasca Unit (Dora-Maira Massif, Western Alps): Evidence for Alpine Equilibration in the Diamond Stability Field and Evaluation of the X(CO2) Fluid Evolution. Journal of Metamorphic Geology, 25(6): 587-603. https://doi.org/10.1111/j.1525-1314.2007.00716.x
    Chen, R. X., Zheng, Y. F., Xie, L. W., 2010. Metamorphic Growth and Recrystallization of Zircon: Distinction by Simultaneous in-situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen. Lithos, 114(1/2): 132-154. https://doi.org/10.1016/j.lithos.2009.08.006
    Chen, Y. X., Zheng, Y. F., Chen, R. X., et al., 2011. Metamorphic Growth and Recrystallization of Zircons in Extremely 18O-Depleted Rocks during Eclogite-Facies Metamorphism: Evidence from U-Pb Ages, Trace Elements, and O-Hf Isotopes. Geochimica et Cosmochimica Acta, 75(17): 4877-4898. https://doi.org/10.1016/j.gca.2011.06.003
    Connolly, J. A. D., 2005. Computation of Phase Equilibria by Linear Programming: A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation. Earth and Planetary Science Letters, 236(1/2): 524-541. https://doi.org/10.1016/j.epsl.2005.04.033
    Connolly, J. A. D., Trommsdorff, V., 1991. Petrogenetic Grids for Metacarbonate Rocks: Pressure-Temperature Phase-Diagram Projection for Mixed-Volatile Systems. Contributions to Mineralogy and Petrology, 108(1/2): 93-105. https://doi.org/10.1007/bf00307329
    Corfu, F., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469
    Degeling, H., Eggins, S., Ellis, D. J., 2001. Zr Budgets for Metamorphic Reactions, and the Formation of Zircon from Garnet Breakdown. Mineralogical Magazine, 65(6): 749-758. https://doi.org/10.1180/0026461016560006
    Ernst, W. G., Tsujimori, T., Zhang, R., et al., 2007. Permo-Triassic Collision, Subduction-Zone Metamorphism, and Tectonic Exhumation along the East Asian Continental Margin. Annual Review of Earth and Planetary Sciences, 35(1): 73-110. https://doi.org/10.1146/annurev.earth.35.031306.140146
    Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
    Fuhrman, M. L., Lindsley, D. H., 1988. Ternary-Feldspar Modeling and Thermometry. American Mineralogist, 73: 201-215
    Geisler, T., Schaltegger, U., Tomaschek, F., 2007. Re-Equilibration of Zircon in Aqueous Fluids and Melts. Elements, 3(1): 43-50. https://doi.org/10.2113/gselements.3.1.43
    Hacker, B. R., Ratschbacher, L., Webb, L., et al., 2000. Exhumation of Ultrahigh-Pressure Continental Crust in East Central China: Late Triassic-Early Jurassic Tectonic Unroofing. Journal of Geophysical Research: Solid Earth, 105(B6): 13339-13364. https://doi.org/10.1029/2000jb900039
    Hermann, J., Troitzsch, U., Scott, D., 2016. Experimental Subsolidus Phase Relations in the System CaCO3-CaMg(CO3)2 up to 6.5 GPa and Implications for Subducted Marbles. Contributions to Mineralogy and Petrology, 171(10): 1-17. https://doi.org/10.1007/s00410-016-1296-y
    Holland, T. J. B., Powell, R., 2004. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3): 309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
    Hoskin, P. W. O., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
    Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
    Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101. https://doi.org/10.1039/b804760j
    Jiang, S. H., Wang, Z. M., Chen, R. X., et al., 2020. Water of Garnet in Eclogite from Jinheqiao Area in the Dabie Orogen. Earth Science, 45(4): 1168-1186 (in Chinese with English Abstract)
    Li, S. G., Xiao, Y. L., Liou, D. L., et al., 1993. Collision of the North China and Yangtse Blocks and Formation of Coesite-Bearing Eclogites: Timing and Processes. Chemical Geology, 109(1/2/3/4): 89-111. https://doi.org/10.1016/0009-2541(93)90063-o
    Liu, F. L., Gerdes, A., Liou, J. G., et al., 2006. SHRIMP U-Pb Zircon Dating from Sulu-Dabie Dolomitic Marble, Eastern China: Constraints on Prograde, Ultrahigh-Pressure and Retrograde Metamorphic Ages. Journal of Metamorphic Geology, 24(7): 569-589. https://doi.org/10.1111/j.1525-1314.2006.00655.x
    Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism: A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1): 1-39. https://doi.org/10.1016/j.jseaes.2010.08.007
    Liu, J. B., Ye, K., Maruyama, S., et al., 2001. Mineral Inclusions in Zircon from Gneisses in the Ultrahigh-Pressure Zone of the Dabie Mountains, China. The Journal of Geology, 109(4): 523-535. https://doi.org/10.1086/320796
    Liu, P. L., Massonne, H. J., 2019. Tectonic Implications of P-T Paths Derived for Garnet-Bearing Felsic Gneisses from the Dabie and Sulu Ultrahigh Pressure Terranes, East-Central China. American Journal of Science, 319(9): 788-817. https://doi.org/10.2475/09.2019.03
    Liu, P. L., Massonne, H. J., Harlov, D. E., et al., 2019. High-Pressure Fluid-Rock Interaction and Mass Transfer during Exhumation of Deeply Subducted Rocks: Insights from an Eclogite-Vein System in the Ultrahigh-Pressure Terrane of the Dabie Shan, China. Geochemistry, Geophysics, Geosystems, 20(12): 5786-5817. https://doi.org/10.1029/2019gc008521
    Liu, P. L., Massonne, H. J., Jin, Z. M., et al., 2017a. Diopside, Apatite, and Rutile in an Ultrahigh Pressure Impure Marble from the Dabie Shan, Eastern China: A Record of Eclogite-Facies Metasomatism during Exhumation. Chemical Geology, 466: 123-139. https://doi.org/10.1016/j.chemgeo.2017.06.001
    Liu, P. L., Massonne, H. J., Zhang, J. F., et al., 2017b. Intergranular Coesite and Coesite Inclusions in Dolomite from the Dabie Shan: Constraints on the Preservation of Coesite in UHP Rocks. Terra Nova, 29(3): 154-161. https://doi.org/10.1111/ter.12258
    Liu, P. L., Wu, Y., Chen, Y., et al., 2015. UHP Impure Marbles from the Dabie Mountains: Metamorphic Evolution and Carbon Cycling in Continental Subduction Zones. Lithos, 212/213/214/215: 280-297. https://doi.org/10.1016/j.lithos.2014.11.018
    Liu, P. L., Wu, Y., Liu, Q., et al., 2014. Partial Melting of UHP Calc-Gneiss from the Dabie Mountains. Lithos, 192/193/194/195: 86-101. https://doi.org/10.1016/j.lithos.2014.01.012
    Liu, Y. C., Wang, H., Yang, Y., et al., 2020. Dating of Carboniferous Metamorphism for Garnet Amphibolite from the Eastern Beihuaiyang Zone in the Dabie Orogen. Earth Science, 45(2): 355-366 (in Chinese with English Abstract)
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Lü, Z., Bucher, K., Zhang, L. F., 2013. Omphacite-Bearing Calcite Marble and Associated Coesite-Bearing Pelitic Schist from the Meta-Ophiolitic Belt of Chinese Western Tianshan. Journal of Asian Earth Sciences, 76: 37-47. https://doi.org/10.1016/j.jseaes.2013.07.034
    Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley. 39
    Martin, L. A. J., Duchêne, S., Deloule, E., et al., 2008. Mobility of Trace Elements and Oxygen in Zircon during Metamorphism: Consequences for Geochemical Tracing. Earth and Planetary Science Letters, 267(1/2): 161-174. https://doi.org/10.1016/j.epsl.2007.11.029
    Massonne, H. J., 2011. Phase Relations of Siliceous Marbles at Ultrahigh Pressure Based on Thermodynamic Calculations: Examples from the Kokchetav Massif, Kazakhstan and the Sulu Terrane, China. Geological Journal, 46(2/3): 114-125. https://doi.org/10.1002/gj.1230
    Massonne, H. J., 2015. Derivation of P-T Paths from High-Pressure Metagranites—Examples from the Gran Paradiso Massif, Western Alps. Lithos, 226: 265-279. https://doi.org/10.1016/j.lithos.2014.12.024
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
    Ogasawara, Y., Zhang, R. Y., Liou, J. G., 1998. Petrogenesis of Dolomitic Marbles from Rongcheng in the Su-Lu Ultrahigh-Pressure Metamorphic Terrane, Eastern China. The Island Arc, 7(1/2): 82-97. https://doi.org/10.1046/j.1440-1738.1998.00177.x
    Peucat, J. J., Hirata, T., Nesbitt, R. W., 1995. REE Fractionation (ICPMS LASER) Evidence in Metamorphic Zircons during Granulite Facies Metamorphism and Anatectic Processes. Terra Abstracts, 7(Suppl. 1): 346
    Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1/2): 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2
    Rubatto, D., Hermann, J., 2003. Zircon Formation during Fluid Circulation in Eclogites (Monviso, Western Alps): Implications for Zr and Hf Budget in Subduction Zones. Geochimica et Cosmochimica Acta, 67(12): 2173-2187. https://doi.org/10.1016/s0016-7037(02)01321-2
    Rubatto, D., Hermann, J., 2007. Zircon Behaviour in Deeply Subducted Rocks. Elements, 3(1): 31-35. https://doi.org/10.2113/gselements.3.1.31
    Rubatto, D., Muntener, O., Barnhoorn, A., et al., 2008. Dissolution-Reprecipitation of Zircon at Low-Temperature, High-Pressure Conditions (Lanzo Massif, Italy). American Mineralogist, 93(10): 1519-1529. https://doi.org/10.2138/am.2008.2874
    Schaltegger, U., Fanning, C. M., Günther, D., et al., 1999. Growth, Annealing and Recrystallization of Zircon and Preservation of Monazite in High-Grade Metamorphism: Conventional and in-situ U-Pb Isotope, Cathodoluminescence and Microchemical Evidence. Contributions to Mineralogy and Petrology, 134(2/3): 186-201. https://doi.org/10.1007/s004100050478
    Schulz, B., Klemd, R., Brätz, H., 2006. Host Rock Compositional Controls on Zircon Trace Element Signatures in Metabasites from the Austroalpine Basement. Geochimica et Cosmochimica Acta, 70(3): 697-710. https://doi.org/10.1016/j.gca.2005.10.001
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Vavra, G., Gebauer, D., Schmid, R., et al., 1996. Multiple Zircon Growth and Recrystallization during Polyphase Late Carboniferous to Triassic Metamorphism in Granulites of the Ivrea Zone (Southern Alps): An Ion Microprobe (SHRIMP) Study. Contributions to Mineralogy and Petrology, 122(4): 337-358. https://doi.org/10.1007/s004100050132
    Vavra, G., Schmid, R., Gebauer, D., 1999. Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4): 380-404. https://doi.org/10.1007/s004100050492
    Vonlanthen, P., Fitz Gerald, J. D., Rubatto, D., et al., 2012. Recrystallization Rims in Zircon (Valle d'Arbedo, Switzerland): An Integrated Cathodoluminescence, LA-ICP-MS, SHRIMP, and TEM Study. American Mineralogist, 97(2/3): 369-377. https://doi.org/10.2138/am.2012.3854
    Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
    Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards and Geoanalytical Research, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x
    Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. https://doi.org/10.1007/bf03184122
    Wu, Y. B., Zheng, Y. F., Zhao, Z. F., et al., 2006. U-Pb, Hf and O Isotope Evidence for Two Episodes of Fluid-Assisted Zircon Growth in Marble-Hosted Eclogites from the Dabie Orogen. Geochimica et Cosmochimica Acta, 70(14): 3743-3761. https://doi.org/10.1016/j.gca.2006.05.011
    Xu, H. J., Ye, K., Song, Y. R., et al., 2013. Prograde Metamorphism, Decompressional Partial Melting and Subsequent Melt Fractional Crystallization in the Weihai Migmatitic Gneisses, Sulu UHP Terrane, Eastern China. Chemical Geology, 341: 16-37. https://doi.org/10.1016/j.chemgeo.2013.01.002
    Ye, K., Yao, Y. P., Katayama, I., et al., 2000. Large Areal Extent of Ultrahigh-Pressure Metamorphism in the Sulu Ultrahigh-Pressure Terrane of East China: New Implications from Coesite and Omphacite Inclusions in Zircon of Granitic Gneiss. Lithos, 52(1/2/3/4): 157-164. https://doi.org/10.1016/s0024-4937(99)00089-4
    Zhang, R. Y., Liou, J. G., Ernst, W. G., 2009. The Dabie-Sulu Continental Collision Zone: A Comprehensive Review. Gondwana Research, 16(1): 1-26. https://doi.org/10.1016/j.gr.2009.03.008
    Zheng, Y. F., Zhou, J. B., Wu, Y. B., et al., 2005. Low-Grade Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: A Passive-Margin Accretionary Wedge Deformed during Continent Subduction. International Geology Review, 47(8): 851-871. https://doi.org/10.2747/0020-6814.47.8.851
    Zhu, Y. F., Massonne, H. J., Zhu, M. F., 2009. Petrology of Low-Temperature, Ultrahigh-Pressure Marbles and Interlayered Coesite Eclogites near Sanqingge, Sulu Terrane, Eastern China. Mineralogical Magazine, 73(2): 307-332. https://doi.org/10.1180/minmag.2009.073.2.307
    Zong, K. Q., Liu, Y. S., Gao, C. G., et al., 2010. In situ U-Pb Dating and Trace Element Analysis of Zircons in Thin Sections of Eclogite: Refining Constraints on the Ultra High-Pressure Metamorphism of the Sulu Terrane, China. Chemical Geology, 269(3/4): 237-251. https://doi.org/10.1016/j.chemgeo.2009.09.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(639) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return