Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 2
Apr 2022
Turn off MathJax
Article Contents
Fan Zhang, Yangquan Jiao, Shuangming Wang, Liqun Wu, Hui Rong. Origin of Dispersed Organic Matter within Sandstones and Its Implication for Uranium Mineralization: A Case Study from Dongsheng Uranium Ore Filed in China. Journal of Earth Science, 2022, 33(2): 325-341. doi: 10.1007/s12583-020-1364-0
Citation: Fan Zhang, Yangquan Jiao, Shuangming Wang, Liqun Wu, Hui Rong. Origin of Dispersed Organic Matter within Sandstones and Its Implication for Uranium Mineralization: A Case Study from Dongsheng Uranium Ore Filed in China. Journal of Earth Science, 2022, 33(2): 325-341. doi: 10.1007/s12583-020-1364-0

Origin of Dispersed Organic Matter within Sandstones and Its Implication for Uranium Mineralization: A Case Study from Dongsheng Uranium Ore Filed in China

doi: 10.1007/s12583-020-1364-0
More Information
  • Corresponding author: Yangquan Jiao, yqjiao@cug.edu.cn
  • Received Date: 29 Jul 2020
  • Accepted Date: 03 Nov 2020
  • Publish Date: 30 Apr 2022
  • Carbonaceous debris (CD), common dispersed organic matter (i.e., DOM), is widely disseminated in sandstones from uranium-bearing strata from the Dongsheng uranium ore field of the northern Ordos Basin. Compositions of maceral, element and biomarkers of CD were investigated through a series of methods with optical microscope, elemental analyzer and gas chromatography-mass spectrometry analyses (GC-MS) to study origin of CD. The results show that CD, centrally distributed nearby channel erosion surface, decreases with the increased distances to channel erosion surface, which indicates the CD might be related to the coal seam from the upper unit of the J2y Formation or synsedimentary plant from the J2z Formation. Macerals of CD are composed of vitrinite (i.e., V), inertinite (i.e., I), and minerals, including that V is primary. Compared with the coals from the J2y Formation classed into vitrinertite-V (V+I > 95%, V > I), CD is grouped into vitrite (V > 95%). Although, CD and coal are similar in element composition, the former is of lower organic carbon, H, N, and higher S. The (C27+C29)/(C31+C33) ratios of n-alkanes biomarkers indicate that the percentage of woody plants accounting for vegetation composition of CD predominate over that of coal, which is also evidenced by the higher C/N ratios and oleanane contents of CD. The evidence is also supported by plant branch buried in sandstones. The distribution characteristics of CD and differences in vegetation types between CD and coal suggest that CD might be not from the coal seam from J2y. The tissue preservation index, gelification index, ground water level index, and vegetation index reflect that the paleoenvironment of CD is controlled by fluctuating water, which is also supported by the existences of round CD. Compared with peat, sedimentary paleoenvironment where CD deposits is of weaker reducibility, higher salinity by analyzing Pr/Ph ratios and gammacerane index. Distributions of n-alkanes carbon number of CD with the presence of unknown complex mixtures show that microbial activities exist in sand bodies. Differences in hydrodynamic intensity, redox condition, and microbial activity intensity between sedimentary paleoenvironment of CD and peat, show that CD is born in synsedimentary sandstone environment not in peat. Hence, it comprehensively draws conclusions that immature 'non-peatborn' CD is formed from the trunk, stem, branch, root fragments buried in sandstones, depositing in (micro) allochthonous positions by the influences of fluctuating water. The DOM from synsedimentary plant debris might play more roles in adsorption and complexation, and microorganisms may participate in uranium mineralization, which could provide certain guidance for uranium exploration and mining.

     

  • loading
  • Bechtel, A., Gratzer, R., Sachsenhofer, R. F., et al., 2008. Biomarker and Carbon Isotope Variation in Coal and Fossil Wood of Central Europe through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 262(3/4): 166-175. https://doi.org/10.1016/j.palaeo.2008.03.005
    Bechtel, A., Markic, M., Sachsenhofer, R. F., et al., 2004. Paleoenvironment of the Upper Oligocene Trbovlje Coal Seam (Slovenia). International Journal of Coal Geology, 57(1): 23-48. https://doi.org/10.1016/j.coal.2003.08.005
    Bechtel, A., Reischenbacher, D., Sachsenhofer, R. F., et al., 2007. Paleogeography and Paleoecology of the Upper Miocene Zillingdorf Lignite Deposit (Austria). International Journal of Coal Geology, 69(3): 119-143. https://doi.org/10.1016/j.coal.2006.03.001
    Bechtel, A., Sachsenhofer, R. F., Kolcon, I., et al., 2002. Organic Geochemistry of the Lower Miocene Oberdorf Lignite (Styrian Basin, Austria): Its Relation to Petrography, Palynology and the Palaeoenvironment. International Journal of Coal Geology, 51(1): 31-57. https://doi.org/10.1016/S0166-5162(02)00079-4
    Bechtel, A., Sachsenhofer, R. F., Markic, M., et al., 2003. Paleoenvironmental Implications from Biomarker and Stable Isotope Investigations on the Pliocene Velenje Lignite Seam (Slovenia). Organic Geochemistry, 34(9): 1277-1298. https://doi.org/10.1016/s0146-6380(03)00114-1
    Bechtel, A., Sachsenhofer, R. F., Zdravkov, A., et al., 2005. Influence of Floral Assemblage, Facies and Diagenesis on Petrography and Organic Geochemistry of the Eocene Bourgas Coal and the Miocene Maritza-East Lignite (Bulgaria). Organic Geochemistry, 36(11): 1498-1522. https://doi.org/10.1016/j.orggeochem.2005.07.003
    Bone, S. E., Dynes, J. J., Cliff, J., et al., 2017. Uranium(Ⅳ) Adsorption by Natural Organic Matter in Anoxic Sediments. PNAS, 114(4): 711-716. https://doi.org/10.1073/pnas.1611918114
    Bonnetti, C., Cuney, M., Michels, R., et al., 2015. The Multiple Roles of Sulfate-Reducing Bacteria and Fe-Ti Oxides in the Genesis of the Bayinwula Roll Front-Type Uranium Deposit, Erlian Basin, NE China. Economic Geology, 110(4): 1059-1081. https://doi.org/10.2113/econgeo.110.4.1059
    Bonnetti, C., Zhou, L. L., Riegler, T., et al., 2020. Large S Isotope and Trace Element Fractionations in Pyrite of Uranium Roll Front Systems Result from Internally-Driven Biogeochemical Cycle. Geochimica et Cosmochimica Acta, 282: 113-132. https://doi.org/10.1016/j.gca.2020.05.019
    Bordelet, G., Beaucaire, C., Phrommavanh, V., et al., 2013. Sorption Properties of Peat for U(VI) and 226Ra in U Mining Areas. Procedia Earth and Planetary Science, 7: 85-88. https://doi.org/10.1016/j.proeps.2013.03.121
    Bottari, F., Marsili, A., Morelli, I., et al., 1972. Aliphatic and Triterpenoid Hydrocarbons from Ferns. Phytochemistry, 11(8): 2519-2523. https://doi.org/10.1016/s0031-9422(00)88528-3
    Brasier, M., Green, O., Lindsay, J., et al., 2004. Earth's Oldest (∼3.5 Ga) Fossils and the Early Eden Hypothesis: Questioning the Evidence. Origins of Life and Evolution of the Biosphere, 34(1/2): 257-269. https://doi.org/10.1023/b:orig.0000009845.62244.d3
    Cai, C. F., Dong, H. L., Li, H. T., et al., 2007a. Mineralogical and Geochemical Evidence for Coupled Bacterial Uranium Mineralization and Hydrocarbon Oxidation in the Shashagetai Deposit, NW China. Chemical Geology, 236(1/2): 167-179. https://doi.org/10.1016/j.chemgeo.2006.09.007
    Cai, C. F., Li, H. T., Qin, M. K., et al., 2007b. Biogenic and Petroleum-Related Ore-Forming Processes in Dongsheng Uranium Deposit, NW China. Ore Geology Reviews, 32(1/2): 262-274. https://doi.org/10.1016/j.oregeorev.2006.05.003
    Cernusak, L. A., Winter, K., Aranda, J., et al., 2008. Conifers, Angiosperm Trees, and Lianas: Growth, Whole-Plant Water and Nitrogen Use Efficiency, and Stable Isotope Composition (δ13C and δ18O) of Seedlings Grown in a Tropical Environment. Plant Physiology, 148(1): 642-659. https://doi.org/10.1104/pp.108.123521
    Cranwell, P. A., Eglinton, G., Robinson, N., 1987. Lipids of Aquatic Organisms as Potential Contributors to Lacustrine Sediments—Ⅱ. Organic Geochemistry, 11(6): 513-527. https://doi.org/10.1016/0146-6380(87)90007-6
    Cumberland, S. A., Douglas, G., Grice, K., et al., 2016. Uranium Mobility in Organic Matter-Rich Sediments: A Review of Geological and Geochemical Processes. Earth-Science Reviews, 159: 160-185. https://doi.org/10.1016/j.earscirev.2016.05.010
    Cumberland, S. A., Etschmann, B., Brugger, J., et al., 2018. Characterization of Uranium Redox State in Organic-Rich Eocene Sediments. Chemosphere, 194: 602-613. https://doi.org/10.1016/j.chemosphere.2017.12.012
    Cun, X. N., Wu, B. L., Zhang, H. S., et al., 2016. Study on Uranium Occurrence State of Daying Sandstone-Type Uranium Deposits in Ordos Basin. Northwestern Geology, 49(2): 198-212 (in Chinese with English Abstract)
    Cuney, M., 2010. Evolution of Uranium Fractionation Processes through Time: Driving the Secular Variation of Uranium Deposit Types. Economic Geology, 105(3): 553-569. https://doi.org/10.2113/gsecongeo.105.3.553
    Deng, J., Wang, Q. F., Gao, B. F., et al., 2006. Distribution and Tectonic Background of Various Energy Resources in Ordos Basin. Earth Science, 31(3): 330-336 (in Chinese with English Abstract)
    Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., et al., 1978. Organic Geochemical Indicators of Palaeoenvironmental Conditions of Sedimentation. Nature, 272(5650): 216-222. https://doi.org/10.1038/272216a0
    Diessel, C. F. K., 1992. Coal Facies and Depositional Environment. Coal-Bearing Depositional Systems. Springer, Berlin
    Du, F. P., 2019. Petrological and Element Geochemical Characteristics of the Yan'an Coals in Ordos Basin: [Dissertation]. Northwest University, Xi'an
    Gauthier-Lafaye, F., Weber, F., 1993. Uranium-Hydrocarbon Association in Francevillian Uranium Ore Deposits, Lower Proterozoic of Gabon. Bitumens in Ore Deposits, Springer-Verlag, Berlin. 276-286. https://doi.org/10.1007/978-3-642-85806-2_15
    Giordano, T. H., 2000. Organic Matter as a Transport Agent in Ore-Forming Systems. In: Giordano, T. H., Kettler, R. M., Wood, S. A., eds., Ore Genesis and Exploration: The Roles of Organic Matter: Reviews in Economic Geology, Littleton
    Grant, B. D., Charles, R. M. B., David, J. G., 2011. Geology, Geochemistry and Mineralogy of the Lignite-Hosted Ambassador Palaeochannel Uranium and Multi-Element Deposit, Gunbarrel Basin, Western Australia. Mineralium Deposita, 46(7): 761-787. https://doi.org/10.1007/s00126-011-0349-4
    Greenwood, P. F., Brocks, J. J., Grice, K., et al., 2013. Organic Geochemistry and Mineralogy. I. Characterisation of Organic Matter Associated with Metal Deposits. Ore Geology Reviews, 50: 1-27. https://doi.org/10.1016/j.oregeorev.2012.10.004
    Guo, C. Y., Qin, M. K., Xu, H., et al., 2020. Age of Zhangjia Uranium Deposit in the Miaoershan Ore Field, Guangxi Autonomous Region, China: In situ Micro-Determination on Pitchblende. Earth Science, 45(1): 72-89 (in Chinese with English Abstract)
    Havelcová, M., Machovič, V., Mizera, J., et al., 2014. A Multi-Instrumental Geochemical Study of Anomalous Uranium Enrichment in Coal. Journal of Environmental Radioactivity, 137: 52-63. https://doi.org/10.1016/j.jenvrad.2014.06.015
    Huang, W. Y., Meinschein, W. G., 1979. Sterols as Ecological Indicators. Geochimica et Cosmochimica Acta, 43(5): 739-745. https://doi.org/10.1016/0016-7037(79)90257-6
    Jiang, L., Cai, C. F., Zhang, Y. D., et al., 2012. Lipids of Sulfate-Reducing Bacteria and Sulfur-Oxidizing Bacteria Found in the Dongsheng Uranium Deposit. Chinese Science Bulletin, 57(11): 1311-1319. https://doi.org/10.1007/s11434-011-4955-4
    Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021. Review of Basin Uranium Resources in China. Earth Science, 46(8): 2675-2696 (in Chinese with English Abstract)
    Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2016. The Relationship between Jurassic Coal Measures and Sandstone-Type Uranium Deposits in the Northeastern Ordos Basin, China. Acta Geologica Sinica (English Edition), 90(6): 2117-2132 (in Chinese with English Abstract) doi: 10.1111/1755-6724.13026
    Jiao, Y. Q., Wu, L. Q., Yang, S. K., et al., 2006. Uranium Reservoir Sedimentology: Exploration and Development of the Sandstone-Type Uranium Deposits. Geological Press, Beijing (in Chinese)
    Jiao, Y. Q., Wu, L. Q., Rong, H., 2018. Model of Inner and Outer Reductive Media within Uranium Reservoir Sandstone of Sandstone-Type Uranium Deposits and Its Ore-Controlling Mechanism: Case Studies in Daying and Qianjiadian Uranium Deposits. Earth Science, 43(2): 459-474 (in Chinese with English Abstract)
    Kalkreuth, W., Keuser, C., Fowler, M., et al., 1998. The Petrology, Organic Geochemistry and Palynology of Tertiary Age Eureka Sound Group Coals, Arctic Canada. Organic Geochemistry, 29(1/2/3): 799-809. https://doi.org/10.1016/s0146-6380(98)00122-3
    Karrer, W., Cherbuliez, E., Eugster, C. H., 1977. Konstitution und Vorkommen der Organischen Pflanzenstoffe. Ergänzungsband I., Birkhäuser. Basel, Stuttgart. https://doi.org/10.1007/978-3-0348-9377-0
    Landais, P., 1996. Organic Geochemistry of Sedimentary Uranium Ore Deposits. Ore Geology Reviews, 11(1/2/3): 33-51. https://doi.org/10.1016/0169-1368(95)00014-3
    Lei, K. Y., Liu, C. Y., Zhang, L., et al., 2017. Element Geochemical Characteristics of the Jurassic Mudstones in the Northern Ordos Basin: Implications for Tracing Sediment Sources and Paleoenvironment Restoration. Acta Sedimentologica Sinica, 35(3): 621-636 (in Chinese with English Abstract)
    Leventhal, J. S., Grauch, R. I., Threlkeld, C. N., et al., 1987. Unusual Organic Matter Associated with Uranium from the Claude Deposit, Cluff Lake, Canada. Economic Geology, 82(5): 1169-1176. https://doi.org/10.2113/gsecongeo.82.5.1169
    Li, Q. G., Ju, Y. W., Chen, P., et al., 2017. Biomarker Study of Depositional Paleoenvironments and Organic Matter Inputs for Permian Coalbearing Strata in the Huaibei Coalfield, East China. Energy & Fuels, 31(4): 3567-3577. https://doi.org/10.1021/acs.energyfuels.6b02602
    Liu, B. J., Zhao, C. L., Ma, J. L., et al., 2018. The Origin of Pale and Dark Layers in Pliocene Lignite Deposits from Yunnan Province, Southwest China, Based on Coal Petrological and Organic Geochemical Analyses. International Journal of Coal Geology, 195: 172-188. https://doi.org/10.1016/j.coal.2018.06.003
    Liu, Z. Y., Dong, W. M., Liu, H. X., 2010. Research Development of the Experiment on Uranium Microbial Metallogenesis. World Nuclear Geoscience, 27(2): 78-84 (in Chinese with English Abstract)
    Luo, J. J., 2017. Coal Organic Matter Characteristic and Metallogenic Significance in Daying Sandstone-Type Uranium, Ordos Basin: [Dissertation]. Northwest University, Xi'an (in Chinese)
    Luque, F. J., Pasteris, J. D., Wopenka, B., et al., 1998. Natural Fluid-Deposited Graphite; Mineralogical Characteristics and Mechanisms of Formation. American Journal of Science, 298(6): 471-498. https://doi.org/10.2475/ajs.298.6.471
    McCollom, T. M., Seewald, J. S., 2006. Carbon Isotope Composition of Organic Compounds Produced by Abiotic Synthesis under Hydrothermal Conditions. Earth and Planetary Science Letters, 243(1/2): 74-84. https://doi.org/10.1016/j.epsl.2006.01.027
    Min, M. Z., Luo, X. Z., Mao, S. L., et al., 2001. An Excellent Fossil Wood Cell Texture with Primary Uranium Minerals at a Sandstone-Hosted Roll-Type Uranium Deposit, NW China. Ore Geology Reviews, 17(4): 233-239. https://doi.org/10.1016/S0169-1368(00)00007-x
    Min, M. Z., Xu, H. F., Chen, J., et al., 2005. Evidence of Uranium Biomineralization in Sandstone-Hosted Roll-Front Uranium Deposits, Northwestern China. Ore Geology Reviews, 26(3/4): 198-206. https://doi.org/10.1016/j.oregeorev.2004.10.003
    Munier-Lamy, C., Adrian, P., Berthelin, J., et al., 1986. Comparison of Binding Abilities of Fulvic and Humic Acids Extracted from Recent Marine Sediments with UO22+. Organic Geochemistry, 9(6): 285-292. https://doi.org/10.1016/0146-6380(86)90109-9
    Nagy, B., Gauthier-Lafaye, F., Holliger, P., et al., 1993. Role of Organic Matter in the Proterozoic Oklo Natural Fission Reactors, Gabon, Africa. Geology, 21(7): 655. https://doi.org/10.1130/0091-7613(1993)0210655: roomit>2.3.co;2 doi: 10.1130/0091-7613(1993)0210655:roomit>2.3.co;2
    Noémie, J., Juan, S. L. P., Don, Q. P., et al., 2016. Physico-Chemical Heterogeneity of Organic-Rich Sediments in the Rifle Aquifer, CO: Impact on Uranium Biogeochemistry. Environmental Science & Technology, 50(1): 46-53. https://doi.org/10.1021/acs.est.5b03208
    Ortaboy, S., Atun, G., 2014. Kinetics and Equilibrium Modeling of Uranium(VI) Sorption by Bituminous Shale from Aqueous Solution. Annals of Nuclear Energy, 73: 345-354. https://doi.org/10.1016/j.anucene.2014.07.003
    Pan, Y. L., Yu, B. S., Zhang, B. T., et al., 2017. Origins and Differences in Condensate Gas Reservoirs between East and West of Tazhong Uplift in the Ordovician Tarim Basin, NW China. Journal of Earth Science, 28(2): 367-380. https://doi.org/10.1007/s12583-015-0582-3
    Philp, R. P., 1987. Fossil Biomarkers-Application and Spectra. Science Presss, Beijing. 100-114 (in Chinese)
    Qin, J. Q., Yang, Z. Y., 2010. Coal Quality Characteristics in Northen of Binchang Mine Area. Coal Technology, 29(7): 107-110 (in Chinese with English Abstract)
    Rallakis, D., Michels, R., Brouand, M., et al., 2019. The Role of Organic Matter on Uranium Precipitation in Zoovch Ovoo, Mongolia. Minerals, 9(5): 310. https://doi.org/10.3390/min9050310
    Riegler, T., Beaufort, M. F., Allard, T., et al., 2016. Nanoscale Relationships between Uranium and Carbonaceous Material in Alteration Halos around Unconformity-Related Uranium Deposits of the Kiggavik Camp, Paleoproterozoic Thelon Basin, Nunavut, Canada. Ore Geology Reviews, 79: 382-391. https://doi.org/10.1016/j.oregeorev.2016.04.018
    Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2019. Origin of the Carbonaceous Debris and Its Implication for Mineralization within the Qianjiadian Uranium Deposit, Southern Songliao Basin. Ore Geology Reviews, 107: 336-352. https://doi.org/10.1016/j.oregeorev.2019.02.036
    Sangély, L., Chaussidon, M., Michels, R., et al., 2007. Micrometer Scale Carbon Isotopic Study of Bitumen Associated with Athabasca Uranium Deposits: Constraints on the Genetic Relationship with Petroleum Source-Rocks and the Abiogenic Origin Hypothesis. Earth and Planetary Science Letters, 258(3/4): 378-396. https://doi.org/10.1016/j.epsl.2007.03.018
    Schefuss, E., Ratmeyer, V., Stuut, J. B. W., et al., 2003. Carbon Isotope Analyses of N-Alkanes in Dust from the Lower Atmosphere over the Central Eastern Atlantic. Geochimica et Cosmochimica Acta, 67(10): 1757-1767. https://doi.org/10.1016/S0016-7037(02)01414-x
    Schwark, L., Zink, K., Lechterbeck, J., 2002. Reconstruction of Postglacial to Early Holocene Vegetation History in Terrestrial Central Europe via Cuticular Lipid Biomarkers and Pollen Records from Lake Sediments. Geology, 30(5): 463-466. https://doi.org/10.1130/0091-7613(2002)0300463: ropteh>2.0.co;2 doi: 10.1130/0091-7613(2002)0300463:ropteh>2.0.co;2
    Shen, J., Qin, Y., Wang, J. Y., et al., 2018. Peat-Forming Environments and Evolution of Thick Coal Seam in Shengli Coalfield, China: Evidence from Geochemistry, Coal Petrology, and Palynology. Minerals, 8(3): 1-26. https://doi.org/10.3390/min8030082
    Sukh, D., 1989. Terpenoids. In: Rowe, J. W., ed., Natural Products of Woody Plants. Springer, Berlin
    Tuo, J. C., Zhang, M. F., Wang, X. B., 2006. The Content and Significance of Fatty Acid Methylesters in Dongsheng Sedimentary Uranium Ore Deposits, Ordos Basin, China. Acta Sedimentologica Sinica, 24(3): 432-439 (in Chinese with English Abstract)
    Volkman, J. K., Allen, D. I., Stevenson, P. L., et al., 1986. Bacterial and Algal Hydrocarbons in Sediments from a Saline Antarctic Lake, Ace Lake. Organic Geochemistry, 10(4/5/6): 671-681. https://doi.org/10.1016/S0146-6380(86)80003-1
    Wang, T. G., Zhong, N. N., Hou, D. J., eds., 1995. Genetic Mechanism and Occurrences of Immature Hydrocarbon. Petroleum Industry Press, Beijing (in Chinese)
    Wang, T. K., Jiang, L., Cai, C. F., et al., 2018. Lipid Evidence for Oil Depletion by Sulfate-Reducing Bacteria during U Mineralization in the Dongsheng Deposit. Journal of Earth Science, 29(3): 556-563. https://doi.org/10.1007/s12583-017-0768-y
    Wilson, N. S. F., Stasiuk, L. D., Fowler, M. G., 2002. Post-Mineralization Origin of Organic Matter in Athabasca Unconformity Uranium Deposits, Saskatchewan Geological Survey, 2: 6
    Wu, B., 2016. Comparison of the Features between Carbonaceous Fragments in sandstone and Coal from Drilling ZKB84-37 Middle Jurassic Formation in Northern Ordos Basin: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)
    Wu, Y., Qin. M. K., Guo, D. F., et al., 2020. Metallogenic Chronology of the Pitchblende of 1101 Uranium Ore Area in Mouding, Middle-South Part of the Kangdian Axis and Its Geological Significance. Earth Science, 45(2): 419-433 (in Chinese with English Abstract)
    Xie, H. L., Jiao, Y. Q., Liu, Z. Y., et al., 2020. Occurrence and Enrichment Mechanism of Uranium Ore Minerals from Sandstone-Type Uranium Deposit, Northern Ordos Basin. Earth Science, 45(5): 1531-1543(in Chinese with English Abstract)
    Xie, S. C., Liang, B., Guo, J. Q., 2003. Biomarkers and the Related Global Change. Quaternary Sciences, 23(5): 521-528 (in Chinese with English Abstract)
    Xue, C. J., Chi, G. X., Xue, W., 2010. Interaction of Two Fluid Systems in the Formation of Sandstone-Hosted Uranium Deposits in the Ordos Basin: Geochemical Evidence and Hydrodynamic Modeling. Journal of Geochemical Exploration, 106(1/2/3): 226-235. https://doi.org/10.1016/j.gexplo.2009.11.006
    Yan, B. R., Zhang, X. G., 2010. Microbial Mineralization. Science Press, Beijing (in Chinese)
    Yudovich, Y. E., 2003. Coal Inclusions in Sedimentary Rocks: A Geochemical Phenomenon. A Review. International Journal of Coal Geology, 56(3/4): 203-222. https://doi.org/10.1016/j.coal.2003.08.002
    Yudovich, Y. E., 1972. Geochemistry of Coal Inclusions in Sedimentary Rocks. In: Canadian Coal and Coalbed Conference and Exposition, Parksville. 2-4 Feb.
    Yudovich, Y. E., 1989. One Gram is More Expensive Than One Ton: Trace Elements in Coals. Science Pub. House, Moscow
    Yuen, G. U., Pecore, J. A., Kerridge, J. F., et al., 1990. Carbon Isotopic Fractionation in Fischer-Tropsch Type Reactions, 21st Lunar and Planetary Science Conference, Houston
    Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2019a. Enhancement of Organic Matter Maturation Because of Radiogenic Heat from Uranium: A Case Study from the Ordos Basin in China. AAPG Bulletin, 103(1): 157-176. https://doi.org/10.1306/06071817107
    Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2019b. In-situ Analyses of Organic Matter Maturation Heterogeneity of Uranium-Bearing Carbonaceous Debris within Sandstones: A Case Study from the Ordos Basin in China. Ore Geology Reviews, 109: 117-129. https://doi.org/10.1016/j.oregeorev.2019.03.021
    Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2019c. Relations of Uranium Enrichment and Carbonaceous Debris within the Daying Uranium Deposit, Northern Ordos Basin. Journal of Earth Science, 30(1): 142-157. https://doi.org/10.1007/s12583-017-0952-0
    Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2020. Changes in Physicochemical Properties of Organic Matter by Uranium Irradiation: A Case Study from the Ordos Basin in China. Journal of Environmental Radioactivity, 211: 106105. https://doi.org/10.1016/j.jenvrad.2019.106105
    Zhang, Z. H., Zhao, M. X., Eglinton, G., et al., 2006. Leaf Wax Lipids as Paleovegetational and Paleoenvironmental Proxies for the Chinese Loess Plateau over the Last 170 Kyr. Quaternary Science Reviews, 25(5/6): 575-594. https://doi.org/10.1016/j.quascirev.2005.03.009
    Zheng, Y. H., Zhou, W. J., Xie, S. C., et al., 2009. A Comparative Study of N-Alkane Biomarker and Pollen Records: An Example from Southern China. Chinese Science Bulletin, 54(6): 1065-1072 (in Chinese with English Abstract)
    Zhong, Y. X., Chen, F. H., An, C. B., et al., 2007. Holocene Vegetation Cover in Qin'an Area of Western Chinese Loess Plateau Revealed by N-Alkane. Chinese Science Bulletin, 52(12): 1692-1698. https://doi.org/10.1007/s11434-007-0263-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views(405) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return