Bechtel, A., Gratzer, R., Sachsenhofer, R. F., et al., 2008. Biomarker and Carbon Isotope Variation in Coal and Fossil Wood of Central Europe through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 262(3/4): 166-175. https://doi.org/10.1016/j.palaeo.2008.03.005 |
Bechtel, A., Markic, M., Sachsenhofer, R. F., et al., 2004. Paleoenvironment of the Upper Oligocene Trbovlje Coal Seam (Slovenia). International Journal of Coal Geology, 57(1): 23-48. https://doi.org/10.1016/j.coal.2003.08.005 |
Bechtel, A., Reischenbacher, D., Sachsenhofer, R. F., et al., 2007. Paleogeography and Paleoecology of the Upper Miocene Zillingdorf Lignite Deposit (Austria). International Journal of Coal Geology, 69(3): 119-143. https://doi.org/10.1016/j.coal.2006.03.001 |
Bechtel, A., Sachsenhofer, R. F., Kolcon, I., et al., 2002. Organic Geochemistry of the Lower Miocene Oberdorf Lignite (Styrian Basin, Austria): Its Relation to Petrography, Palynology and the Palaeoenvironment. International Journal of Coal Geology, 51(1): 31-57. https://doi.org/10.1016/S0166-5162(02)00079-4 |
Bechtel, A., Sachsenhofer, R. F., Markic, M., et al., 2003. Paleoenvironmental Implications from Biomarker and Stable Isotope Investigations on the Pliocene Velenje Lignite Seam (Slovenia). Organic Geochemistry, 34(9): 1277-1298. https://doi.org/10.1016/s0146-6380(03)00114-1 |
Bechtel, A., Sachsenhofer, R. F., Zdravkov, A., et al., 2005. Influence of Floral Assemblage, Facies and Diagenesis on Petrography and Organic Geochemistry of the Eocene Bourgas Coal and the Miocene Maritza-East Lignite (Bulgaria). Organic Geochemistry, 36(11): 1498-1522. https://doi.org/10.1016/j.orggeochem.2005.07.003 |
Bone, S. E., Dynes, J. J., Cliff, J., et al., 2017. Uranium(Ⅳ) Adsorption by Natural Organic Matter in Anoxic Sediments. PNAS, 114(4): 711-716. https://doi.org/10.1073/pnas.1611918114 |
Bonnetti, C., Cuney, M., Michels, R., et al., 2015. The Multiple Roles of Sulfate-Reducing Bacteria and Fe-Ti Oxides in the Genesis of the Bayinwula Roll Front-Type Uranium Deposit, Erlian Basin, NE China. Economic Geology, 110(4): 1059-1081. https://doi.org/10.2113/econgeo.110.4.1059 |
Bonnetti, C., Zhou, L. L., Riegler, T., et al., 2020. Large S Isotope and Trace Element Fractionations in Pyrite of Uranium Roll Front Systems Result from Internally-Driven Biogeochemical Cycle. Geochimica et Cosmochimica Acta, 282: 113-132. https://doi.org/10.1016/j.gca.2020.05.019 |
Bordelet, G., Beaucaire, C., Phrommavanh, V., et al., 2013. Sorption Properties of Peat for U(VI) and 226Ra in U Mining Areas. Procedia Earth and Planetary Science, 7: 85-88. https://doi.org/10.1016/j.proeps.2013.03.121 |
Bottari, F., Marsili, A., Morelli, I., et al., 1972. Aliphatic and Triterpenoid Hydrocarbons from Ferns. Phytochemistry, 11(8): 2519-2523. https://doi.org/10.1016/s0031-9422(00)88528-3 |
Brasier, M., Green, O., Lindsay, J., et al., 2004. Earth's Oldest (∼3.5 Ga) Fossils and the Early Eden Hypothesis: Questioning the Evidence. Origins of Life and Evolution of the Biosphere, 34(1/2): 257-269. https://doi.org/10.1023/b:orig.0000009845.62244.d3 |
Cai, C. F., Dong, H. L., Li, H. T., et al., 2007a. Mineralogical and Geochemical Evidence for Coupled Bacterial Uranium Mineralization and Hydrocarbon Oxidation in the Shashagetai Deposit, NW China. Chemical Geology, 236(1/2): 167-179. https://doi.org/10.1016/j.chemgeo.2006.09.007 |
Cai, C. F., Li, H. T., Qin, M. K., et al., 2007b. Biogenic and Petroleum-Related Ore-Forming Processes in Dongsheng Uranium Deposit, NW China. Ore Geology Reviews, 32(1/2): 262-274. https://doi.org/10.1016/j.oregeorev.2006.05.003 |
Cernusak, L. A., Winter, K., Aranda, J., et al., 2008. Conifers, Angiosperm Trees, and Lianas: Growth, Whole-Plant Water and Nitrogen Use Efficiency, and Stable Isotope Composition (δ13C and δ18O) of Seedlings Grown in a Tropical Environment. Plant Physiology, 148(1): 642-659. https://doi.org/10.1104/pp.108.123521 |
Cranwell, P. A., Eglinton, G., Robinson, N., 1987. Lipids of Aquatic Organisms as Potential Contributors to Lacustrine Sediments—Ⅱ. Organic Geochemistry, 11(6): 513-527. https://doi.org/10.1016/0146-6380(87)90007-6 |
Cumberland, S. A., Douglas, G., Grice, K., et al., 2016. Uranium Mobility in Organic Matter-Rich Sediments: A Review of Geological and Geochemical Processes. Earth-Science Reviews, 159: 160-185. https://doi.org/10.1016/j.earscirev.2016.05.010 |
Cumberland, S. A., Etschmann, B., Brugger, J., et al., 2018. Characterization of Uranium Redox State in Organic-Rich Eocene Sediments. Chemosphere, 194: 602-613. https://doi.org/10.1016/j.chemosphere.2017.12.012 |
Cun, X. N., Wu, B. L., Zhang, H. S., et al., 2016. Study on Uranium Occurrence State of Daying Sandstone-Type Uranium Deposits in Ordos Basin. Northwestern Geology, 49(2): 198-212 (in Chinese with English Abstract) |
Cuney, M., 2010. Evolution of Uranium Fractionation Processes through Time: Driving the Secular Variation of Uranium Deposit Types. Economic Geology, 105(3): 553-569. https://doi.org/10.2113/gsecongeo.105.3.553 |
Deng, J., Wang, Q. F., Gao, B. F., et al., 2006. Distribution and Tectonic Background of Various Energy Resources in Ordos Basin. Earth Science, 31(3): 330-336 (in Chinese with English Abstract) |
Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., et al., 1978. Organic Geochemical Indicators of Palaeoenvironmental Conditions of Sedimentation. Nature, 272(5650): 216-222. https://doi.org/10.1038/272216a0 |
Diessel, C. F. K., 1992. Coal Facies and Depositional Environment. Coal-Bearing Depositional Systems. Springer, Berlin |
Du, F. P., 2019. Petrological and Element Geochemical Characteristics of the Yan'an Coals in Ordos Basin: [Dissertation]. Northwest University, Xi'an |
Gauthier-Lafaye, F., Weber, F., 1993. Uranium-Hydrocarbon Association in Francevillian Uranium Ore Deposits, Lower Proterozoic of Gabon. Bitumens in Ore Deposits, Springer-Verlag, Berlin. 276-286. https://doi.org/10.1007/978-3-642-85806-2_15 |
Giordano, T. H., 2000. Organic Matter as a Transport Agent in Ore-Forming Systems. In: Giordano, T. H., Kettler, R. M., Wood, S. A., eds., Ore Genesis and Exploration: The Roles of Organic Matter: Reviews in Economic Geology, Littleton |
Grant, B. D., Charles, R. M. B., David, J. G., 2011. Geology, Geochemistry and Mineralogy of the Lignite-Hosted Ambassador Palaeochannel Uranium and Multi-Element Deposit, Gunbarrel Basin, Western Australia. Mineralium Deposita, 46(7): 761-787. https://doi.org/10.1007/s00126-011-0349-4 |
Greenwood, P. F., Brocks, J. J., Grice, K., et al., 2013. Organic Geochemistry and Mineralogy. I. Characterisation of Organic Matter Associated with Metal Deposits. Ore Geology Reviews, 50: 1-27. https://doi.org/10.1016/j.oregeorev.2012.10.004 |
Guo, C. Y., Qin, M. K., Xu, H., et al., 2020. Age of Zhangjia Uranium Deposit in the Miaoershan Ore Field, Guangxi Autonomous Region, China: In situ Micro-Determination on Pitchblende. Earth Science, 45(1): 72-89 (in Chinese with English Abstract) |
Havelcová, M., Machovič, V., Mizera, J., et al., 2014. A Multi-Instrumental Geochemical Study of Anomalous Uranium Enrichment in Coal. Journal of Environmental Radioactivity, 137: 52-63. https://doi.org/10.1016/j.jenvrad.2014.06.015 |
Huang, W. Y., Meinschein, W. G., 1979. Sterols as Ecological Indicators. Geochimica et Cosmochimica Acta, 43(5): 739-745. https://doi.org/10.1016/0016-7037(79)90257-6 |
Jiang, L., Cai, C. F., Zhang, Y. D., et al., 2012. Lipids of Sulfate-Reducing Bacteria and Sulfur-Oxidizing Bacteria Found in the Dongsheng Uranium Deposit. Chinese Science Bulletin, 57(11): 1311-1319. https://doi.org/10.1007/s11434-011-4955-4 |
Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021. Review of Basin Uranium Resources in China. Earth Science, 46(8): 2675-2696 (in Chinese with English Abstract) |
Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2016. The Relationship between Jurassic Coal Measures and Sandstone-Type Uranium Deposits in the Northeastern Ordos Basin, China. Acta Geologica Sinica (English Edition), 90(6): 2117-2132 (in Chinese with English Abstract) doi: 10.1111/1755-6724.13026 |
Jiao, Y. Q., Wu, L. Q., Yang, S. K., et al., 2006. Uranium Reservoir Sedimentology: Exploration and Development of the Sandstone-Type Uranium Deposits. Geological Press, Beijing (in Chinese) |
Jiao, Y. Q., Wu, L. Q., Rong, H., 2018. Model of Inner and Outer Reductive Media within Uranium Reservoir Sandstone of Sandstone-Type Uranium Deposits and Its Ore-Controlling Mechanism: Case Studies in Daying and Qianjiadian Uranium Deposits. Earth Science, 43(2): 459-474 (in Chinese with English Abstract) |
Kalkreuth, W., Keuser, C., Fowler, M., et al., 1998. The Petrology, Organic Geochemistry and Palynology of Tertiary Age Eureka Sound Group Coals, Arctic Canada. Organic Geochemistry, 29(1/2/3): 799-809. https://doi.org/10.1016/s0146-6380(98)00122-3 |
Karrer, W., Cherbuliez, E., Eugster, C. H., 1977. Konstitution und Vorkommen der Organischen Pflanzenstoffe. Ergänzungsband I., Birkhäuser. Basel, Stuttgart. https://doi.org/10.1007/978-3-0348-9377-0 |
Landais, P., 1996. Organic Geochemistry of Sedimentary Uranium Ore Deposits. Ore Geology Reviews, 11(1/2/3): 33-51. https://doi.org/10.1016/0169-1368(95)00014-3 |
Lei, K. Y., Liu, C. Y., Zhang, L., et al., 2017. Element Geochemical Characteristics of the Jurassic Mudstones in the Northern Ordos Basin: Implications for Tracing Sediment Sources and Paleoenvironment Restoration. Acta Sedimentologica Sinica, 35(3): 621-636 (in Chinese with English Abstract) |
Leventhal, J. S., Grauch, R. I., Threlkeld, C. N., et al., 1987. Unusual Organic Matter Associated with Uranium from the Claude Deposit, Cluff Lake, Canada. Economic Geology, 82(5): 1169-1176. https://doi.org/10.2113/gsecongeo.82.5.1169 |
Li, Q. G., Ju, Y. W., Chen, P., et al., 2017. Biomarker Study of Depositional Paleoenvironments and Organic Matter Inputs for Permian Coalbearing Strata in the Huaibei Coalfield, East China. Energy & Fuels, 31(4): 3567-3577. https://doi.org/10.1021/acs.energyfuels.6b02602 |
Liu, B. J., Zhao, C. L., Ma, J. L., et al., 2018. The Origin of Pale and Dark Layers in Pliocene Lignite Deposits from Yunnan Province, Southwest China, Based on Coal Petrological and Organic Geochemical Analyses. International Journal of Coal Geology, 195: 172-188. https://doi.org/10.1016/j.coal.2018.06.003 |
Liu, Z. Y., Dong, W. M., Liu, H. X., 2010. Research Development of the Experiment on Uranium Microbial Metallogenesis. World Nuclear Geoscience, 27(2): 78-84 (in Chinese with English Abstract) |
Luo, J. J., 2017. Coal Organic Matter Characteristic and Metallogenic Significance in Daying Sandstone-Type Uranium, Ordos Basin: [Dissertation]. Northwest University, Xi'an (in Chinese) |
Luque, F. J., Pasteris, J. D., Wopenka, B., et al., 1998. Natural Fluid-Deposited Graphite; Mineralogical Characteristics and Mechanisms of Formation. American Journal of Science, 298(6): 471-498. https://doi.org/10.2475/ajs.298.6.471 |
McCollom, T. M., Seewald, J. S., 2006. Carbon Isotope Composition of Organic Compounds Produced by Abiotic Synthesis under Hydrothermal Conditions. Earth and Planetary Science Letters, 243(1/2): 74-84. https://doi.org/10.1016/j.epsl.2006.01.027 |
Min, M. Z., Luo, X. Z., Mao, S. L., et al., 2001. An Excellent Fossil Wood Cell Texture with Primary Uranium Minerals at a Sandstone-Hosted Roll-Type Uranium Deposit, NW China. Ore Geology Reviews, 17(4): 233-239. https://doi.org/10.1016/S0169-1368(00)00007-x |
Min, M. Z., Xu, H. F., Chen, J., et al., 2005. Evidence of Uranium Biomineralization in Sandstone-Hosted Roll-Front Uranium Deposits, Northwestern China. Ore Geology Reviews, 26(3/4): 198-206. https://doi.org/10.1016/j.oregeorev.2004.10.003 |
Munier-Lamy, C., Adrian, P., Berthelin, J., et al., 1986. Comparison of Binding Abilities of Fulvic and Humic Acids Extracted from Recent Marine Sediments with UO22+. Organic Geochemistry, 9(6): 285-292. https://doi.org/10.1016/0146-6380(86)90109-9 |
Nagy, B., Gauthier-Lafaye, F., Holliger, P., et al., 1993. Role of Organic Matter in the Proterozoic Oklo Natural Fission Reactors, Gabon, Africa. Geology, 21(7): 655. https://doi.org/10.1130/0091-7613(1993)0210655: roomit>2.3.co;2 doi: 10.1130/0091-7613(1993)0210655:roomit>2.3.co;2 |
Noémie, J., Juan, S. L. P., Don, Q. P., et al., 2016. Physico-Chemical Heterogeneity of Organic-Rich Sediments in the Rifle Aquifer, CO: Impact on Uranium Biogeochemistry. Environmental Science & Technology, 50(1): 46-53. https://doi.org/10.1021/acs.est.5b03208 |
Ortaboy, S., Atun, G., 2014. Kinetics and Equilibrium Modeling of Uranium(VI) Sorption by Bituminous Shale from Aqueous Solution. Annals of Nuclear Energy, 73: 345-354. https://doi.org/10.1016/j.anucene.2014.07.003 |
Pan, Y. L., Yu, B. S., Zhang, B. T., et al., 2017. Origins and Differences in Condensate Gas Reservoirs between East and West of Tazhong Uplift in the Ordovician Tarim Basin, NW China. Journal of Earth Science, 28(2): 367-380. https://doi.org/10.1007/s12583-015-0582-3 |
Philp, R. P., 1987. Fossil Biomarkers-Application and Spectra. Science Presss, Beijing. 100-114 (in Chinese) |
Qin, J. Q., Yang, Z. Y., 2010. Coal Quality Characteristics in Northen of Binchang Mine Area. Coal Technology, 29(7): 107-110 (in Chinese with English Abstract) |
Rallakis, D., Michels, R., Brouand, M., et al., 2019. The Role of Organic Matter on Uranium Precipitation in Zoovch Ovoo, Mongolia. Minerals, 9(5): 310. https://doi.org/10.3390/min9050310 |
Riegler, T., Beaufort, M. F., Allard, T., et al., 2016. Nanoscale Relationships between Uranium and Carbonaceous Material in Alteration Halos around Unconformity-Related Uranium Deposits of the Kiggavik Camp, Paleoproterozoic Thelon Basin, Nunavut, Canada. Ore Geology Reviews, 79: 382-391. https://doi.org/10.1016/j.oregeorev.2016.04.018 |
Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2019. Origin of the Carbonaceous Debris and Its Implication for Mineralization within the Qianjiadian Uranium Deposit, Southern Songliao Basin. Ore Geology Reviews, 107: 336-352. https://doi.org/10.1016/j.oregeorev.2019.02.036 |
Sangély, L., Chaussidon, M., Michels, R., et al., 2007. Micrometer Scale Carbon Isotopic Study of Bitumen Associated with Athabasca Uranium Deposits: Constraints on the Genetic Relationship with Petroleum Source-Rocks and the Abiogenic Origin Hypothesis. Earth and Planetary Science Letters, 258(3/4): 378-396. https://doi.org/10.1016/j.epsl.2007.03.018 |
Schefuss, E., Ratmeyer, V., Stuut, J. B. W., et al., 2003. Carbon Isotope Analyses of N-Alkanes in Dust from the Lower Atmosphere over the Central Eastern Atlantic. Geochimica et Cosmochimica Acta, 67(10): 1757-1767. https://doi.org/10.1016/S0016-7037(02)01414-x |
Schwark, L., Zink, K., Lechterbeck, J., 2002. Reconstruction of Postglacial to Early Holocene Vegetation History in Terrestrial Central Europe via Cuticular Lipid Biomarkers and Pollen Records from Lake Sediments. Geology, 30(5): 463-466. https://doi.org/10.1130/0091-7613(2002)0300463: ropteh>2.0.co;2 doi: 10.1130/0091-7613(2002)0300463:ropteh>2.0.co;2 |
Shen, J., Qin, Y., Wang, J. Y., et al., 2018. Peat-Forming Environments and Evolution of Thick Coal Seam in Shengli Coalfield, China: Evidence from Geochemistry, Coal Petrology, and Palynology. Minerals, 8(3): 1-26. https://doi.org/10.3390/min8030082 |
Sukh, D., 1989. Terpenoids. In: Rowe, J. W., ed., Natural Products of Woody Plants. Springer, Berlin |
Tuo, J. C., Zhang, M. F., Wang, X. B., 2006. The Content and Significance of Fatty Acid Methylesters in Dongsheng Sedimentary Uranium Ore Deposits, Ordos Basin, China. Acta Sedimentologica Sinica, 24(3): 432-439 (in Chinese with English Abstract) |
Volkman, J. K., Allen, D. I., Stevenson, P. L., et al., 1986. Bacterial and Algal Hydrocarbons in Sediments from a Saline Antarctic Lake, Ace Lake. Organic Geochemistry, 10(4/5/6): 671-681. https://doi.org/10.1016/S0146-6380(86)80003-1 |
Wang, T. G., Zhong, N. N., Hou, D. J., eds., 1995. Genetic Mechanism and Occurrences of Immature Hydrocarbon. Petroleum Industry Press, Beijing (in Chinese) |
Wang, T. K., Jiang, L., Cai, C. F., et al., 2018. Lipid Evidence for Oil Depletion by Sulfate-Reducing Bacteria during U Mineralization in the Dongsheng Deposit. Journal of Earth Science, 29(3): 556-563. https://doi.org/10.1007/s12583-017-0768-y |
Wilson, N. S. F., Stasiuk, L. D., Fowler, M. G., 2002. Post-Mineralization Origin of Organic Matter in Athabasca Unconformity Uranium Deposits, Saskatchewan Geological Survey, 2: 6 |
Wu, B., 2016. Comparison of the Features between Carbonaceous Fragments in sandstone and Coal from Drilling ZKB84-37 Middle Jurassic Formation in Northern Ordos Basin: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract) |
Wu, Y., Qin. M. K., Guo, D. F., et al., 2020. Metallogenic Chronology of the Pitchblende of 1101 Uranium Ore Area in Mouding, Middle-South Part of the Kangdian Axis and Its Geological Significance. Earth Science, 45(2): 419-433 (in Chinese with English Abstract) |
Xie, H. L., Jiao, Y. Q., Liu, Z. Y., et al., 2020. Occurrence and Enrichment Mechanism of Uranium Ore Minerals from Sandstone-Type Uranium Deposit, Northern Ordos Basin. Earth Science, 45(5): 1531-1543(in Chinese with English Abstract) |
Xie, S. C., Liang, B., Guo, J. Q., 2003. Biomarkers and the Related Global Change. Quaternary Sciences, 23(5): 521-528 (in Chinese with English Abstract) |
Xue, C. J., Chi, G. X., Xue, W., 2010. Interaction of Two Fluid Systems in the Formation of Sandstone-Hosted Uranium Deposits in the Ordos Basin: Geochemical Evidence and Hydrodynamic Modeling. Journal of Geochemical Exploration, 106(1/2/3): 226-235. https://doi.org/10.1016/j.gexplo.2009.11.006 |
Yan, B. R., Zhang, X. G., 2010. Microbial Mineralization. Science Press, Beijing (in Chinese) |
Yudovich, Y. E., 2003. Coal Inclusions in Sedimentary Rocks: A Geochemical Phenomenon. A Review. International Journal of Coal Geology, 56(3/4): 203-222. https://doi.org/10.1016/j.coal.2003.08.002 |
Yudovich, Y. E., 1972. Geochemistry of Coal Inclusions in Sedimentary Rocks. In: Canadian Coal and Coalbed Conference and Exposition, Parksville. 2-4 Feb. |
Yudovich, Y. E., 1989. One Gram is More Expensive Than One Ton: Trace Elements in Coals. Science Pub. House, Moscow |
Yuen, G. U., Pecore, J. A., Kerridge, J. F., et al., 1990. Carbon Isotopic Fractionation in Fischer-Tropsch Type Reactions, 21st Lunar and Planetary Science Conference, Houston |
Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2019a. Enhancement of Organic Matter Maturation Because of Radiogenic Heat from Uranium: A Case Study from the Ordos Basin in China. AAPG Bulletin, 103(1): 157-176. https://doi.org/10.1306/06071817107 |
Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2019b. In-situ Analyses of Organic Matter Maturation Heterogeneity of Uranium-Bearing Carbonaceous Debris within Sandstones: A Case Study from the Ordos Basin in China. Ore Geology Reviews, 109: 117-129. https://doi.org/10.1016/j.oregeorev.2019.03.021 |
Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2019c. Relations of Uranium Enrichment and Carbonaceous Debris within the Daying Uranium Deposit, Northern Ordos Basin. Journal of Earth Science, 30(1): 142-157. https://doi.org/10.1007/s12583-017-0952-0 |
Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2020. Changes in Physicochemical Properties of Organic Matter by Uranium Irradiation: A Case Study from the Ordos Basin in China. Journal of Environmental Radioactivity, 211: 106105. https://doi.org/10.1016/j.jenvrad.2019.106105 |
Zhang, Z. H., Zhao, M. X., Eglinton, G., et al., 2006. Leaf Wax Lipids as Paleovegetational and Paleoenvironmental Proxies for the Chinese Loess Plateau over the Last 170 Kyr. Quaternary Science Reviews, 25(5/6): 575-594. https://doi.org/10.1016/j.quascirev.2005.03.009 |
Zheng, Y. H., Zhou, W. J., Xie, S. C., et al., 2009. A Comparative Study of N-Alkane Biomarker and Pollen Records: An Example from Southern China. Chinese Science Bulletin, 54(6): 1065-1072 (in Chinese with English Abstract) |
Zhong, Y. X., Chen, F. H., An, C. B., et al., 2007. Holocene Vegetation Cover in Qin'an Area of Western Chinese Loess Plateau Revealed by N-Alkane. Chinese Science Bulletin, 52(12): 1692-1698. https://doi.org/10.1007/s11434-007-0263-4 |