Citation: | Hong Wei, Qinglai Feng, Jianxin Yu, Shan Chang. Characteristics and Sources of Organic Matter from the Early Cambrian Niutitang Formtion and Its Preservation Environment in Guizhou. Journal of Earth Science, 2022, 33(4): 933-944. doi: 10.1007/s12583-020-1371-1 |
The Early Cambrian Niutitang Formation on the Yangtze Block is a set of high-quality marine source rock. However, hydrocarbon-forming organisms of these organic-rich shales was poorly understood. In this paper, the results of palynofacies analysis and hydrocarbon-forming organism characteristics of the Niutitang Formation from the Yangtze Block are reported for the first time, and the sedimentary environment is discussed in combination with geochemical data. Palynofacies analysis show that the organic matter (OM) of the Niutitang Formation is mainly composed of amorphous organic matter (AOM), with a small amount of structural organic matter (STOM) and palynomorphs (PL). The results of CONISS (stratigraphically constrained incremental sum of squares) cluster analysis show that the PL can be divided into three zones in the ascending order:
Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3/4): 289–318. https://doi.org/10.1016/j.chemgeo.2003.12.009 |
Batten, D. J., 1996. Palynofacies and Palaeoenvironmental Interpretation. Journal of Micropalaeontology, 3: 1011–1064 https://www.researchgate.net/publication/270758352_Palynofacies_and_palaeoenvironmental_interpretation |
Boström, K., Peterson, M. N. A., 1969. The Origin of Aluminum-Poor Ferromanganoan Sediments in Areas of High Heat Flow on the East Pacific Rise. Marine Geology, 7(5): 427–447. https://doi.org/10.1016/0025-3227(69)90016-4 |
Cai, J. G., Zhu, X. J., Zhang, J. Q., et al., 2020. Heterogeneities of Organic Matter and Its Occurrence Forms in Mudrocks: Evidence from Comparisons of Palynofacies. Marine and Petroleum Geology, 111: 21–32. https://doi.org/10.1016/j.marpetgeo.2019.08.004 |
Cao, X. M., 2014. Reservoir Characteristics and Their Controlling Factors of the Lower Cambrian Niutitang Formation Black Shales in Southeast Chongqing: A Case Study of Well Yuke 1 and Well Youke 1: [Dissertation]. China University of Geosciences, Beijing (in Chinese with English Abstract) |
Chang, H. J., Chu, X. L., Feng, L. J., et al., 2018. Marine Redox Stratification on the Earliest Cambrian (Ca. 542–529 Ma) Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 504: 75–85. https://doi.org/10.1016/j.palaeo.2018.05.007 |
Chen, D. Z., Wang, J. G., Qing, H. R., et al., 2009. Hydrothermal Venting Activities in the Early Cambrian, South China: Petrological, Geochronological and Stable Isotopic Constraints. Chemical Geology, 258(3/4): 168–181. https://doi.org/10.1016/j.chemgeo.2008.10.016 |
Chen, L., Zhang, B. M., Chen, X. H., et al., 2021. Lithofacies and Origin Evolution of Mudstone of Shetianqiao Formation in Shaoyang Sag of Xiangzhong Depression. Earth Science, 46(4): 1282–1294. https://doi.org/10.3799/dqkx.2020.253 (in Chinese with Abstract) |
Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86(11): 1921–1938. https://doi.org/10.1306/61eeddbe-173e-11d7-8645000102c1865d |
Dong, D. Z., Wang, Y. M., Li, X. J., et al., 2016. Breakthrough and Prospect of Shale Gas Exploration and Development in China. Natural Gas Industry B, 3(1): 12–26. https://doi.org/10.1016/j.ngib.2016.02.002 |
DowNIE, C., 1963. 'Hystrichospheres' (Acritarchs) and Spores of the Wenlock Shales (Silurian) of Wenlock, England. Palaeontology, 6(4): 625–652 |
Dutta, S., Steiner, M., Banerjee, S., et al., 2006. Chuaria Circularis from the Early Mesoproterozoic Suket Shale, Vindhyan Supergroup, India: Insights from Light and Electron Microscopy and Pyrolysis-Gas Chromatography. Journal of Earth System Science, 115(1): 99–112. https://link.springer.com/article/10.1007/BF02703028 |
Dybkjær, K., Rasmussen, E. S., Śliwińska, K. K., et al., 2019. A Palynofacies Study of Past Fluvio-Deltaic and Shelf Environments, the Oligocene–Miocene Succession, North Sea Basin: A Reference Data Set for Similar Cenozoic Systems. Marine and Petroleum Geology, 100: 111–147. https://doi.org/10.1016/j.marpetgeo.2018.08.012 |
El Diasty, W. S., El Beialy, S. Y., Khairy, A., et al., 2020. Palaeoenvironmental and Source Rock Potential of the Turonian–Miocene Sequence in the West Esh El Mellaha (SW Margin of the Suez Rift, Egypt): Insights from Palynofacies, Palynology and Organic Geochemistry. Review of Palaeobotany and Palynology, 276: 104190. https://doi.org/10.1016/j.revpalbo.2020.104190 |
Fang, X. Y., Wu, L. L., Geng, A. S., et al., 2019. Formation and Evolution of the Ediacaran to Lower Cambrian Black Shales in the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 527: 87–102. https://doi.org/10.1016/j.palaeo.2019.04.025 |
Gao, P., He, Z. L., Li, S. J., et al., 2018. Volcanic and Hydrothermal Activities Recorded in Phosphate Nodules from the Lower Cambrian Niutitang Formation Black Shales in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 505: 381–397. https://doi.org/10.1016/j.palaeo.2018.06.019 |
Gong, M., Zhou, C. M., Yin, L. M., et al., 2010. Cell Wall Ultrastructures of the Proterozoic Acritarch Leiosphaeridia Asperata and Their Implications for Biological Affinity. Science China Earth Sciences, 53(12): 1750–1755. https://doi.org/10.1007/s11430-010-4083-z |
Grimm, E. C., 1987. CONISS: A FORTRAN 77 Program for Stratigraphically Constrained Cluster Analysis by the Method of Incremental Sum of Squares. Computers & Geosciences, 13(1): 13–35. https://doi.org/10.1016/0098-3004(87)90022-7 |
Gurdebeke, P. R., Mertens, K. N., Takano, Y., et al., 2018. The Affiliation of Hexasterias Problematica and Halodinium Verrucatum Sp. Nov. to Ciliate Cysts Based on Molecular Phylogeny and Cyst Wall Composition. European Journal of Protistology, 66: 115–135. https://doi.org/10.1016/j.ejop.2018.09.002 |
Hackley, P. C., Cardott, B. J., 2016. Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology, 163: 8–51. https://doi.org/10.1016/j.coal. 2016.06.010 doi: 10.1016/j.coal.2016.06.010 |
Han, T., Zhu, X. Q., Li, K., et al., 2015. Metal Sources for the Polymetallic Ni-Mo-PGE Mineralization in the Black Shales of the Lower Cambrian Niutitang Formation, South China. Ore Geology Reviews, 67: 158–169. https://doi.org/10.1016/j.oregeorev.2014.11.020 |
Hewaidy, A. G. A., Makled, W. A., El Garhy, M. M., et al., 2019. Aspects of Palyno-Organic Facies Analysis: Comprehensive Evaluation of the Source Rocks and Age of Some Subsurface Lower Cretaceous Core Materials in the North Western Desert, Egypt. Marine and Petroleum Geology, 99: 498–525. https://doi.org/10.1016/j.marpetgeo.2018.10.009 |
Huang, B., Rong, J. Y., Cocks, L. R. M., 2012. Global Palaeobiogeographical Patterns in Brachiopods from Survival to Recovery after the End-Ordovician Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 317/318: 196–205. https://doi.org/10.1016/j.palaeo.2012.01.009 |
Jenkyns, H. C., 2010. Geochemistry of Oceanic Anoxic Events. Geochemistry, Geophysics, Geosystems, 11(3): 1–30. https://doi.org/10.1029/2009gc002788 |
Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1/2/3/4): 111–129. https://doi.org/10.1016/0009-2541(94)90085-X |
Katz, B. J., Arango, I., 2018. Organic Porosity: A Geochemist's View of the Current State of Understanding. Organic Geochemistry, 123: 1–16. https://doi.org/10.1016/j.orggeochem.2018.05.015 |
Lei, Y., Servais, T., Feng, Q. L., et al., 2012. The Spatial (Nearshore-Offshore) Distribution of Latest Permian Phytoplankton from the Yangtze Block, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 363/364: 151–162. https://doi.org/10.1016/j.palaeo.2012.09.010 |
Lei, Y., Shen, J., Algeo, T. J., et al., 2019. Phytoplankton (Acritarch) Community Changes during the Permian-Triassic Transition in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 84–94. https://doi.org/10.1016/j.palaeo.2018.09.033 |
Li, J. G., Batten, D. J., 2005. Palynofacies: Principles and Methods. Acta Palaeontologica Sinica, 44(1): 138–156 (in Chinese with English Abstract) doi: 10.1111/nph.12848 |
Li, J., 2018. Study on Paleo-Environmental Reconstruction and Organic Matter Accumulation of the Lower Cambrian Niutitang Formation in Northern Guizhou: [Dissertation]. China University of Geosciences, Beijing (in Chinese with English Abstract) |
Li, J., Tang, S. H., Zhang, S. H., et al., 2018. Paleo-Environmental Conditions of the Early Cambrian Niutitang Formation in the Fenggang Area, the Southwestern Margin of the Yangtze Platform, Southern China: Evidence from Major Elements, Trace Elements and Other Proxies. Journal of Asian Earth Sciences, 159: 81–97. https://doi.org/10.1016/j.jseaes.2018.03.013 |
Li, L. Q., Wang, Y. D., Vajda, V., 2021. Palynofacies Analysis for Interpreting Paleoenvironment and Hydrocarbon Potential of Triassic–Jurassic Strata in the Sichuan Basin, China. Palaeoworld, 30(1): 126–137. https://doi.org/10.1016/j.palwor.2020.04.007 |
Liang, D. G., Guo, T. L., Chen, J. P., et al., 2008. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 1): Distribution of Four Suits of Regional Marine Source Rocks. Marine Origin Petroleum Geology, 2: 1–16 (in Chinese with English Abstract) |
Liu, A., Cai, Q. S., Chen, X. H., et al., 2021. Paleofluid Characteristics since Indosinian Movement in Yuanma Basin, West Hunan: Significance for Cambrian Shale Gas Exploration. Earth Science, 46(10): 3615–3628. https://doi.org/10.3799/dqkx.2021.004 (in Chinese with Abstract) |
Liu, B., Schieber, J., Mastalerz, M., et al., 2019. Organic Matter Content and Type Variation in the Sequence Stratigraphic Context of the Upper Devonian New Albany Shale, Illinois Basin. Sedimentary Geology, 383: 101–120. https://doi.org/10.1016/j.sedgeo.2019.02.004 |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
Liu, Z. B., Gao, B., Zhang, Y. Y., et al., 2017. Types and Distribution of the Shale Sedimentary Facies of the Lower Cambrian in Upper Yangtze Area, South China. Petroleum Exploration and Development, 44(1): 20–31. https://doi.org/10.1016/S1876-3804(17)30004-6 |
Liu, Z. H., Zhuang, X. G., Teng, G. E., et al., 2015. The Lower Cambrian Niutitang Formation at Yangtiao (Guizhou, SW China): Organic Matter Enrichment, Source Rock Potential, and Hydrothermal Influences. Journal of Petroleum Geology, 38(4): 411–432. https://doi.org/10.1111/jpg.12619 |
Liu, Z. X., Yan, D. T., Niu, X., 2020. Insights into Pore Structure and Fractal Characteristics of the Lower Cambrian Niutitang Formation Shale on the Yangtze Platform, South China. Journal of Earth Science, 31(1): 169–180. https://doi.org/10.1007/s12583-020-1259-0 |
Luo, C., 2014. Geological characteristics of Gas Shale in the Lower Cambrian Niutitang Formation of the Upper Yangtze Platform: [Dissertation]. Chengdu University of Technology, Chengdu (in Chinese with English Abstract) |
Meng, F. W., Zhou, C. M., Yin, L. M., et al., 2005. The Oldest Known Dinoflagellates: Morphological and Molecular Evidence from Mesoproterozoic Rocks at Yongji, Shanxi Province. Chinese Science Bulletin, 50(12): 1230–1234. https://link.springer.com/article/10.1007/BF03183698 |
Moczydłowska, M., 2008. New Records of Late Ediacaran Microbiota from Poland. Precambrian Research, 167(1/2): 71–92. https://doi.org/10.1016/j.precamres.2008.07.007 |
Moczydłowska, M., Landing, E. D., Zang, W. L., et al., 2011. Proterozoic Phytoplankton and Timing of Chlorophyte Algae Origins. Palaeontology, 54(4): 721–733. https://doi.org/10.1111/j.1475-4983. 2011.01054.x doi: 10.1111/j.1475-4983.2011.01054.x |
Moczydłowska, M., Willman, S., 2009. Ultrastructure of Cell Walls in Ancient Microfossils as a Proxy to Their Biological Affinities. Precambrian Research, 173(1/2/3/4): 27–38. https://doi.org/10.1016/j.precamres.2009.02.006 |
Moldowan, J. M., Talyzina, N. M., 1998. Biogeochemical Evidence for Dinoflagellate Ancestors in the Early Cambrian. Science, 281(5380): 1168–1170. https://doi.org/10.1126/science.281.5380.1168 |
Niggemann, J., 2005. Composition and Degradation of Organic Matter in Sediments from the Peru-Chile Upwelling Region: [Dissertation]. Univcersity of Bremen, Germany |
Peng, J., Babcock, L. E., Zhao, Y. L., et al., 2005. Cambrian Sphenothallus from Guizhou Province, China: Early Sessile Predators. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1/2): 119–127. https://doi.org/10.1016/j.palaeo.2004.09.014 |
Peng, Y. B., Bao, H. M., Yuan, X. L., 2009. New Morphological Observations for Paleoproterozoic Acritarchs from the Chuanlinggou Formation, North China. Precambrian Research, 168(3/4): 223–232. https://doi.org/10.1016/j.precamres.2008.10.005 |
Qiao, L., Shen, S. Z., 2014. Global Paleobiogeography of Brachiopods during the Mississippian—Response to the Global Tectonic Reconfiguration, Ocean Circulation, and Climate Changes. Gondwana Research, 26(3/4): 1173–1185. https://doi.org/10.1016/j.gr.2013.09.013 |
Qin, J. Z., Shen, B. J., Tao, G. L., et al., 2014. Hydrocarbon-Forming Organisms and Dynamic Evaluation of Hydrocarbon Generation Capacity in Excellent Source Rocks. Petroleum Geology and Experiment, 36(4): 465–472 (in Chinese with English Abstract) |
Qin, J. Z., Tao, G. L., Tenger, 2010. Hydrocarbon-Forming Organisms in Excellent Maring Source Rocks in South Chian. Petroleum Geology and Experiment, 32(3): 262–269 (in Chinese with English Abstract) https://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201003014.htm |
Radmacher, W., Kobos, K., Tyszka, J., et al., 2020. Palynological Indicators of Palaeoenvironmental Perturbations in the Basque-Cantabrian Basin during the Latest Cretaceous (Zumaia, Northern Spain). Marine and Petroleum Geology, 112: 104107. https://doi.org/10.1016/j.marpetgeo.2019.104107 |
Sá, N. D. P., Carvalho, M. D. A., Correia, G. D. C., 2020. Miocene Paleoenvironmental Changes in the Solimões Basin, Western Amazon, Brazil: A Reconstruction Based on Palynofacies Analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 537: 109450. https://doi.org/10.1016/j.palaeo.2019.109450 |
Saraswati, P. K., Srinivasan, M., 2015. Micropaleontology: Principles and Applications. Springer International Publishing, Heidelberg. 143–147 |
Shan, L. L., Yan, K., Li, J., 2019. Abundance of Dominant Acritarch Genera and the Relative Sea Level Changes. Acta Micropalaeontologica Sinica, 36(1): 45–56. https://doi.org/10.16087/j.cnki.1000-0674. 2019.01.005 (in Chinese with English Abstract) doi: 10.16087/j.cnki.1000-0674.2019.01.005 |
Shen, Z., Song, J. J., Servais, T., et al., 2019. Late Devonian Palaeobiogeography of Marine Organic-Walled Phytoplankton. Palaeogeography, Palaeoclimatology, Palaeoecology, 531: 108706. https://doi.org/10.1016/j.palaeo.2018.03.018 |
Sun, M. D., Yu, B. S., Hu, Q. H., et al., 2018. Pore Structure Characterization of Organic-Rich Niutitang Shale from China: Small Angle Neutron Scattering (SANS) Study. International Journal of Coal Geology, 186: 115–125. https://doi.org/10.1016/j.coal.2017.12.006 |
Talyzina, N. M., Moldowan, J. M., Johannisson, A., et al., 2000. Affinities of Early Cambrian Acritarchs Studied by Using Microscopy, Fluorescence Flow Cytometry and Biomarkers. Review of Palaeobotany and Palynology, 108(1/2): 37–53. https://doi.org/10.1016/S0034-6667(99)00032-9 |
Taylor, N. T., 2014. Fossil Fungi. In: Taylor, T. N., Kings, M., Taylor, E. L., eds. . Academic Press, London. 1-1 |
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12–32. https://doi.org/10.1016/j.chemgeo. 2006.02.012 doi: 10.1016/j.chemgeo.2006.02.012 |
Tyson, R. V., 1995. Sedimentary Organic Matter. In: Tyson, R. V., ed., Organic Facies and Palynofacies. Chapman and Hall, London |
Venckutė-Aleksienė, A., Radzevičius, S., Spiridonov, A., 2016. Dynamics of Phytoplankton in Relation to the Upper Homerian (Lower Silurian) lundgreni Event––An Example from the Eastern Baltic Basin (Western Lithuania). Marine Micropaleontology, 126: 31–41. https://doi.org/10.1016/j.marmicro.2016.05.001 |
Wang, P. F., Jiang, Z. X., Yin, L. S., et al., 2017. Lithofacies Classification and Its Effect on Pore Structure of the Cambrian Marine Shale in the Upper Yangtze Platform, South China: Evidence from FE-SEM and Gas Adsorption Analysis. Journal of Petroleum Science and Engineering, 156: 307–321. https://doi.org/10.1016/j.petrol.2017.06.011 |
Wang, S. F., Zou, C. N., Dong, D. Z., et al., 2015. Multiple Controls on the Paleoenvironment of the Early Cambrian Marine Black Shales in the Sichuan Basin, SW China: Geochemical and Organic Carbon Isotopic Evidence. Marine and Petroleum Geology, 66: 660–672. https://doi.org/10.1016/j.marpetgeo.2015.07.009 |
Wang, S. Q., 2018. Shale Gas Exploitation: Status, Problems and Prospect. Natural Gas Industry B, 5(1): 60–74. https://doi.org/10.1016/j.ngib.2017.12.004 |
Wang, W. H., Monnet, C., Servais, T., 2017. Quantitative Methods Used for Understanding the Taxonomy of Acritarchs: A Case Study of the Middle Ordovician Genus Frankea Burmann 1970. Palynology, 41(Sup1): 69–79. https://doi.org/10.1080/01916122.2017.1366206 |
Wang, Y. F., Zhai, G. Y., Liu, G. H., et al., 2021. Geological Characteristics of Shale Gas in Different Strata of Marine Facies in South China. Journal of Earth Science, 32(4): 725–741. https://doi.org/10.1007/s12583-020-1104-5 |
Wheeler, A., van de Wetering, N., Esterle, J. S., et al., 2020. Palaeoenvironmental Changes Recorded in the Palynology and Palynofacies of a Late Permian Marker Mudstone (Galilee Basin, Australia). Palaeoworld, 29(2): 439–452. https://doi.org/10.1016/j.palwor.2018.10.005 |
Wu, Y. W., Tian, H., Gong, D. J., et al., 2020. Paleo-Environmental Variation and Its Control on Organic Matter Enrichment of Black Shales from Shallow Shelf to Slope Regions on the Upper Yangtze Platform during Cambrian Stage 3. Palaeogeography, Palaeoclimatology, Palaeoecology, 545: 109653. https://doi.org/10.1016/j.palaeo.2020.109653 |
Xi, Z. D., Tang, S. H., Wang, J., 2018. The Reservoir Characterization and Shale Gas Potential of the Niutitang Formation: Case Study of the SY Well in Northwest Hunan Province, South China. Journal of Petroleum Science and Engineering, 171: 687–703. https://doi.org/10.1016/j.petrol.2018.08.002 |
Xie, X. M., Tenger., Qin, J. Z., et al., 2015. Depositional Environment, Organisms Components and Source Rock Formation of Siliceous Rocks in the Base of the Cambrian Niutitang Formation, Kaili, Guizhou. Acta Geologica Sinica, 89(2): 425–439 (in Chinese with English Abstract) |
Xu, J., Li, Y. L., 2015. An SEM Study of Microfossils in the Black Shale of the Lower Cambrian Niutitang Formation, Southwest China: Implications for the Polymetallic Sulfide Mineralization. Ore Geology Reviews, 65: 811–820. https://doi.org/10.1016/j.oregeorev.2014.07.004 |
Xu, P. H., 2016. Lithofacies Paleogeography and Evolution of Niutitang and Mingxinsi Formations in North Guizhou and Its Adjacent Areas: [Dissertation]. China University of Geosciences, Beijing (in Chinese with English Abstract) |
Yang, S. Y., Schulz, H. M., 2019. Factors Controlling the Petroleum Generation Characteristics of Palaeogene Source Rocks in the Austrian Molasse Basin as Revealed by Principal Component Analysis Biplots. Marine and Petroleum Geology, 99: 323–336. https://doi.org/10.1016/j.marpetgeo.2018.10.024 |
Yang, W., He, S., Zhai, G. Y., et al., 2021. Maturity Assessment of the Lower Cambrian and Sinian Shales Using Multiple Technical Approaches. Journal of Earth Science, 32(5): 1262–1277. https://doi.org/10.1007/s12583-020-1329-3 |
Ye, Y., Shen, J., Feng, Q. L., et al., 2020. Microbial and Animal Evolution in Relation to Redox Fluctuations in a Deep-Water Setting of South China during the Ediacaran-Cambrian Transition (Ca. 551–523 Ma). Palaeogeography, Palaeoclimatology, Palaeoecology, 546: 109672. https://doi.org/10.1016/j.palaeo.2020.109672 |
Yeasmin, R., Chen, D. Z., Fu, Y., et al., 2017. Climatic-Oceanic Forcing on the Organic Accumulation across the Shelf during the Early Cambrian (Age 2 through 3) in the Mid–Upper Yangtze Block, NE Guizhou, South China. Journal of Asian Earth Sciences, 134: 365–386. https://doi.org/10.1016/j.jseaes.2016.08.019 |
Yin, L. M., Wang, C. J., Zhao, Y. L., et al., 2016. Early–Middle Cambrian Palynomorph Microfossils and Related Geochemical Events in South China. Journal of Earth Science, 27(2): 180–186.https://doi.org/10. 1007/s12583-016-0689-1 doi: 10.1007/s12583-016-0689-1 |
Zhang, J. P., Fan, T. L., Algeo, T. J., et al., 2016. Paleo-Marine Environments of the Early Cambrian Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 443: 66–79. https://doi.org/10.1016/j.palaeo.2015.11.029 |
Zhang, Y. Y., He, Z. L., Lu, S. F., et al., 2020. Characteristics of Microorganisms and Origin of Organic Matter in Wufeng Formation and Longmaxi Formation in Sichuan Basin, South China. Marine and Petroleum Geology, 111: 363–374. https://doi.org/10.1016/j.marpetgeo.2019.06.054 |
Zheng, S. C., Feng, Q. L., Tribovillard, N., et al., 2020. New Insight into Factors Controlling Organic Matter Distribution in Lower Cambrian Source Rocks: A Study from the Qiongzhusi Formation in South China. Journal of Earth Science, 31(1): 181–194.https://doi.org/10. 1007/s12583-019-1240-y doi: 10.1007/s12583-019-1240-y |
Zhou, C. M., Brasier, M. D., Xue, Y. S., 2001. Three-Dimensional Phosphatic Preservation of Giant Acritarchs from the Terminal Proterozoic Doushantuo Formation in Guizhou and Hubei Provinces, South China. Palaeontology, 44(6): 1157–1178. https://doi.org/10.1111/1475-4983.00219 |
Zhu, Y. J., 2015. Studying the Small Shelly Fossils of Lower Cambrian in Guizhou Province, Yangtze Platform: [Dissertation]. Guizhou University, Guiyang (in Chinese with English Abstract) |
Zonneveld, K. A. F., Versteegh, G., Kodrans-Nsiah, M., 2008. Preservation and Organic Chemistry of Late Cenozoic Organic-Walled Dinoflagellate Cysts: A Review. Marine Micropaleontology, 68(1/2): 179–197. https://doi.org/10.1016/j.marmicro.2008.01.015 |
Zou, C. N., Dong, D. Z., Wang, S. J., et al., 2010. Geological Characteristics and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6): 641–653. https://doi.org/10.1016/S1876-3804(11)60001-3 |
Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅰ). Petroleum Exploration and Development, 42(6): 753–767. https://doi.org/10.1016/S1876-3804(15)30072-0 |
Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2016. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅱ). Petroleum Exploration and Development, 43(2): 182–196. https://doi.org/10.1016/S1876-3804(16)30022-2 |
Zou, C. N., Zhao, Q., Dong, D. Z., et al., 2017. Geological Characteristics, Main Challenges and Future Prospect of Shale Gas. Journal of Natural Gas Geoscience, 2(5/6): 273–288. https://doi.org/10.1016/j.jnggs.2017.11.002 |
Zou, C. N., Zhu, R. K., Chen, Z. Q., et al., 2019. Organic-Matter-Rich Shales of China. Earth-Science Reviews, 189: 51–78. https://doi.org/10.1016/j.earscirev.2018.12.002 |