Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 6
Dec 2022
Turn off MathJax
Article Contents
Junpeng Wang, Kang Jiang, Deng Xiao, Fenfang Li, Fupeng Li, Xiaofeng Li, Song Jin, Guanghuo Tao. Mineral Chemistry of Biotite and Its Petrogenesis Implications in ca. 2.5 Ga Wangjiazhuang Granitic Pluton, North China Craton. Journal of Earth Science, 2022, 33(6): 1535-1548. doi: 10.1007/s12583-020-1376-9
Citation: Junpeng Wang, Kang Jiang, Deng Xiao, Fenfang Li, Fupeng Li, Xiaofeng Li, Song Jin, Guanghuo Tao. Mineral Chemistry of Biotite and Its Petrogenesis Implications in ca. 2.5 Ga Wangjiazhuang Granitic Pluton, North China Craton. Journal of Earth Science, 2022, 33(6): 1535-1548. doi: 10.1007/s12583-020-1376-9

Mineral Chemistry of Biotite and Its Petrogenesis Implications in ca. 2.5 Ga Wangjiazhuang Granitic Pluton, North China Craton

doi: 10.1007/s12583-020-1376-9
More Information
  • Corresponding author: Junpeng Wang, wangjp@cug.edu.cn
  • Received Date: 28 Oct 2020
  • Accepted Date: 23 Nov 2020
  • Issue Publish Date: 30 Dec 2022
  • The Wangjiazhuang granitic pluton is located in the central Zanhuang Domain, the central part of the North China Craton, which is mainly composed of biotite monzogranite with few mafic microgranular enclaves. Biotite is an important ferromagnesian mineral in most of the intermediate-felsic igneous rocks, and its mineral chemistry can record the properties of magma and the petrogenetic physicochemical conditions. In this study, we carried out a detailed petrographic study by electric probe microanalysis on biotite for the biotite monzogranite and mafic microgranular enclaves, to discuss the source, physicochemical conditions, and the magma mingling/mixing processes of the Wangjiazhuang granite. The results show significantly different chemical compositions from the biotite monzogranite and mafic microgranular enclaves. The crystallization of these biotite grains from the biotite monzogranite and mafic microgranular enclaves all occurred in low oxygen fugacity. The biotite grains in biotite monzogranite are rich in Fe, poor in Mg, which belong to siderophyllite. The ratios of [(Fe3+ + Fe2 +)/(Fe3+ + Fe2+ + Mg2+)] are between 0.78 and 0.86. The average of FeOT (total FeO)/MgO of biotite grains in biotite monzogranite is 9.02. The MF values [2 × Mg/(Fe2+ + Mg + Mn)] of biotite monzogranite are between 0.31 and 0.47, suggesting biotite monzogranite derived from crustal source rocks (metasedimentary rocks). The formation of granitic rocks including the Wangjiazhuang granite was related to the subduction event at ca. 2.5 Ga which resulted in the melting event, and then induced the early partial melting of TTGs and metasedimentary rocks. The biotite in mafic microgranular enclaves varies from siderophyllite to ferrobiotite, and MF values range from 0.63 to 1.06, suggesting that magma of mafic microgranular enclaves had experienced magma mixing/mingling in various degrees. Biotite monzogranite and parts of mafic microgranular enclaves have a similar crystallized condition, while other mafic microgranular enclaves are different from biotite monzogranite. The differences between biotite monzogranite and mafic microgranular enclaves may be a consequence of continuous interaction between granitic and mafic magmas.

     

  • loading
  • Abdel-Rahman, A. F. M., 1994. Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas. Journal of Petrology, 35(2): 525–541. https://doi.org/10.1093/petrology/35.2.525
    Abdel-Rahman, A. F. M., 1996. Discussion on the Comment on Nature of Biotites in Alkaline, Calc-Alkaline and Peraluminous Magmas. Journal of Petrology, 37(5): 1031–1035. https://doi.org/10.1093/petrology/37. 5.1031 doi: 10.1093/petrology/37.5.1031
    Bai, J., Dai, F. Y., 1996. The Early Precambrian Crustal Evolution of China. Journal of Southeast Asian Earth Sciences, 13: 205–214. https://doi.org/10.1016/0743-9547(96)00027-x
    Bai, J., Dai, F. Y., 1998. Archean Crust of China. In: Ma, X. Y., Bai, J., eds., Precambrian Crustal Evolution of China. Springer, Beijing. 15–86
    Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with some Granitoids of the Central Sierra Nevada Batholith, California: Nature, Origin, and Relations with the Hosts. Lithos, 80(1–4): 155–177. https://doi.org/10.1016/j.lithos.2004.05.010
    Burkhard, D. J. M., 1991. Temperature and Redox Path of Biotite-Bearing Intrusives: A Method of Estimation Applied to S- and I-Type Granites from Australia. Earth and Planetary Science Letters, 104(1): 89–98. https://doi.org/10.1016/0012-821x(91)90240-i
    Chen, Z. G., Zhu, K., Liu, J. X., et al., 2021. Early Paleoproterozoic Tectonic Evolution of Central Jiao-Liao-Ji Belt: Evidence from Muniuhe and Dafangshen Plutons. Earth Science, 46(5): 1710–1727. https://doi.org/10.3799/dqkx.2020.206 (in Chinese with English Abstract)
    Deng, H., Kusky, T., Polat, A., et al., 2013. Geochemistry of Neoarchean Mafic Volcanic Rocks and Late Mafic Dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting. Lithos, 175/176: 193–212. https://doi.org/10.1016/j.lithos.2013.05.007
    Deng, H., Kusky, T. M., Polat, A., et al., 2014. Geochronology, Mantle Source Composition and Geodynamic Constraints on the Origin of Neoarchean Mafic Dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton. Lithos, 205: 359–378. https://doi.org/10.1016/j.lithos.2014.07.011
    Dong, Q., Du, Y. S., Cao, Y., et al., 2011. Compositional Characteristics of Biotites in Wushan Granodiorite, Jiangxi Province: Implications for Petrogenesis and Mineralization. Mineralogy and Petrology, 31(2): 1–6 (in Chinese with English Abstract) doi: 10.3969/j.issn.1001-6872.2011.02.001
    Du, L. L., Yang, C. H., Song, H. X., et al., 2020. Neoarchean-Paleoproterozoic Multi-Stage Geological Events and Their Tectonic Implications in the Fuping Complex, North China Craton. Earth Science, 45(9): 3179–3195. https://doi.org/10.3799/dqkx.2020.240 (in Chinese with English Abstract)
    Duan, R. H., Liu, C. H., Shi, J. R., 2020. Studies on Metamorphic Zircons of Granitic Gneisses and Amphibolites in the Dengkou and Shetai Areas of the Khondalite Belt of the North China Craton: More Constraints on Its Northern Boundary. Earth Science, 45(9): 3386–3402. https://doi.org/10.3799/dqkx.2020.080 (in Chinese with English Abstract)
    El Sheshtawi, Y. A., Salem, A. K. A., Aly, M. M., 1993. The Geochemistry of Ferrous Biotite and Petrogenesis of Wadi-El-Sheikh Granitoid Rocks Southwestern Sinai, Egypt. Journal of African Earth Sciences (and the Middle East), 16(4): 489–498. https://doi.org/10.1016/0899-5362(93)90106-z
    Foster, M. D., 1960. Interpretation of Composition of Trioctahedral Micas. Geological Survey Professional Paper, 354B: 1–49
    Gao, P., Zhao, Z. F., Zheng, Y. F., 2016. Magma Mixing in Granite Petrogenesis: Insights from Biotite Inclusions in Quartz and Feldspar of Mesozoic Granites from South China. Journal of Asian Earth Sciences, 123: 142–161. https://doi.org/10.1016/j.jseaes.2016.04.003
    Geng, Y. S., Shen, Q. H., Ren, L. D., 2010. Late Neoarchean to Early Paleoproterozoic Magmatic Events and Tectonothermal Systems in the North China Craton. Acta Petrologica Sinica, 26(7): 1945–1966 (in Chinese with English Abstract)
    Geng, Y. S., Du, L. L., Ren, L. D., 2012. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 21(2/3): 517–529. https://doi.org/10.1016/j.gr.2011.07.006
    Govindaraju, K., 1994. Compilation of Working Values and Sample Description for Geostandards. Geostandards and Geoanalytical Research, 18: 1–158. https://doi.org/10.1046/j.1365-2494.1998.53202081.x-i1
    Guo, M. J., Qian, J. H., Yin, C. Q., et al., 2021. Metamorphic Evolution and Tectonic Implications of Garnet Amphibolite from Yunzhongshan Terrane in Central North China Craton. Earth Science, 46(11): 3892–3909. https://doi.org/10.3799/dqkx.2021.016 (in Chinese with English Abstract)
    Han, C. M., Xiao, W. J., Su, B. X., et al., 2014. Neoarchean Algoma-Type Banded Iron Formations from Eastern Hebei, North China Craton: SHRIMP U-Pb Age, Origin and Tectonic Setting. Precambrian Research, 251: 212–231. https://doi.org/10.1016/j.precamres.2014.06.019
    Jiang, K., Wang, J. P., Kusky, T. M., et al., 2020. Neoarchean Seafloor Hydrothermal Metamorphism of Basalts in the Zanhuang Ophiolitic Mélange, North China Craton. Precambrian Research, 347(B6): 105832. https://doi.org/10.1016/j.precamres.2020.105832
    Jiang, S. Y., Zhao, K. D., Jiang, Y. H., et al., 2006. New Type of Tin Mineralization Related to Granite in South China: Evidence from Mineral Chemistry, Element and Isotope Geochemistry. Acta Petrologica Sinica, 22(10): 2509–2516 (in Chinese with English Abstract)
    Jiang, S. Y., Li, L., Zhu, B., et al., 2008. Geochemical and Sr-Nd-Hf Isotopic Compositions of Granodiorite from the Wushan Copper Deposit, Jiangxi Province and Their Implications for Petrogenesis. Acta Petro-logica Sinica, 24(8): 1679–1690 (in Chinese with English Abstract)
    Kusky, T. M., Li, J. H., 2003. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383–397. https://doi.org/10.1016/S1367-9120(03)00071-3
    Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162: 387–432. https://doi.org/10.1016/j.earscirev.2016.09.002
    Kusky, T. M., Windley, B. F., Polat, A., 2018. Geological Evidence for the Operation of Plate Tectonics throughout the Archean: Records from Archean Paleo-Plate Boundaries. Journal of Earth Science, 29(6): 1291–1303. https://doi.org/10.1007/s12583-018-0999-6
    Kwan, L. C. J., Zhao, G. C., Yin, C. Q., et al., 2016. Metamorphic P-T Path of Mafic Granulites from Eastern Hebei: Implications for the Neoarchean Tectonics of the Eastern Block, North China Craton. Gondwana Research, 37: 20–38. https://doi.org/10.1016/j.gr.2016.05.004
    Li, T. S., Zhai, M. G., Peng, P., et al., 2010. Ca. 2.5 Billion Year Old Coeval Ultramafic-Mafic and Syenitic Dykes in Eastern Hebei: Implications for Cratonization of the North China Craton. Precambrian Research, 180(3/4): 143–155. https://doi.org/10.1016/j.precamres.2010.04.001
    Li, L., Zhai, W. J., 2019. Geochemistry and Petrogenesis of the ca. 2.5 Ga High-K Granitoids in the Southern North China Craton. Journal of Earth Science, 30(3): 647–665. https://doi.org/10.1007/s12583-019-0895-8
    Lin, W. W., Peng, L. J., 1994. The Estimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite from EMPA Data. Journal of Changchun University of Earth Sciences, 24(2): 155–162 (in Chinese with English Abstract)
    Lü, Z. C., Duan, G. Z., Dong, G. H., 2003. Mineral Chemistry of Biotite from Granites Associated with Different Mineralization in Three Stages of Yanshanina Period in the Southern-Middle Parts of the Da Hinggan Ling Mountains and Its Petrogenetic and Metallogenic Significance. Acta Mineralogica Sinica, 23(2): 177–184. https://doi.org/10.16461/j.cnki.1000-4734.2003.02.015 (in Chinese with English Abstract)
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Liu, L., Qiu, J. S., Li, Z., 2013. Origin of Mafic Microgranular Enclaves (MMEs) and Their Host Quartz Monzonites from the Muchen Pluton in Zhejiang Province, Southeast China: Implications for Magma Mixing and Crust-Mantle Interaction. Lithos, 160(1): 145–163. https://doi.org/10.1016/j.lithos.2012.12.005
    Ma, C. Q., Yang, K. G., Tang, Z. H., et al., 1994. Magma-Dynamics Granitoids: Theory, Methods and a Case Study of the Eastern Hubei Granitoids. China University of Geosciences Press, Wuhan. 210–212 (in Chinese)
    Ma, Q., Zheng, J. P., Griffin, W. L., et al., 2012. Triassic "Adakitic" Rocks in an Extensional Setting (North China): Melts from the Cratonic Lower Crust. Lithos, 149: 159–173. https://doi.org/10.1016/j.lithos.2012.04.017
    Ma, X. D., Guo, J. H., Liu, F., et al., 2013. Zircon U-Pb Ages, Trace Elements and Nd-Hf Isotopic Geochemistry of Guyang Sanukitoids and Related Rocks: Implications for the Archean Crustal Evolution of the Yinshan Block, North China Craton. Precambrian Research, 230: 61–78. https://doi.org/10.1016/j.precamres.2013.02.001
    Ma, S. T., Li, X. P., Liu, H., et al., 2019. Ultrahigh Temperature Metamorphic Record of Pelitic Granulites in the Huangtuyao Area of the Huai'an Complex, North China Craton. Journal of Earth Science, 30(6): 1178–1196. https://doi.org/10.1007/s12583-019-1245-6
    McDonough, W., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4
    Ning, W. B., Wang, J. P., Xiao, D., et al., 2019. Electron Probe Microanalysis of Monazite and Its Applications to U-Th-Pb Dating of Geological Samples. Journal of Earth Science, 30(5): 952–963. https://doi.org/10.1007/s12583-019-1020-8
    Nutman, A. P., Wan, Y. S., Du, L. L., et al., 2011. Multistage Late Neoarchaean Crustal Evolution of the North China Craton, Eastern Hebei. Precambrian Research, 189(1/2): 43–65. https://doi.org/10.1016/j.precamres.2011.04.005
    Peng, H. M., 1997. Geological Characteristics of Biotite from Yangxi Granite Body and Their Geological Implications. Acta Petrrologica et Mineralogica, 16(3): 271–281 (in Chinese with English Abstract)
    Peng, T. P., Wilde, S. A., Fan, W. M., et al., 2013. Late Neoarchean Potassic High Ba-Sr Granites in the Taishan Granite-Greenstone Terrane: Petrogenesis and Implications for Continental Crustal Evolution. Chemical Geology, 344: 23–41. https://doi.org/10.1016/j.chemgeo. 2013.02.012 doi: 10.1016/j.chemgeo.2013.02.012
    Perugini, D., Poli, G., Christofides, G., et al., 2003. Magma Mixing in the Sithonia Plutonic Complex, Greece: Evidence from Mafic Microgranular Enclaves. Mineralogy and Petrology, 78(3): 173–200. https://doi.org/10.1007/s00710-002-0225-0
    Pignatelli, I., Faure, F., Mosser-Ruck, R., 2016. Self-Mixing Magma in the Ruiz Peak Rhyodacite (New Mexico, USA): A Mechanism Explaining the Formation of Long Period Polytypes of Mica. Lithos, 266/267: 332–347. https://doi.org/10.1016/j.lithos.2016.10.024
    Rieder, M., Cavazzini, G., D'yakonov, Y. S., et al., 1999. Nomenclature of the Micas. Mineralogical Magazine, 63(2): 267–279. https://doi.org/10.1180/minmag.1999.063.2.13
    Shabani, A. A. T., Lalonde, A. E., Whalen, J. B., 2003. Composition of Biotite from Granitic Rocks of the Canadian Appalachian Orogen: A Potential Tectonomagmatic Indicator? The Canadian Mineralogist, 41(6): 1381–1396. https://doi.org/10.2113/gscanmin.41.6.1381
    Slaby, E., Martin, H., 2007. Mafic and Felsic Magma Interaction in Granites: The Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif). Journal of Petrology, 49(2): 353–391. https://doi.org/10.1093/petrology/egm085
    Speer, J. A., 1987. Evolution of Magmatic AFM Mineral Assemblages in Granitoid Rocks: The Hornblende + Melt = Biotite Reaction in the Liberty Hill Pluton, South Carolina. American Mineralogist, 72(9/10): 863–878
    Stone, D., 2000. Temperature and Pressure Variations in Suites of Archean Felsic Plutonic Rocks, Berens River Area, Northwest Superior Province, Ontario, Canada. The Canadian Mineralogist, 38(2): 455–470. https://doi.org/10.2113/gscanmin.38.2.455
    Sun, S. H., Yu, J., 1989. Interpretation of Chemical Composition and Subdivision of Mg-Fe Micas, Part B: The Natural Subdivision of Mg-Fe Micas. Scientia Geologica Sinica, 2: 176–189 (in Chinese with English Abstract)
    Temizel, İ., Arslan, M., Abdioğlu, E., et al., 2014. Mineral Chemistry and Thermobarometry of Eocene Monzogabbroic Stocks from the Bafra (Samsun) Area in Turkey: Implications for Disequilibrium Crystallization and Emplacement Conditions. International Geology Review, 56(10): 1226–1245. https://doi.org/10.1080/00206814.2014.933363
    Trap, P., Faure, M., Monié, P., et al., 2009a. The Zanhuang Massif, the Second and Eastern Suture Zone of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 172(1): 80–98. https://doi.org/10.1016/j.precamres.2009.03.011
    Trap, P., Faure, M., Lin, W., et al., 2009b. The Luliang Massif: A Key Area for the Understanding of the Palaeoproterozoic Trans-North China Belt, North China Craton. Journal of the Geological Society, London, Special Publications, 33: 99–125. https://doi.org/10.1144/sp323.5
    Trap, P., Faure, M., Augier, R., et al., 2011. Syn-Collisional Channel Flow and Exhumation of Paleoproterozoic High Pressure Rocks in the Trans-North China Orogen: The Critical Role of Partial-Melting and Orogenic Bending. Gondwana Research, 20(2/3): 498–515. https://doi.org/10.1016/j.gr.2011.02.013
    Wang, J. P., Kusky, T. M., Polat, A., et al., 2013. A Late Archean Tectonic Mélange in the Central Orogenic Belt, North China Craton. Tectono-physics, 608: 929–946. https://doi.org/10.1016/j.tecto.2013.07.025
    Wang, J. P., Kusky, T. M., Wang, L., et al., 2015. A Neoarchean Subduction Polarity Reversal Event in the North China Craton. Lithos, 220–223: 133–146. https://doi.org/10.1016/j.lithos.2015.01.029
    Wang, J. P., Deng, H., Kusky, T. M., et al., 2017a. Comments to "Paleoproterozoic Meta-Carbonates from the Central Segment of the Trans-North China Orogen: Zircon U-Pb Geochronology, Geoche-mistry, and Carbon and Oxygen Isotopes" by Tang et al., 2016, Pre-cambrian Research, 284: 14–29. Precambrian Research, 294: 344–349. https://doi.org/10.1016/j.precamres.2017.01.021
    Wang, J. P., Kusky, T. M., Wang, L., et al., 2017b. Structural Relationships along a Neoarchean Arc-Continent Collision Zone, North China Craton. Geological Society of America Bulletin, 129(1/2): 59–75. https://doi.org/10.1130/b31479.1
    Wang, J. P., Kusky, T. M., Wang, L., et al., 2017c. Petrogenesis and Geochemistry of circa 2.5 Ga Granitoids in the Zanhuang Massif: Implications for Magmatic Source and Neoarchean Metamorphism of the North China Craton. Lithos, 268–271: 149–162. https://doi.org/10.1016/j.lithos.2016.10.028
    Wang, J. P., Li, X. W., Ning, W. B., et al., 2019. Geology of a Neoarchean Suture: Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin, 131(11/12): 1943–1964. https://doi.org/10.1130/b35138.1
    Wang, W., Liu, S. W., Santosh, M., et al., 2013. Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry of Granitoid Gneisses in the Jianping Gneissic Terrane, Western Liaoning Province: Constraints on the Neoarchean Crustal Evolution of the North China Craton. Precambrian Research, 224: 184–221. https://doi.org/10.1016/j.precamres.2012. 09.019 doi: 10.1016/j.precamres.2012.09.019
    Weidendorfer, D., Mattsson, H. B., Ulmer, P., 2014. Dynamics of Magma Mixing in Partially Crystallized Magma Chambers: Textural and Petrological Constraints from the Basal Complex of the Austurhorn Intrusion (SE Iceland). Journal of Petrology, 55(9): 1865–1903. https://doi.org/10.1093/petrology/egu044
    Wilde, S. A., Cawood, P. A., Wang, K. Y., et al., 2005. Granitoid Evolution in the Late Archean Wutai Complex, North China Craton. Journal of Asian Earth Sciences, 24(5): 597–613. https://doi.org/10.1016/j.jseaes.2003.11.006
    Wones, D. R., Eugster, H. P., 1965. Stability of Biotite: Experiment, Theory, and Application. The American Mineralogist, 50: 1228–1272
    Wu, C. M., Zhao, G. C., 2006. The Applicability of the GRIPS Geobarometry in Metapelitic Assemblages. Journal of Metamorphic Geology, 24(4): 297–307. https://doi.org/10.1111/j.1525-1314.2006.00638.x
    Wu, C. M., Zhao, G. C., 2007. The Metapelitic Garnet-Biotite-Muscovite-Aluminosilicate-Quartz (GBMAQ) Geobarometer. Lithos, 3/4(97): 365–372. https://doi.org/10.1016/j.lithos.2007.01.003
    Wu, C. M., 2020. Calibration of the Biotite-Muscovite Geobarometer for Metapelitic Assemblages Devoid of Garnet or Plagioclase. Lithos, 372: 105668. https://doi.org/10.1016/j.lithos.2020.105668
    Wu, M. L., Zhao, G. C., Sun, M., et al., 2014. Tectonic Affinity and Reworking of the Archaean Jiaodong Terrane in the Eastern Block of the North China Craton: Evidence from LA-ICP-MS U-Pb Zircon Ages. Geological Magazine, 151(2): 365–371. https://doi.org/10.1017/s0016756813000721
    Xie, Y. W., Zhang, Y. Q., 1987. Typomorphic Peculiarities of Biotites from Different Genetic Types of Granite in the Hengduanshan Region. Acta Mineralogica Sinica, 7(3): 245–254. https://doi.org/10.16461/j.cnki.1000-4734.1987.03.007 (in Chinese with English Abstract)
    Xu, B., Jiang, S. Y., Wang, R., et al., 2015. Late Cretaceous Granites from the Giant Dulong Sn-Polymetallic Ore District in Yunnan Province, South China: Geochronology, Geochemistry, Mineral Chemistry and Nd-Hf Isotopic Compositions. Lithos, 218/219: 54–72. https://doi.org/10.1016/j.lithos.2015.01.004
    Xu, Y. M., Jiang, S. Y., Zhu, Z. Y., et al., 2013. Geochronology, Geochemistry and Mineralogy of Ore-Bearing and Ore-Barren Intermediate-Acid Intrusive Rocks from the Jiurui Ore District, Jiangxi Province and Their Geological Implications. Acta Petrologica Sinica, 29(12): 4291–4310 (in Chinese with English Abstract)
    Yang, S. Y., Jiang, S. Y., 2013. Occurrence and Significance of a Quartz-Amphibole Schist Xenolith within a Mafic Microgranular Enclave in the Xiangshan Volcanic-Intrusive Complex, SE China. International Geology Review, 55(7): 894–903. https://doi.org/10.1080/00206814.2012.752662
    Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6–25. https://doi.org/10.1016/j.gr.2011.02.005
    Zhang, F., Wang, Y. B., Du, L. L., et al., 2020. Zircon U-Pb Ages and Geochemistry of the Late Archaean Granitoids in the Zanhuang Complex: Records of an Arc-Continent Collision Event at the End of Archaean. Geological Journal, 55(2): 1391–1408. https://doi.org/10.1002/gj.3500
    Zhang, J., Zhang, H. F., Lu, X. X., 2013. Zircon U-Pb Age and Lu-Hf Isotope Constraints on Precambrian Evolution of Continental Crust in the Songshan Area, the South-Central North China Craton. Precambrian Research, 226: 1–20. https://doi.org/10.1016/j.precamres.2012.11.015
    Zhang, Q. C., Pan, G. Q., Li, C. D., et al., 2007. Granitic Magma Mixing versus Basaltic Magma Mixing: New Viewpoints on Granitic Magma Mixing Process: Some Crucial Questions on Granite Study. Acta Petrologica Sinica, 23(5): 1141–1152 (in Chinese with English Abstract)
    Zhang, Z. Z., Gu, L. X., Wu, C. Z., et al., 2005. Weiya Complex, Estern Tian-shan: Single-Sourced or Diverse-Sourced?—Evidence from Biotite. Geochimica, 34(4): 328–338 (in Chinese with English Abstract) doi: 10.3321/j.issn:0379-1726.2005.04.003
    Zhao, G. C., 2009. Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton: Key Issues and Discussion. Acta Petrologica Sinica, 25(8): 1772–1792 (in Chinese with English Abstract)
    Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 1999. Thermal Evolution of Two Textural Types of Mafic Granulites in the North China Craton: Evidence for both Mantle Plume and Collisional Tectonics. Geological Magazine, 136(3): 223–240. https://doi.org/10.1017/s001675689900254x
    Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1/2): 45–73. https://doi.org/10.1016/s0301-9268(00)00154-6
    Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207–1240. https://doi.org/10.1016/j.gr.2012.08.016
    Zhao, K. D., Jiang, S. Y., Jiang, Y. H., et al., 2005. Mineral Chemistry of the Qitianling Granitoid and the Furong Tin Ore Deposit in Hunan Province, South China: Implication for the Genesis of Granite and Related Tin Mineralization. European Journal of Mineralogy, 17(4): 635–648. https://doi.org/10.1127/0935-1221/2005/0017-0635
    Zhao, K. D., Jiang, S. Y., Zhu, J. C., et al., 2010. Hf Isotopic Composition of Zircons from the Huashan-Guposhan Intrusive Complex and Their Mafic Enclaves in Northeastern Guangxi: Implication for Petrogenesis. Chinese Science Bulletin, 55(6): 509–519. https://doi.org/10.1007/s11434-009-0314-0
    Zhao, K. D., Liu, G. Q., Jiang, S. Y., 2019. Petrogenesis and Tectonic Implications of the Yuhuashan A-Type Volcanic-Intrusive Complex and Mafic Microgranular Enclaves in the Gan-Hang Volcanic Belt, Southeast China. Journal of Geology, 127(1): 37–59. https://doi.org/10.1086/700408
    Zhao, M., Yang, S. Y., Zuo, R. G., et al., 2015. Magmatic Evolution Characteristics of Xiangshan Volcanic-Intrusive Complex from the Gan-Hang Belt: Studies on the Mineral Chemistry of Plagioclase and Biotite. Acta Petrologica Sinica, 31(3): 759–768 (in Chinese with English Abstract)
    Zhong, Y. T., He, C., Chen, N. S., et al., 2018. Tectonothermal Records in Migmatite-Like Rocks of the Guandi Complex in Zhoukoudian, Beijing: Implications for Late Neoarchean to Proterozoic Tectonics of the North China Craton. Journal of Earth Science, 29(5): 1254–1275. https://doi.org/10.1007/s12583-018-0856-7
    Zhou, Z. X., 1988. Chemical Characteristics of Mafic Mica in Intrusive Rocks and Its Geological Meaning. Acta Petrologica Sinica, 4(3): 63–73 (in Chinese with English Abstract)
    Zhu, Z. Y., Jiang, S. Y., Hu, J., et al., 2014. Geochronology, Geochemistry, and Mineralization of the Granodiorite Porphyry Hosting the Matou Cu-Mo (±W) Deposit, Lower Yangtze River Metallogenic Belt, Eastern China. Journal of Asian Earth Sciences, 79: 623–640. https://doi.org/10.1016/j.jseaes.2013.07.033
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(177) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return