Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 6
Dec 2021
Turn off MathJax
Article Contents
Tom Andersen, O. Tapani Rämö. Dehydration Melting and Proterozoic Granite Petrogenesis in a Collisional Orogen—A Case from the Svecofennian of Southern Finland. Journal of Earth Science, 2021, 32(6): 1289-1299. doi: 10.1007/s12583-020-1385-8
Citation: Tom Andersen, O. Tapani Rämö. Dehydration Melting and Proterozoic Granite Petrogenesis in a Collisional Orogen—A Case from the Svecofennian of Southern Finland. Journal of Earth Science, 2021, 32(6): 1289-1299. doi: 10.1007/s12583-020-1385-8

Dehydration Melting and Proterozoic Granite Petrogenesis in a Collisional Orogen—A Case from the Svecofennian of Southern Finland

doi: 10.1007/s12583-020-1385-8
More Information
  • Corresponding author: O. Tapani Rämö, tapani.ramo@helsinki.fi
  • Received Date: 07 Sep 2020
  • Accepted Date: 01 Dec 2020
  • Publish Date: 30 Dec 2021
  • Dehydration melting of metasupracrustal rocks at mid-to deep-crustal levels can generate water undersaturated granitic melt. In this study, we evaluate the potential of ~1.89-1.88 Ga metasupracrustal rocks of the Precambrian of southern Finland as source rocks for the 1.86-1.79 Ga late-orogenic leucogranites in the region, using the Rhyolite-MELTS approach. Melt close in composition to leucogranite is produced over a range of realistic pressures (5 to 8 kbar) and temperatures (800 to 850℃), at 20%-30% of partial melting, allowing separation of melt from unmelted residue. The solid residue is a dry, enderbitic to charnoenderbitic ganulite depleted in incompatible components, and will only yield further melt above 1 000-1 050℃, when rapidly increasing fractions of increasingly calcic (granodioritic to tonalitic) melts are formed. The solid residue after melt extraction is incapable of producing syenogranitic magmas similar to the Mid-Proterozoic, A-type rapakivi granites on further heating. The granitic fraction of the syenogranitic rapakivi complexes must thus have been formed by a different chain of processes, involving mantle-derived mafic melts and melts from crustal rock types not conditioned by the preceding late-orogenic Svecofennian anatexis.

     

  • loading
  • Anderson, J. L., 1980. Mineral Equilibria and Crystallization Conditions in the Late Precambrian Wolf River Rapakivi Massif, Wisconsin. American Journal of Science, 280(4): 289-332. https://doi.org/10.2475/ajs.280.4.289
    Anderson, J. L., 1983. Proterozoic Anorogenic Granite Plutonism of North America. In: Medaris, L. G. Jr., Byers, C. W., Mickelson, D. M., et al., eds., Proterozoic Geology. Geological Society of America Memoir, 161: 133-154
    Arzi, A. A., 1978. Critical Phenomena in the Rheology of Partially Melted Rocks. Tecnonophysics, 44(1-4): 173-184. https://doi.org/10.1016/0040-1951(78)90069-0
    Beard, J. S., Lofgren, G. E., 1991. Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6.9 kb. Journal of Petrology, 32(2): 365-401. https://doi.org/ 10.1093/petrology/32.2.365
    Berman, R. G., 1988. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29(2): 445-522. https://doi.org/10.1093/petrology/29.2.445
    Bons, P. D., Arnold, J., Elburg, M. A., et al., 2004. Melt Extraction and Accumulation from Partially Molten Rocks. Lithos, 78(1/2): 25-42. https://doi.org/10.1016/j.lithos.2004.04.041
    Bucher, K., Frey, M., 2002. Petrogenesis of Metamorphic Rocks, 7th Edition. Springer Verlag, Berlin. 356
    Bulau, J. R., Waff, H., Tyburczy, J. A., 1979. Mechanical and Thermodynamic Constraints of Fluid Distribution in Partial Melts. Journal of Geophysical Research, 84(B11): 6102-6108. https://doi.org/10.1029/jb084ib11p06102
    Chamberlain, C. P., Sonder, L. J., 1990. Heat-Producing Elements and the Thermal and Baric Patterns of Metamorphic Belts. Science, 250(4982): 763-769. https://doi.org/10.1126/science.250.4982.763
    Clauser, C., 2011. Radiogenic Heat Production in Rocks. In: Gupta, H. K., ed., Encyclopedia of Solid Earth Geophysics. Springer, Dordrecht. 1018-1024. https://doi.org/10.1007/978-90-481-8702-7
    Crawford, M. L., Klepeis, K. A., Gehrels, G. E., et al., 2009. Mid-Cretaceous- Recent Crustal Evolution in the Central Coast Orogen, British Columbia and Southeastern Alaska. Geological Society of America Special Paper, 456: 97-124. https://doi.org/10.1130/2009.2456(04)
    Creaser, R. A., White, A. J. R., 1991. Yardea Dacite-Large-Volume, High-Temperature Felsic Volcanism from the Middle Proterozoic of South Australia. Geology, 19(1): 48-51. https://doi.org/10.1130/0091- 7613(1991)019<0048:ydlvht>2.3.co;2 doi: 10.1130/0091-7613(1991)019<0048:ydlvht>2.3.co;2
    Ehlers, C., Lindroos, A., Selonen, O., 1993. The Late Svecofennian Granite- Migmatite Zone of Southern Finland—A Belt of Transpressive Deformation and Granite Emplacement. Precambrian Research, 64(1-4): 295-309. https://doi.org/10.1016/0301-9268(93)90083-e
    Ehrlich, K., Verš, E., Kirs, J., et al. ., 2012. Using a Titanium-in-Quartz Geothermometer for Crystallization Temperature Estimation of the Palaeoproterozoic Suursaari Quartz Porphyry. Estonian Journal of Earth Science, 61(4): 195-204. https://doi.org/10.3176/earth.2012.4.01
    Eklund, O., Shebanov, A. D., 1999. The Origin of Rapakivi Texture by Sub-Isothermal Decompression. Precambrian Research, 95(1/2): 129-146. https://doi.org/10.1016/s0301-9268(98)00130-2
    Frost, B. R., Frost, C. D., 1987. CO2, Melts and Granulite Metamorphism. Nature, 327(6122): 503-506. https://doi.org/10.1038/327503a0
    Geological Survey of Finland, 2020. Rock Geochemical Data of Finland, GTK 2020. http://tupa.gtk.fi/paikkatieto/meta/rock_geochemical_data_of_finland.html
    Gerdes, A., 2001. Magma Homogenization during Anatexis, Ascent and/or Emplacement? Constraints from the Variscan Weinsberg Granites. Terra Nova, 13(4): 305-312. https://doi.org/10.1046/j.1365-3121.2001.00365.x
    Gerdes, A., Wörner, G., Henk, A., 2000. Post-Collisional Granite Generation and HT-LP Metamorphism by Radiogenic Heating: The Variscan South Bohemian Batholith. Journal of the Geological Society, London, 157: 577-587. https://doi.org/10.1144/jgs.157.3.577
    Ghiorso, M. S., Sack, R. O., 1995. Chemical Mass Transfer in Magmatic Processes IV. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contributions to Mineralogy and Petrology, 119(2): 197-212. https://doi.org/10.1007/bf00307281
    Ghiorso, M. S., Gualda, G. A. R., 2015. An H2O-CO2 Mixed Fluid Saturation Model Compatible with Rhyolite-MELTS. Contributions to Mineralogy and Petrology, 169(6): 1-30. https://doi.org/10.1007/s00410-015-1141-8
    Gualda, G. A. R., Ghiorso, M. S., 2015. MELTS-Excel: A Microsoft Excel- Based MELTS Interface for Research and Teaching of Magma Properties and Evolution. Geochemistry, Geophysics, Geosystems, 16(1): 315-324. https://doi.org/10.1002/2014gc005545
    Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V., et al., 2012. Rhyolite- MELTS: A Modified Calibration of MELTS Optimized for Silica-Rich, Fluid-Bearing Magmatic Systems. Journal of Petrology, 53(5): 875-890. https://doi.org/10.1093/petrology/egr080
    Heinonen, A. P., Rämö, O. T., Mänttäri, I., et al., 2017. Zircon as a Proxy for the Magmatic Evolution of Proterozoic Ferroan Granites; The Wiborg Rapakivi Granite Batholith, SE Finland. Journal of Petrology, 58(12): 2493-2517. https://doi.org/10.1093/petrology/egy014
    Heinonen, A. P., Andersen, T., Rämö, O. T., 2010. Re-Evaluation of Rapakivi Petrogenesis: Source Constraints from the Hf Isotope Composition of Zircon in the Rapakivi Granites and Associated Mafic Rocks of Southern Finland. Journal of Petrology, 51(8): 1687-1709. https://doi.org/10.1093/petrology/egq035
    Hölttä, P., Heilimo, E., 2017. Metamorphic Map of Finland. Geological Survey of Finland, Special Paper, 60: 77-128
    Holtz, F., Becker, A., Freise, M., et al., 2001. The Water-Undersaturated and Dry Qz-Ab-Or System Revisited. Experimental Results at very Low Water Activities and Geological Implications. Contributions to Mineralogy and Petrology, 141(3): 347-357. https://doi.org/10.1007/s004100100245
    Huhma, H., 1986. Sm-Nd, U-Pb and Pb-Pb Isotopic Evidence for the Origin of the Early Proterozoic Svecokarelian Crust in Finland. Geological Survey of Finland Bulletin, 337: 1-52 http://www.researchgate.net/publication/35460875_Sm-Nd_U-Pb_and_Pb-Pb_isotopic_evidence_for_the_origin_of_the_Early_Proterozoic_Svecokarelian_crust_in_Finland_Hannu_Huhma
    Janoušek, V., Farrow, C. M., Erban, V., 2006. Interpretation of Whole-Rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47(6): 1255-1259. https://doi.org/10.1093/petrology/egl013
    Johannes, W., Holtz, F., 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer Verlag, Berlin. 335
    Jurewicz, S. R., Watson, E. B., 1985. The Distribution of Partial Melt in a Granitic System: The Application of Liquid Phase Sintering Theory. Geochimica et Cosmochimica Acta, 49(5): 1109-1121. https://doi.org/10.1016/0016-7037(85)90002-x
    Korsman, K., Koistinen, T., Kohonen, J., et al., 1997. Bedrock Map of Finland 1 : 1 000 000. Geologian Tutkimuskeskus, Espoo
    Kukkonen, I. T., Lauri, L. S., 2009. Modelling the Thermal Evolution of a Collisional Precambrian Orogen: High Heat Production Migmatitic Granites of Southern Finland. Precambrian Research, 168(3/4): 233-246. https://doi.org/10.1016/j.precamres.2008.10.004
    Kukkonen, I. T., Lauri, L. S., 2016. Mesoproterozoic Rapakivi Granite Magmatism in the Fennoscandian Shield and Adjacent Areas: Role of Crustal Radiogenic Heating. Ninth Symposium on the Structure, Composition and Evolution of the Lithosphere in Fennoscandia. Geological Survey of Finland Report, S-65: 65-66
    Kurhila, M., Andersen, T., Rämö, O. T., 2010. Diverse Sources of Crustal Granitic Magma: Lu-Hf Isotope Data on Zircon in Three Paleoproterozoic Leucogranites of Southern Finland. Lithos, 115(1-4): 263-271. https://doi.org/10.1016/j.lithos.2009.12.009
    Kurhila, M., Mänttäri, I., Vaasjoki, M., et al., 2011. U-Pb Geochronological Constraints of the Late Svecofennian Leucogranites of Southern Finland. Precambrian Research, 190(1-4): 1-24. https://doi.org/10.1016/j.precamres.2011.07.008
    Lahtinen, R., Korja, A., Nironen, M., 2005. Paleoproterozoic Tectonic Evolution. In: Lehtinen, M., Nurmi, P. A., Rämö, O. T., eds., Precambrian Geology of Finland—Key to the Evolution of the Fennoscandian Shield. Developments in Precambrian Geology, Volume 14. Elsevier, Amsterdam. 481-531
    Lahtinen, R., Huhma, H., Kähkönen, Y., et al., 2009. Paleoproterozoic Sediment Recycling during Multiphase Orogenic Evolution in Fennoscandia, the Tampere and Pirkanmaa Belts, Finland. Precambrian Research, 174(3/4): 310-336. https://doi.org/10.1016/j.precamres.2009.08.008
    Luukas, J., Kousa, J., Nironen, M., et al., 2017. Major Stratigraphic Units in the Bedrock of Finland, and an Approach to Tectonostratigraphic Division. Geological Survey of Finland, Special Paper, 60: 9-40
    McKenzie, D., 1984. The Generation and Compaction of Partially Molten Rock. Journal of Petrology, 25(3): 713-765. https://doi.org/10.1093/petrology/25.3.713
    Miller, C. F., Watson, E. B., Harrison, T. M., 1988. Perspectives of the Source, Segregation and Transport of Granitoid Magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 79: 135-156. https://doi.org/10.1017/s0263593300014176
    Milord, I., Sawyer, E. W., Brown, M., 2001. Formation of Diatexite Migmatite and Granite Magma during Anatexis of Semi-Pelitic Metasedimentary Rocks: An Example from St. Malo, France. Journal of Petrology, 42(3): 487-505. https://doi.org/10.1093/petrology/42.3.487
    Nekvasil, H., 1991. Ascent of Felsic Magmas and Formation of Rapakivi. American Mineralogist, 76(7/8): 1279-1290 http://www.minsocam.org/ammin/AM76/AM76_1279.pdf
    Nironen, M., 2005. Proterozoic Orogenic Granitoid Rocks. In: Lehtinen, M., Nurmi, P. A., Rämö, O. T., eds., Precambrian Geology of Finland—Key to the Evolution of the Fennoscandian Shield. Developments in Precambrian Geology, Volume 14. Elsevier, Amsterdam. 443-479
    Nironen, M., 2017. Guide to the Geological Map of Finland—Bedrock 1 : 1 000 000. Geological Survey of Finland, Special Paper, 60: 41-76
    Pajunen, M., Airo, M. -L., Elminen, T., et al., 2008. Tectonic Evolution of the Svecofennian Crust in Southern Finland. Geological Survey of Finland, Special Paper, 47: 15-160
    Rabinowics, M., Vigneresse, J. -L., 2004. Melt Segregation under Compaction and Shear Channeling: Application to Granitic Magma Segregation in a Continental Crust. Journal of Geophysical Research, 109: B4407. https://doi.org/10.1029/2002jb002372
    Rämö, O. T., Haapala, I., 2005. Rapakivi Granites. In: Lehtinen, M., Nurmi, P. A., Rämö, O. T., eds., Precambrian Geology of Finland—Key to the Evolution of the Fennoscandian Shield. Developments in Precambrian Geology, Volume 14. Elsevier, Amsterdam. 553-562
    Rämö, O. T., Mänttäri, I., 2015. Geochronology of the Suomenniemi Rapakivi Granite Complex Revisited: Implications of Point-Specific Errors on Zircon U-Pb and Refined λ87 on Whole-Rock Rb-Sr. Bulletin of the Geological Society of Finland, 87: 25-45. https://doi.org/10.17741/bgsf/87.1.002
    Rämö, O. T., Turkki, V., Mänttäri, I., et al., 2014. Age and Isotopic Fingerprints of Some Plutonic Rocks in the Wiborg Rapakivi Granite Batholith with Special Reference to the Dark Wiborgite of the Ristisaari Island. Bulletin of the Geological Society of Finland, 86: 71-91. https://doi.org/10.17741/bgsf/87.1.002 doi: 10.17741/bgsf/86.2.002
    Rumble, D., 1976. The Adiabatic Gradient and Adiabatic Compressibility. Carnegie Institution of Washington Year Book, 75: 65l-655
    Sandiford, M., Hand, M., McLaren, S., 1998. High Geothermal Gradient Metamorphism during Thermal Subsidence. Earth and Planetary Science Letters, 163: 149-165. https://doi.org/10.1016/s0012-821x(98)00183-6
    Shaw, D. M., 1970. Trace Element Fractionation during Anataxis. Geochimica et Cosmochimica Acta, 34: 237-243. https://doi.org/10.1016/0016-7037(70)90009-8
    Skyttä, P., Mänttäri, I., 2008. Structural Setting of Late Svecofennian Granites and Pegmatites in Uusimaa Belt, SW Finland: Age Constraints and Implications for Crustal Evolution. Precambrian Research, 164(1/2): 86-109. https://doi.org/10.1016/j.precamres.2008.04.001
    Spear, F. S., Kohn, M. J., Cheney, J. T., 1999. P-T Paths from Anatectic Pelites. Contributions to Mineralogy and Petrology, 134(1): 17-32. https://doi.org/10.1007/s004100050466
    Vanderhaeghe, O., Burg, J. P., Teyssier, C., 1999. Exhumation of Migmatites in Two Collapsed Orogens: Canadian Cordillera and French Variscides. Geological Society Special Publication, 154: 181-204. https://doi.org/10.1144/gsl.sp.1999.154.01.08
    Vielzeuf, D., Holloway, J. R., 1988. Experimental Determination of the Fluid- Absent Melting Relations in the Pelitic System. Contributions to Mineralogy and Petrology, 98(3): 257-276. https://doi.org/10.1007/bf00375178
    Vigneresse, J. L., 2007. The Role of Discontinuous Magma Inputs in Felsic Magma and Ore Generation. Ore Geology Reviews, 30(3/4): 181-216. https://doi.org/10.1016/j.oregeorev.2006.03.001
    Wolf, M. B., Wyllie, P. J., 1994. Dehydration-Melting of Amphibolite at 10 kbar: The Effects of Temperature and Time. Contributions to Mineralogy and Petrology, 115(4): 369-383. https://doi.org/10.1007/bf00320972
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(815) PDF downloads(115) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return