Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Turn off MathJax
Article Contents

Pedro Quelha1 2, João Mata2, Ágata Alveirinho Dias1 2. Magmatic Evolution of Garnet-Bearing Highly Fractionated Granitic Rocks from Macao, Southeast China: Implications for Granite-Related Mineralization Processes. Journal of Earth Science. doi: 10.1007/s12583-020-1389-4
Citation: Pedro Quelha1 2, João Mata2, Ágata Alveirinho Dias1 2. Magmatic Evolution of Garnet-Bearing Highly Fractionated Granitic Rocks from Macao, Southeast China: Implications for Granite-Related Mineralization Processes. Journal of Earth Science. doi: 10.1007/s12583-020-1389-4

Magmatic Evolution of Garnet-Bearing Highly Fractionated Granitic Rocks from Macao, Southeast China: Implications for Granite-Related Mineralization Processes

doi: 10.1007/s12583-020-1389-4
  • Received Date: 2020-07-07
  • The widespread W-(Mo)-Sn-Nb-Ta polymetallic mineralization in Southeast (SE) China is genetically associated with Mesozoic highly fractionated granitic rocks. Such rocks have enigmatic mineralogical and geochemical features, making its petrogenesis an intensely debated topic. To better understand the underlying magma evolution processes, petrography, garnet chemistry and whole-rock major and trace element data are reported for Jurassic highly fractionated granitic rocks and associated microgranite and aplite-pegmatite dikes from Macao and compared with coeval similar granitic rocks from nearby areas in SE China. Despite the fact that the most evolved rocks in Macao are garnet-bearing aplite-pegmatite dikes, the existence of coeval two-mica and garnet-bearing biotite and muscovite granites displaying more evolved compositions (e.g., lower Zr/Hf ratios) indicates that the differentiation sequence reached higher degrees of fractionation at a regional scale. Although crystal fractionation played an important role, late-stage fluid/melt interactions, involving F-rich fluids, imparted specific geochemical characteristics to Macao and SE China highly fractionated granitic rocks such as the non-CHARAC (CHArge-and-RAdius-Controlled) behavior of trace elements, leading, for example, to non-chondritic Zr/Hf ratios, Rare Earth Elements (REE) tetrad effects and Nb-Ta enrichment and fractionation. Such process contributed to the late-stage crystallization of accessory phases only found in these highly evolved facies. Among the latter, two populations of garnet were identified in MGI (Macao Group I) highly fractionated granitic rocks: small grossular-poor euhedral grains and large grossular-rich skeletal garnet grains with quartz inclusions. The first group was mainly formed through precipitation from highly evolved Mn-rich slightly peraluminous melts under low-pressure and relatively low temperature (~700 ºC) conditions. Assimilation of upper crust metasedimentary materials may have contributed as a source of Mn and Al to the formation of garnet. The second group has a metasomatic origin related to the interaction of magmatic fluids with previously crystallized mineral phases and, possibly, with assimilated metasedimentary enclaves or surrounding metasedimentary strata. The highly fractionated granitic rocks in Macao represent the first stage in the development of granite-related W-(Mo)-Sn-Nb-Ta mineralization associated with coeval more evolved lithotypes in SE China.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(78) PDF downloads(26) Cited by()

Related
Proportional views

Magmatic Evolution of Garnet-Bearing Highly Fractionated Granitic Rocks from Macao, Southeast China: Implications for Granite-Related Mineralization Processes

doi: 10.1007/s12583-020-1389-4

Abstract: The widespread W-(Mo)-Sn-Nb-Ta polymetallic mineralization in Southeast (SE) China is genetically associated with Mesozoic highly fractionated granitic rocks. Such rocks have enigmatic mineralogical and geochemical features, making its petrogenesis an intensely debated topic. To better understand the underlying magma evolution processes, petrography, garnet chemistry and whole-rock major and trace element data are reported for Jurassic highly fractionated granitic rocks and associated microgranite and aplite-pegmatite dikes from Macao and compared with coeval similar granitic rocks from nearby areas in SE China. Despite the fact that the most evolved rocks in Macao are garnet-bearing aplite-pegmatite dikes, the existence of coeval two-mica and garnet-bearing biotite and muscovite granites displaying more evolved compositions (e.g., lower Zr/Hf ratios) indicates that the differentiation sequence reached higher degrees of fractionation at a regional scale. Although crystal fractionation played an important role, late-stage fluid/melt interactions, involving F-rich fluids, imparted specific geochemical characteristics to Macao and SE China highly fractionated granitic rocks such as the non-CHARAC (CHArge-and-RAdius-Controlled) behavior of trace elements, leading, for example, to non-chondritic Zr/Hf ratios, Rare Earth Elements (REE) tetrad effects and Nb-Ta enrichment and fractionation. Such process contributed to the late-stage crystallization of accessory phases only found in these highly evolved facies. Among the latter, two populations of garnet were identified in MGI (Macao Group I) highly fractionated granitic rocks: small grossular-poor euhedral grains and large grossular-rich skeletal garnet grains with quartz inclusions. The first group was mainly formed through precipitation from highly evolved Mn-rich slightly peraluminous melts under low-pressure and relatively low temperature (~700 ºC) conditions. Assimilation of upper crust metasedimentary materials may have contributed as a source of Mn and Al to the formation of garnet. The second group has a metasomatic origin related to the interaction of magmatic fluids with previously crystallized mineral phases and, possibly, with assimilated metasedimentary enclaves or surrounding metasedimentary strata. The highly fractionated granitic rocks in Macao represent the first stage in the development of granite-related W-(Mo)-Sn-Nb-Ta mineralization associated with coeval more evolved lithotypes in SE China.

Pedro Quelha1 2, João Mata2, Ágata Alveirinho Dias1 2. Magmatic Evolution of Garnet-Bearing Highly Fractionated Granitic Rocks from Macao, Southeast China: Implications for Granite-Related Mineralization Processes. Journal of Earth Science. doi: 10.1007/s12583-020-1389-4
Citation: Pedro Quelha1 2, João Mata2, Ágata Alveirinho Dias1 2. Magmatic Evolution of Garnet-Bearing Highly Fractionated Granitic Rocks from Macao, Southeast China: Implications for Granite-Related Mineralization Processes. Journal of Earth Science. doi: 10.1007/s12583-020-1389-4

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return