Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 6
Dec 2021
Turn off MathJax
Article Contents
Pedro Quelhas, João Mata, Ágata Alveirinho Dias. Magmatic Evolution of Garnet-Bearing highly Fractionated Granitic Rocks from Macao, Southeast China: Implications for Granite-Related Mineralization Processes. Journal of Earth Science, 2021, 32(6): 1454-1471. doi: 10.1007/s12583-020-1389-4
Citation: Pedro Quelhas, João Mata, Ágata Alveirinho Dias. Magmatic Evolution of Garnet-Bearing highly Fractionated Granitic Rocks from Macao, Southeast China: Implications for Granite-Related Mineralization Processes. Journal of Earth Science, 2021, 32(6): 1454-1471. doi: 10.1007/s12583-020-1389-4

Magmatic Evolution of Garnet-Bearing highly Fractionated Granitic Rocks from Macao, Southeast China: Implications for Granite-Related Mineralization Processes

doi: 10.1007/s12583-020-1389-4
More Information
  • Corresponding author: Ágata Alveirinho Dias, agata.dias@usj.edu.mo
  • Received Date: 07 Jul 2020
  • Accepted Date: 04 Dec 2020
  • Publish Date: 30 Dec 2021
  • The widespread W-(Mo)-Sn-Nb-Ta polymetallic mineralization in Southeast (SE) China is genetically associated with Mesozoic highly fractionated granitic rocks. Such rocks have enigmatic mineralogical and geochemical features, making its petrogenesis an intensely debated topic. To better understand the underlying magma evolution processes, petrography, garnet chemistry and whole-rock major and trace element data are reported for Jurassic highly fractionated granitic rocks and associated microgranite and aplite-pegmatite dikes from Macao and compared with coeval similar granitic rocks from nearby areas in SE China. Despite the fact that the most evolved rocks in Macao are garnet-bearing aplite-pegmatite dikes, the existence of coeval two-mica and garnet-bearing biotite and muscovite granites displaying more evolved compositions (e.g., lower Zr/Hf ratios) indicates that the differentiation sequence reached higher degrees of fractionation at a regional scale. Although crystal fractionation played an important role, late-stage fluid/melt interactions, involving F-rich fluids, imparted specific geochemical characteristics to Macao and SE China highly fractionated granitic rocks such as the non-CHARAC (CHArge-and-RAdius-Controlled) behavior of trace elements, leading, for example, to non-chondritic Zr/Hf ratios, Rare Earth Elements (REE) tetrad effects and Nb-Ta enrichment and fractionation. Such process contributed to the late-stage crystallization of accessory phases only found in these highly evolved facies. Among the latter, two populations of garnet were identified in MGI (Macao Group I) highly fractionated granitic rocks: small grossular-poor euhedral grains and large grossular-rich skeletal garnet grains with quartz inclusions. The first group was mainly formed through precipitation from highly evolved Mn-rich slightly peraluminous melts under low-pressure and relatively low temperature (~700 ℃) conditions. Assimilation of upper crust metasedimentary materials may have contributed as a source of Mn and Al to the formation of garnet. The second group has a metasomatic origin related to the interaction of magmatic fluids with previously crystallized mineral phases and, possibly, with assimilated metasedimentary enclaves or surrounding metasedimentary strata. The highly fractionated granitic rocks in Macao represent the first stage in the development of granite-related W-(Mo)-Sn-Nb-Ta mineralization associated with coeval more evolved lithotypes in SE China.

     

  • loading
  • Antunes, I. M. H. R., Neiva, A. M. R., Ramos, J. M. F., et al., 2013. Petrogenetic Links between Lepidolite-Subtype Aplite-Pegmatite, Aplite Veins and Associated Granites at Segura (Central Portugal). Geochemistry, 73(3): 323-341. https://doi.org/10.1016/j.chemer.2012.12.003
    Bacon, C. R., Druitt, T. H., 1988. Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98(2): 224-256. https://doi.org/10.1007/bf00402114 doi: 10.1007/BF00402114
    Badanina, E. V., Trumbull, R. B., Dulski, P., et al., 2006. The Behavior of Rare-Earth and Lithophile Trace Elements in Rare-Metal Granites: A Study of Fluorite, Melt Inclusions and Host Rocks from the Khangilay Complex, Transbaikalia, Russia. The Canadian Mineralogist, 44(3): 667-692. https://doi.org/10.2113/gscanmin.44.3.667
    Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(3): 231-234. https://doi.org/10.1130/g37475.1 doi: 10.1130/G37475.1
    Bau, M., 1997. The Lanthanide Tetrad Effect in Highly Evolved Felsic Igneous Rocks——A Reply to the Comment by Y. Pan. Contributions to Mineralogy and Petrology, 128(4): 409-412. https://doi.org/10.1007/s004100050318
    Bau, M., Dulski, P., 1995. Comparative Study of Yttrium and Rare-Earth Element Behaviours in Fluorine-Rich Hydrothermal Fluids. Contributions to Mineralogy and Petrology, 119(2/3): 213-223. https://doi.org/10.1007/bf00307282 doi: 10.1007/bf00307282
    Bea, F., Pereira, M. D., Stroh, A., 1994. Mineral/Leucosome Trace-Element Partitioning in a Peraluminous Migmatite (a Laser Ablation-ICP-MS Study). Chemical Geology, 117(1/2/3/4): 291-312. https://doi.org/10.1016/0009-2541(94)90133-3 doi: 10.1016/0009-2541(94)90133-3
    Bray, E. A., 1988. Garnet Compositions and Their Use as Indicators of Peraluminous Granitoid Petrogenesis-Southeastern Arabian Shield. Contributions to Mineralogy and Petrology, 100(2): 205-212. https://doi.org/10.1007/bf00373586 doi: 10.1007/BF00373586
    Cao, J. Y., Yang, X. Y., Du, J. G., et al., 2018. Formation and Geodynamic Implication of the Early Yanshanian Granites Associated with W-Sn Mineralization in the Nanling Range, South China: An Overview. International Geology Review, 60(11/12/13/14): 1744-1771. https://doi.org/10.1080/00206814.2018.1466370 doi: 10.1080/00206814.2018.1466370
    Carrington da Costa, J., Lemos, M. S., 1964. Fisiografia e Geologia da Província de Macau. Centro Municipal de Informação de Turismo
    Chappell, B. W., White, A. J. R., 1992. I-and S-Type Granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 1-26. https://doi.org/10.1017/s0263593300007720 doi: 10.1017/s0263593300007720
    Charvet, J., 2013. The Neoproterozoic-Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 74: 198-209. https://doi.org/10.1016/j.jseaes.2013.02.015
    Chen, G. -N., Grapes, R., 2007. Granite Genesis: In situ Melting and Crustal Evolution. Elsevier, Netherlands. 276
    Clemens, J. D., Wall, V. J., 1988. Controls on the Mineralogy of S-Type Volcanic and Plutonic Rocks. Lithos, 21(1): 53-66. https://doi.org/10.1016/0024-4937(88)90005-9
    Costa, J. C. D. A., 1944. Geologia da Província de Macau. Boletim da Sociedade Geológica de Portugal, 3: 181-222
    Dahlquist, J. A., Galindo, C., Pankhurst, R. J., et al., 2007. Magmatic Evolution of the Peñón Rosado Granite: Petrogenesis of Garnet-Bearing Granitoids. Lithos, 95(3/4): 177-207. https://doi.org/10.1016/j.lithos.2006.07.010 doi: 10.1016/j.lithos.2006.07.010
    Dill, H. G., 2015. Pegmatites and Aplites: Their Genetic and Applied Ore Geology. Ore Geology Reviews, 69: 417-561. https://doi.org/10.1016/j.oregeorev.2015.02.022
    Duc-Tin, Q., Keppler, H., 2015. Monazite and Xenotime Solubility in Granitic Melts and the Origin of the Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 169(1): 1-26. https://doi.org/10.1007/s00410-014-1100-9 doi: 10.1007/s00410-014-1095-2
    Dziggel, A., Wulff, K., Kolb, J., et al., 2009. Significance of Oscillatory and Bell-Shaped Growth Zoning in Hydrothermal Garnet: Evidence from the Navachab Gold Deposit, Namibia. Chemical Geology, 262(3/4): 262-276. https://doi.org/10.1016/j.chemgeo.2009.01.027 doi: 10.1016/j.chemgeo.2009.01.027
    El Bouseily, A. M., El Sokkary, A. A., 1975. The Relation between Rb, Ba and Sr in Granitic Rocks. Chemical Geology, 16(3): 207-219. https://doi.org/10.1016/0009-2541(75)90029-7
    Erdmann, S., Jamieson, R. A., MacDonald, M. A, 2009. Evaluating the Origin of Garnet, Cordierite, and Biotite in Granitic Rocks: A Case Study from the South Mountain Batholith, Nova Scotia. Journal of Petrology, 50(8): 1477-1503. https://doi.org/10.1093/petrology/egp038
    Fourcade, S., Capdevila, R., Ouabadi, A., et al., 2001. The Origin and Geodynamic Significance of the Alpine Cordierite-Bearing Granitoids of Northern Algeria: A Combined Petrological, Mineralogical, Geochemical and Isotopic (O, H, Sr, Nd) Study. Lithos, 57(2/3): 187-216. https://doi.org/10.1016/s0024-4937(01)00034-2 doi: 10.1016/s0024-4937(01)00034-2
    Frost, B. R., Frost, C. D., 2008. A Geochemical Classification for Feldspathic Igneous Rocks. Journal of Petrology, 49(11): 1955-1969. https://doi.org/10.1093/petrology/egn054
    Gerstenberger, H., 1989. Autometasomatic Rb Enrichments in Highly Evolved Granites Causing Lowered Rb Sr Isochron Intercepts. Earth and Planetary Science Letters, 93(1): 65-75. https://doi.org/10.1016/0012-821x(89)90184-2 doi: 10.1016/0012-821X(89)90184-2
    Green, T. H., 1977. Garnet in Silicic Liquids and Its Possible Use as a P-T Indicator. Contributions to Mineralogy and Petrology, 65(1): 59-67. https://doi.org/10.1007/bf00373571 doi: 10.1007/BF00373571
    Green, T. H., 1992. Experimental Phase Equilibrium Studies of Garnet-Bearing I-Type Volcanics and High-Level Intrusives from Northland, New Zealand. Geological Society of America Special Papers. Geological Society of America, 272: 429-438. https://doi.org/10.1130/spe272-p429 doi: 10.1130/spe272-p429
    Guo, C. L., Chen, Y. C., Zeng, Z. L., et al., 2012. Petrogenesis of the Xihuashan Granites in Southeastern China: Constraints from Geochemistry and in-situ Analyses of Zircon U-Pb-Hf-O Isotopes. Lithos, 148: 209-227. https://doi.org/10.1016/j.lithos.2012.06.014
    Harangi, S., Downes, H., Kósa, L., et al., 2001. Almandine Garnet in Calc-Alkaline Volcanic Rocks of the Northern Pannonian Basin (Eastern-Central Europe): Geochemistry, Petrogenesis and Geodynamic Implications. Journal of Petrology, 42(10): 1813-1843. https://doi.org/10.1093/petrology/42.10.1813
    Harrison, T. N., 1988. Magmatic Garnets in the Cairngorm Granite, Scotland. Mineralogical Magazine, 52(368): 659-667. https://doi.org/10.1180/minmag.1988.052.368.10
    Huang, H. Q., Li, X. H., Li, Z. X., et al., 2013. Intraplate Crustal Remelting as the Genesis of Jurassic High-K Granites in the Coastal Region of the Guangdong Province, SE China. Journal of Asian Earth Sciences, 74: 280-302. https://doi.org/10.1016/j.jseaes.2012.09.009
    Huang, H. Q., Li, X. H., Li, Z. X., et al., 2015. Formation of the Jurassic South China Large Granitic Province: Insights from the Genesis of the Jiufeng Pluton. Chemical Geology, 401: 43-58. https://doi.org/10.1016/j.chemgeo.2015.02.019
    Irber, W., 1999. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochimica et Cosmochimica Acta, 63(3/4): 489-508. https://doi.org/10.1016/s0016-7037(99)00027-7 doi: 10.1016/s0016-7037(99)00027-7
    Jahn, B. M., Wu, F. Y., Capdevila, R., et al., 2001. Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xing'an Mountains in NE China. Lithos, 59(4): 171-198. https://doi.org/10.1016/s0024-4937(01)00066-4 doi: 10.1016/S0024-4937(01)00066-4
    Jahns, R. H., Tuttle, O. F., 1963. Layered Pegmatite-Aplite Intrusives. Mineralogical Society of America Special Paper, 1: 78-92
    Jiang, H., Jiang, S. Y., Li, W. Q., et al., 2018. Highly Fractionated Jurassic I-Type Granites and Related Tungsten Mineralization in the Shirenzhang Deposit, Northern Guangdong, South China: Evidence from Cassiterite and Zircon U-Pb Ages, Geochemistry and Sr-Nd-Pb-Hf Isotopes. Lithos, 312/313: 186-203. https://doi.org/10.1016/j.lithos.2018.04.030
    Jiang, W. C., Li, H., Wu, J. H., et al., 2018. A Newly Found Biotite Syenogranite in the Huangshaping Polymetallic Deposit, South China: Insights into Cu Mineralization. Journal of Earth Science, 29(3): 537-555. https://doi.org/10.1007/s12583-017-0974-7
    Jiang, Y. H., Jiang, S. Y., Dai, B. Z., et al., 2009. Middle to Late Jurassic Felsic and Mafic Magmatism in Southern Hunan Province, Southeast China: Implications for a Continental Arc to Rifting. Lithos, 107(3/4): 185-204. https://doi.org/10.1016/j.lithos.2008.10.006 doi: 10.1016/j.lithos.2008.10.006
    Jiang, Y. H., Zhu, S. Q., 2017. Petrogenesis of the Late Jurassic Peraluminous Biotite Granites and Muscovite-Bearing Granites in SE China: Geochronological, Elemental and Sr-Nd-O-Hf Isotopic Constraints. Contributions to Mineralogy and Petrology, 172(11/12): 1-27. https://doi.org/10.1007/s00410-017-1422-5 doi: 10.1007/s00410-017-1422-5
    Jolliff, B. L., Papike, J. J., Shearer, C. K., et al., 1989. Inter-and Intra-Crystal REE Variations in Apatite from the Bob Ingersoll Pegmatite, Black Hills, South Dakota. Geochimica et Cosmochimica Acta, 53(2): 429-441. https://doi.org/10.1016/0016-7037(89)90394-3
    Kontak, D. J., Corey, M., 1988. Metasomatic Origin of Spessartine-Rich Garnet in the South Mountain Batholith, Nova Scotia. Canadian Mineralogist, 26: 315-334 http://www.researchgate.net/publication/267300759_Metasomatic_origin_of_spessartine-rich_garnet_in_the_South_Mountain_Batholith_Nova_Scotia
    Lackey, J. S., Romero, G. A., Bouvier, A. S., et al., 2012. Dynamic Growth of Garnet in Granitic Magmas. Geology, 40(2): 171-174. https://doi.org/10.1130/g32349.1 doi: 10.1130/G32349.1
    Li, B. W., Ge, J. H., Zhang, B. H., 2018. Diffusion in Garnet: A Review. Acta Geochimica, 37(1): 19-31. https://doi.org/10.1007/s11631-017-0187-x
    Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1/2): 186-204. https://doi.org/10.1016/j.lithos.2006.09.018 doi: 10.1016/j.lithos.2006.09.018
    Li, Z. X., Li, X. H., 2007. Formation of the 1 300-Km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179. https://doi.org/10.1130/g23193a.1 doi: 10.1130/G23193A.1
    Li, Z. X., Li, X. H., Zhou, H. W., et al., 2002. Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2): 163-166. https://doi.org/10.1130/0091-7613(2002)0300163:gccisc>2.0.co;2 doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2
    Linnen, R. L., 1998. The Solubility of Nb-Ta-Zr-Hf-W in Granitic Melts with Li and Li+F: Constraints for Mineralization in Rare Metal Granites and Pegmatites. Economic Geology, 93(7): 1013-1025. https://doi.org/10.2113/gsecongeo.93.7.1013
    Linnen, R. L., Keppler, H., 1997. Columbite Solubility in Granitic Melts: Consequences for the Enrichment and Fractionation of Nb and Ta in the Earth's Crust. Contributions to Mineralogy and Petrology, 128(2/3): 213-227. https://doi.org/10.1007/s004100050304 doi: 10.1007/s004100050304
    London, D., 1992. The Application of Experimental Petrology to the Genesis and Crystallization of Granitic Pegmatites. Canadian Mineralogist, 30(3): 499-540 http://www.researchgate.net/publication/279544747_The_application_of_experimental_petrology_to_the_genesis_and_crystallization_of_granitic_pegmatites
    London, D., 2014. A Petrologic Assessment of Internal Zonation in Granitic Pegmatites. Lithos, 184/185/186/187: 74-104. https://doi.org/10.1016/j.lithos.2013.10.025 doi: 10.1016/j.lithos.2013.10.025
    London, D., 2008. Pegmatites. Canadian Mineralogist, Special Publication, 10: 347
    London, D., Hervig, R. L., Morgan, G. B., 1988. Melt-Vapor Solubilities and Elemental Partitioning in Peraluminous Granite-Pegmatite Systems: Experimental Results with Macusani Glass at 200 MPa. Contributions to Mineralogy and Petrology, 99(3): 360-373. https://doi.org/10.1007/bf00375368 doi: 10.1007/BF00375368
    London, D., Kontak, D. J., 2012. Granitic Pegmatites: Scientific Wonders and Economic Bonanzas. Elements, 8(4): 257-261. https://doi.org/10.2113/gselements.8.4.257
    London, D., Morgan, G. B., Hervig, R. L., 1989. Vapor-Undersaturated Experiments with Macusani Glass+H2O at 200 MPa, and the Internal Differentiation of Granitic Pegmatites. Contributions to Mineralogy and Petrology, 102(1): 1-17. https://doi.org/10.1007/bf01160186 doi: 10.1007/BF01160186
    London, D., Morgan, G. B., Paul, K. A., et al., 2012. Internal Evolution of Miarolitic Granitic Pegmatites at the Little Three Mine, Ramona, California, USA. The Canadian Mineralogist, 50(4): 1025-1054. https://doi.org/10.3749/canmin.50.4.1025
    Lowenstern, J. B., 1994. Dissolved Volatile Concentrations in an Ore-Forming Magma. Geology, 22(10): 893-896. https://doi.org/10.1130/0091-7613(1994)0220893:dvciao>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0893:DVCIAO>2.3.CO;2
    Mao, J. W., Cheng, Y. B., Chen, M. H., et al., 2013. Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48(3): 267-294. https://doi.org/10.1007/s00126-012-0446-z
    Martin, R. F., de Vito, C., 2014. The Late-Stage Miniflood of ca in Granitic Pegmatites: An Open-System Acid-Reflux Model Involving Plagioclase in the Exocontact. The Canadian Mineralogist, 52(2): 165-181. https://doi.org/10.3749/canmin.52.2.165
    Masuda, A., Akagi, T., 1989. Lanthanide Tetrad Effect Observed in Leucogranites from China. Geochemical Journal, 23(5): 245-253. https://doi.org/10.2343/geochemj.23.245
    Masuda, A., Kawakami, O., Dohmoto, Y., et al., 1987. Lanthanide Tetrad Effects in Nature: Two Mutually Opposite Types, W and M. Geochemical Journal, 21(3): 119-124. https://doi.org/10.2343/geochemj.21.119
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4 doi: 10.1016/0009-2541(94)00140-4
    McLennan, S. M., 1994. Rare Earth Element Geochemistry and the "Tetrad" Effect. Geochimica et Cosmochimica Acta, 58(9): 2025-2033. https://doi.org/10.1016/0016-7037(94)90282-8
    Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529-532. https://doi.org/10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
    Miller, C. F., Stoddard, E. F., 1982. The Role of Manganese in the Paragenesis of Magmatic Garnet: An Example from the Old Woman-Piute Range, California. Journal of Geology, 90: 341-343 doi: 10.1086/628686
    Miller, J. S., Matzel, J. E. P., Miller, C. F., et al., 2007. Zircon Growth and Recycling during the Assembly of Large, Composite Arc Plutons. Journal of Volcanology and Geothermal Research, 167(1/2/3/4): 282-299. https://doi.org/10.1016/j.jvolgeores.2007.04.019 doi: 10.1016/j.jvolgeores.2007.04.019
    Monecke, T., Dulski, P., Kempe, U., 2007. Origin of Convex Tetrads in Rare Earth Element Patterns of Hydrothermally Altered Siliceous Igneous Rocks from the Zinnwald Sn-W Deposit, Germany. Geochimica et Cosmochimica Acta, 71(2): 335-353. https://doi.org/10.1016/j.gca.2006.09.010
    Monecke, T., Kempe, U., Monecke, J., et al., 2002. Tetrad Effect in Rare Earth Element Distribution Patterns: A Method of Quantification with Application to Rock and Mineral Samples from Granite-Related Rare Metal Deposits. Geochimica et Cosmochimica Acta, 66(7): 1185-1196. https://doi.org/10.1016/s0016-7037(01)00849-3 doi: 10.1016/S0016-7037(01)00849-3
    Nabelek, P. I., Whittington, A. G., Sirbescu, M. L. C., 2010. The Role of H2O in Rapid Emplacement and Crystallization of Granite Pegmatites: Resolving the Paradox of Large Crystals in Highly Undercooled Melts. Contributions to Mineralogy and Petrology, 160(3): 313-325. https://doi.org/10.1007/s00410-009-0479-1
    Nardi, L. V. S., Formoso, M. L. L., Jarvis, K., et al., 2012. REE, Y, Nb, U, and Th Contents and Tetrad Effect in Zircon from a Magmatic-Hydrothermal F-Rich System of Sn-Rare Metal-Cryolite Mineralized Granites from the Pitinga Mine, Amazonia, Brazil. Journal of South American Earth Sciences, 33(1): 34-42. https://doi.org/10.1016/j.jsames.2011.07.004
    Nash, W. P., Crecraft, H. R., 1985. Partition Coefficients for Trace Elements in Silicic Magmas. Geochimica et Cosmochimica Acta, 49(11): 2309-2322. https://doi.org/10.1016/0016-7037(85)90231-5
    Neiva, A. M. R., Ramos, J. M. F., 2010. Geochemistry of Granitic Aplite-Pegmatite Sills and Petrogenetic Links with Granites, Guarda-Belmonte Area, Central Portugal. European Journal of Mineralogy, 22(6): 837-854. https://doi.org/10.1127/0935-1221/2010/0022-2072
    Neiva, A. M. R., Silva, P. B., Ramos, J. M. F., 2012. Geochemistry of Granitic Aplite-Pegmatite Veins and Sills and Their Minerals from the Sabugal Area, Central Portugal. Neues Jahrbuch Für Mineralogie-Abhandlungen, 189(1): 49-74. https://doi.org/10.1127/0077-7757/2011/0209
    Neiva, A. M. R., Gomes, M. E. P., Ramos, J. M. F., et al., 2008. Geochemistry of Granitic Aplite-Pegmatite Sills and Their Minerals from Arcozelo Da Serra Area (Gouveia, Central Portugal). European Journal of Mineralogy, 20(4): 465-485. https://doi.org/10.1127/0935-1221/2008/0020-1827
    Neiva, J. M. C., 1944. Rochas Eruptivas da Península de Macau e das Ilhas de Taipa e Coloane. Boletim da Sociedade Geológica de Portugal, 3: 145-180
    Pan, Y. M., 1997. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect——A Discussion of the Article by M. Bau (1996). Contributions to Mineralogy and Petrology, 128(4): 405-408. https://doi.org/10.1007/s004100050317
    Pan, Y., Breaks, F. W., 1997. Rare-Earth Elements in Fluorapatite, Separation Lake Area, Ontario: Evidence for S-Type Granite-Rare-Element Pegmatite Linkage. Canadian Mineralogist, 35: 659-671 http://pubs.geoscienceworld.org/canmin/article-pdf/35/3/659/3420535/659.pdf
    Peretyazhko, I. S., Savina, E. A., 2010. Tetrad Effects in the Rare Earth Element Patterns of Granitoid Rocks as an Indicator of Fluoride-Silicate Liquid Immiscibility in Magmatic Systems. Petrology, 18(5): 514-543. https://doi.org/10.1134/s086959111005005x doi: 10.1134/S086959111005005X
    Qiu, Z. W., Yan, Q. H., Li, S. S., et al., 2017. Highly Fractionated Early Cretaceous I-Type Granites and Related Sn Polymetallic Mineralization in the Jinkeng Deposit, Eastern Guangdong, SE China: Constraints from Geochronology, Geochemistry, and Hf Isotopes. Ore Geology Reviews, 88: 718-738. https://doi.org/10.1016/j.oregeorev.2016.10.008
    Quelhas, P., Dias, Á. A., Mata, J., et al., 2020. High-Precision Geochronology of Mesozoic Magmatism in Macao, Southeast China: Evidence for Multistage Granite Emplacement. Geoscience Frontiers, 11(1): 243-263. https://doi.org/10.1016/j.gsf.2019.04.011
    Quelhas, P., Mata, J., Dias, Á. A., 2021. Evidence for Mixed Contribution of Mantle and Lower and Upper Crust to the Genesis of Jurassic I-Type Granites from Macao, SE China. GSA Bulletin, 133(1/2): 37-56. https://doi.org/10.1130/b35552.1 doi: 10.1130/b35552.1
    Ranjbar, S., Tabatabaei Manesh, S. M., Mackizadeh, M. A., et al., 2016. Geochemistry of Major and Rare Earth Elements in Garnet of the Kal-e Kafi Skarn, Anarak Area, Central Iran: Constraints on Processes in a Hydrothermal System. Geochemistry International, 54(5): 423-438. https://doi.org/10.1134/s0016702916050098 doi: 10.1134/S0016702916050098
    René, M., Stelling, J., 2007. Garnet-Bearing Granite from the Třebíč Pluton, Bohemian Massif (Czech Republic). Mineralogy and Petrology, 91(1/2): 55-69. https://doi.org/10.1007/s00710-007-0188-2 doi: 10.1007/s00710-007-0188-2
    Ribeiro, M. L., Ramos, J. F., Pereira, E., et al., 2010. The Evolution of the Macao Geological Knowledge. Geologia das Ex-Colónias da Ásia e Oceânia, Macau, III: 259-266
    Ribeiro, M. L., Ramos, J. M., Pereira, E., et al., 1992. Notícia Explicativa da Carta Geológica de Macau na Escala 1/5 000. Serviços Geológicos de Portugal. 46
    Ríos Reyes, C. A., Alarcón, O. M. C., Takasu, A., 2009. A New Interpretation for the Garnet Zoning in Metapelitic Rocks of the Silgará Formation, Southwestern Santander Massif Colombia. Earth Sciences Research Journal, 12: 7-30 http://www.revistas.unal.edu.co/index.php/esrj/article/download/21192/22159
    Scallion, K. L., Jamieson, R. A., Barr, S. M., et al., 2011. Texture and Composition of Garnet as a Guide to Contamination of Granitoid Plutons: An Example from the Governor Lake Area, Meguma Terrane, Nova Scotia. The Canadian Mineralogist, 49(2): 441-458. https://doi.org/10.3749/canmin.49.2.441
    Sewell, R. J., Darbyshire, D. P. F., Langford, R. L., et al., 1992. Geochemistry and Rb-Sr Geochronology of Mesozoic Granites from Hong Kong. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 269-280. https://doi.org/10.1017/s0263593300007951 doi: 10.1017/s0263593300007951
    Sewell, R. J., Campbell, S. D. G., Fletcher, C. J. N., et al., 2000. The Pre-Quaternary Geology of Hong Kong. Civil Engineering Department, Hong Kong SAR Government, Hong Kong
    Shellnutt, J. G., Vaughan, M. W., Lee, H. Y., et al., 2020. Late Jurassic Leucogranites of Macao (SE China): A Record of Crustal Recycling during the Early Yanshanian Orogeny. Frontiers in Earth Science, 8: 1-24. https://doi.org/10.3389/feart.2020.00311 doi: 10.3389/feart.2020.00001
    Simmons, W. B. S., Webber, K. L., 2008. Pegmatite Genesis: State of the Art. European Journal of Mineralogy, 20(4): 421-438. https://doi.org/10.1127/0935-1221/2008/0020-1833
    Speer, J. A., Becker, S. W., 1992. Evolution of Magmatic and Subsolidus AFM Mineral Assemblages in Granitoid Rocks: Biotite, Muscovite, and Garnet in the Cuffytown Creek Pluton, South Carolina. American Mineralogist, 77: 821-833 http://ammin.geoscienceworld.org/content/77/7-8/821
    Stevens, G., Villaros, A., Moyen, J. F., 2007. Selective Peritectic Garnet Entrainment as the Origin of Geochemical Diversity in S-Type Granites. Geology, 35(1): 9-12. https://doi.org/10.1130/g22959a.1 doi: 10.1130/G22959A.1
    Streckeisen, A., le Maitre, R. W., 1979. A Chemical Approximation to the Modal QAPF Classification of the Igneous Rocks. Neues Jahrbuch fur Mineralogie Abteilung, 136: 169-206 http://geosphere.geoscienceworld.org/lookup/external-ref?access_num=1980021909&link_type=GEOREF
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19
    Takahashi, Y., Yoshida, H., Sato, N., et al., 2002. W-and M-Type Tetrad Effects in REE Patterns for Water-Rock Systems in the Tono Uranium Deposit, Central Japan. Chemical Geology, 184(3/4): 311-335. https://doi.org/10.1016/s0009-2541(01)00388-6 doi: 10.1016/s0009-2541(01)00388-6
    Tao, J. H., Li, W. X., Li, X. H., et al., 2013. Petrogenesis of Early Yanshanian Highly Evolved Granites in the Longyuanba Area, Southern Jiangxi Province: Evidence from Zircon U-Pb Dating, Hf-O Isotope and Whole-Rock Geochemistry. Science China Earth Sciences, 56(6): 922-939. https://doi.org/10.1007/s11430-013-4593-6
    Taylor, J., Stevens, G., 2010. Selective Entrainment of Peritectic Garnet into S-Type Granitic Magmas: Evidence from Archaean Mid-Crustal Anatectites. Lithos, 120(3/4): 277-292. https://doi.org/10.1016/j.lithos.2010.08.015 doi: 10.1016/j.lithos.2010.08.015
    Tuttle, O. F., Bowen, N. L., 1958. Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geological Society of America Memoirs, 74: 1-146. https://doi.org/10.1130/mem74 doi: 10.1130/mem74
    Veksler, I. V., Dorfman, A. M., Kamenetsky, M., et al., 2005. Partitioning of Lanthanides and Y between Immiscible Silicate and Fluoride Melts, Fluorite and Cryolite and the Origin of the Lanthanide Tetrad Effect in Igneous Rocks. Geochimica et Cosmochimica Acta, 69(11): 2847-2860. https://doi.org/10.1016/j.gca.2004.08.007
    Villaros, A., Stevens, G., Buick, I. S., 2009. Tracking S-Type Granite from Source to Emplacement: Clues from Garnet in the Cape Granite Suite. Lithos, 112(3/4): 217-235. https://doi.org/10.1016/j.lithos.2009.02.011 doi: 10.1016/j.lithos.2009.02.011
    Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
    Whitworth, M. P., 1992. Petrogenetic Implications of Garnets Associated with Lithium Pegmatites from SE Ireland. Mineralogical Magazine, 56(382): 75-83. https://doi.org/10.1180/minmag.1992.056.382.10
    Wu, C. Z., Liu, S. H., Gu, L. X., et al., 2011. Formation Mechanism of the Lanthanide Tetrad Effect for a Topaz-and Amazonite-Bearing Leucogranite Pluton in Eastern Xinjiang, NW China. Journal of Asian Earth Sciences, 42(5): 903-916. https://doi.org/10.1016/j.jseaes.2010.09.011
    Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 60(7): 1201-1219. https://doi.org/10.1007/s11430-016-5139-1
    Wu, F. Y., Sun, D. Y., Jahn, B. M., et al., 2004. A Jurassic Garnet-Bearing Granitic Pluton from NE China Showing Tetrad REE Patterns. Journal of Asian Earth Sciences, 23(5): 731-744. https://doi.org/10.1016/s1367-9120(03)00149-4 doi: 10.1016/S1367-9120(03)00149-4
    Xiang, Y. X., Yang, J. H., Chen, J. Y., et al., 2017. Petrogenesis of Lingshan Highly Fractionated Granites in the Southeast China: Implication for Nb-Ta Mineralization. Ore Geology Reviews, 89: 495-525. https://doi.org/10.1016/j.oregeorev.2017.06.029
    Xu, B., Jiang, S. Y., Wang, R., et al., 2015. Late Cretaceous Granites from the Giant Dulong Sn-Polymetallic Ore District in Yunnan Province, South China: Geochronology, Geochemistry, Mineral Chemistry and Nd-Hf Isotopic Compositions. Lithos, 218/219: 54-72. https://doi.org/10.1016/j.lithos.2015.01.004
    Yang, J. B., Zhao, Z. D., Hou, Q. Y., et al., 2018. Petrogenesis of Cretaceous (133-84 Ma) Intermediate Dykes and Host Granites in Southeastern China: Implications for Lithospheric Extension, Continental Crustal Growth, and Geodynamics of Palaeo-Pacific Subduction. Lithos, 296/297/298/299: 195-211. https://doi.org/10.1016/j.lithos.2017.10.022 doi: 10.1016/j.lithos.2017.10.022
    Yang, Y. L., Ni, P., Yan, J., et al., 2017. Early to Late Yanshanian I-Type Granites in Fujian Province, SE China: Implications for the Tectonic Setting and Mo Mineralization. Journal of Asian Earth Sciences, 137: 194-219. https://doi.org/10.1016/j.jseaes.2016.11.017
    Yardley, B. W. D., 1977. An Empirical Study of Diffusion in Garnet. American Mineralogist, 62: 793-800 http://ammin.geoscienceworld.org/content/62/7-8/793
    Ye, M. F., Li, X. H., Li, W. X., et al., 2007. SHRIMP Zircon U-Pb Geochronological and Whole-Rock Geochemical Evidence for an Early Neoproterozoic Sibaoan Magmatic Arc along the Southeastern Margin of the Yangtze Block. Gondwana Research, 12(1/2): 144-156. https://doi.org/10.1016/j.gr.2006.09.001 doi: 10.1016/j.gr.2006.09.001
    Yurimoto, H., Duke, E. F., Papike, J. J., et al., 1990. Are Discontinuous Chondrite-Normalized REE Patterns in Pegmatitic Granite Systems the Results of Monazite Fractionation?. Geochimica et Cosmochimica Acta, 54(7): 2141-2145. https://doi.org/10.1016/0016-7037(90)90277-r doi: 10.1016/0016-7037(90)90277-R
    Zajacz, Z., Halter, W. E., Pettke, T., et al., 2008. Determination of Fluid/Melt Partition Coefficients by LA-ICPMS Analysis of Co-Existing Fluid and Silicate Melt Inclusions: Controls on Element Partitioning. Geochimica et Cosmochimica Acta, 72(8): 2169-2197. https://doi.org/10.1016/j.gca.2008.01.034
    Zaraisky, G. P., Aksyuk, A. M., Devyatova, V. N., et al., 2009. The Zr/Hf Ratio as a Fractionation Indicator of Rare-Metal Granites. Petrology, 17(1): 25-45. https://doi.org/10.1134/s0869591109010020 doi: 10.1134/S0869591109010020
    Zhang, Y., Yang, J. H., Chen, J. Y., et al., 2017. Petrogenesis of Jurassic Tungsten-Bearing Granites in the Nanling Range, South China: Evidence from Whole-Rock Geochemistry and Zircon U-Pb and Hf-O Isotopes. Lithos, 278/279/280/281:166-180. https://doi.org/10.1016/j.lithos.2017.01.018 doi: 10.1016/j.lithos.2017.01.018
    Zhang, Y., Yang, J. H., Sun, J. F., et al., 2015. Petrogenesis of Jurassic Fractionated I-Type Granites in Southeast China: Constraints from Whole-Rock Geochemical and Zircon U-Pb and Hf-O Isotopes. Journal of Asian Earth Sciences, 111:268-283. https://doi.org/10.1016/j.jseaes.2015.07.009
    Zhao, J. X., Cooper, J. A., 1993. Fractionation of Monazite in the Development of V-Shaped REE Patterns in Leucogranite Systems: Evidence from a Muscovite Leucogranite Body in Central Australia. Lithos, 30(1): 23-32. https://doi.org/10.1016/0024-4937(93)90003-u doi: 10.1016/0024-4937(93)90003-U
    Zhao, Z. H., Xiong, X. L., Han, X. D., et al., 2002. Controls on the REE Tetrad Effect in Granites: Evidence from the Qianlishan and Baerzhe Granites, China. Geochemical Journal, 36(6): 527-543. https://doi.org/10.2343/geochemj.36.527
    Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3/4): 269-287. https://doi.org/10.1016/s0040-1951(00)00120-7 doi: 10.1016/s0040-1951(00)00120-7
    Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: a Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
    Zhou, Z. M., Ma, C. Q., Xie, C. F., et al., 2016. Genesis of Highly Fractionated I-Type Granites from Fengshun Complex: Implications to Tectonic Evolutions of South China. Journal of Earth Science, 27(3): 444-460. https://doi.org/10.1007/s12583-016-0677-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(740) PDF downloads(145) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return