Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 6
Dec 2023
Turn off MathJax
Article Contents
Xiaowen Guo, Tao Luo, Tian Dong, Rui Yang, Yuanjia Han, Jizheng Yi, Sheng He, Zhiguo Shu, Hanyong Bao. Quantitative Estimation on Methane Storage Capacity of Organic-Rich Shales from the Lower Silurian Longmaxi Formation in the Eastern Sichuan Basin, China. Journal of Earth Science, 2023, 34(6): 1851-1860. doi: 10.1007/s12583-020-1394-7
Citation: Xiaowen Guo, Tao Luo, Tian Dong, Rui Yang, Yuanjia Han, Jizheng Yi, Sheng He, Zhiguo Shu, Hanyong Bao. Quantitative Estimation on Methane Storage Capacity of Organic-Rich Shales from the Lower Silurian Longmaxi Formation in the Eastern Sichuan Basin, China. Journal of Earth Science, 2023, 34(6): 1851-1860. doi: 10.1007/s12583-020-1394-7

Quantitative Estimation on Methane Storage Capacity of Organic-Rich Shales from the Lower Silurian Longmaxi Formation in the Eastern Sichuan Basin, China

doi: 10.1007/s12583-020-1394-7
More Information
  • Corresponding author: Xiaowen Guo, E-mail: guoxw@cug.edu.cn
  • Received Date: 02 Sep 2020
  • Accepted Date: 15 Dec 2020
  • Available Online: 08 Dec 2023
  • Issue Publish Date: 30 Dec 2023
  • The assessment of gas storage capacity is crucial to furthering shale gas exploration and development in the eastern Sichuan Basin, China. Eleven organic-rich shale samples were selected to carry out the high pressure methane sorption, low-pressure N2/CO2 gas adsorption, and bulk and skeletal density measurements to investigate the methane storage capacity (MSC). Based on the relative content of clay, carbonates, quartz + feldspar, we grouped the 11 samples into three lithofacies: silica-rich argillaceous shale (CM-1), argillaceous/siliceous mixed shale (M-2), and clay-rich siliceous shale (S-3). The total porosity of the shale samples varies from 3.4% to 5.6%, and gas saturation ranges from 47% to 89%. The measured total gas amount ranges from 1.84 mg/g to 4.22 mg/g with the ratio of free gas to total gas amount ranging from 52.7% to 70.8%. Free gas with high content in the eastern Sichuan Basin may be the key factor controlling amount of shale gas production. The TOC content critically controls the MSC of shales, because micropore, mesopore volumes and the specific surface areas associated with organic matter provide the storage sites for the free and adsorbed gas. The methane sorption capacities of samples from different lithofacies are also affected by clay minerals and moisture content. Clay minerals can provide additional surface areas for methane sorption, and water can cause a 7.1%–42.8% loss of methane sorption capacity. The total porosity, gas-bearing porosity, water saturation, free gas and adsorbed gas number of samples from different lithofacies show subtle differences if the shale samples had similar TOC contents. Our results suggest that, in the eastern Sichuan Basin, clay-rich shale lithofacies is also prospecting targets for shale gas production.

     

  • Electronic Supplementary Materials: Supplementary materials (Figs. S1–S4) are available in the online version of this article at https://doi.org/10.1007/s12583-020-1394-7.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Ambrose, R. J., Hartman, R. C., Diaz-Campos, M., et al., 2012. Shale Gas-in-Place Calculations Part Ⅰ: New Pore-Scale Considerations. SPE Journal, 17(1): 219–229. https://doi.org/10.2118/131772-pa
    Chalmers, G. R. L., Bustin, R. M., 2007. The Organic Matter Distribution and Methane Capacity of the Lower Cretaceous Strata of Northeastern British Columbia, Canada. International Journal of Coal Geology, 70(1/2/3): 223–239. https://doi.org/10.1016/j.coal.2006.05.001
    Chalmers, G. R. L., Bustin, R. M., 2008. Lower Cretaceous Gas Shales in Northeastern British Columbia, Part Ⅰ: Geological Controls on Methane Sorption Capacity. Bulletin of Canadian Petroleum Geology, 56(1): 1–21. https://doi.org/10.2113/gscpgbull.56.1.1
    Charoensuppanimit, P., Mohammad, S. A., Robinson, R. L., et al., 2015. Modeling the Temperature Dependence of Supercritical Gas Adsorption on Activated Carbons, Coals and Shales. International Journal of Coal Geology, 138: 113–126. https://doi.org/10.1016/j.coal.2014.12.008
    Childers, D. R., Wu, X. R., 2020. Forecasting Shale Gas Performance Using the Connected Reservoir Storage Model. Journal of Natural Gas Science and Engineering, 82: 103499. https://doi.org/10.1016/j.jngse.2020.103499
    Crosdale, P. J., Moore, T. A., Mares, T. E., 2008. Influence of Moisture Content and Temperature on Methane Adsorption Isotherm Analysis for Coals from a Low-Rank, Biogenically-Sourced Gas Reservoir. International Journal of Coal Geology, 76(1/2): 166–174. https://doi.org/10.1016/j.coal.2008.04.004
    Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86: 1921–1938. https://doi.org/10.1306/61eeddbe-173e-11d7-8645000102c1865d
    Dubinin, M. M., 1975. Physical Adsorption of Gases and Vapors in Micro-pores. Progress in Surface and Membrane Science. Elsevier, Amsterdam. 1–70. https://doi.org/10.1016/b978-0-12-571809-7.50006-1
    Garum, M., Glover, P. W. J., Lorinczi, P., et al., 2020. Micro- and Nano-Scale Pore Structure in Gas Shale Using Xμ-CT and FIB-SEM Techniques. Energy & Fuels, 34(10): 12340–12353. https://doi.org/10.1021/acs.energyfuels.0c02025
    Gasparik, M., Bertier, P., Gensterblum, Y., et al., 2014. Geological Controls on the Methane Storage Capacity in Organic-Rich Shales. International Journal of Coal Geology, 123: 34–51. https://doi.org/10.1016/j.coal.2013.06.010
    Gasparik, M., Ghanizadeh, A., Bertier, P., et al., 2012. High-Pressure Methane Sorption Isotherms of Black Shales from the Netherlands. Energy & Fuels, 26(8): 4995–5004. https://doi.org/10.1021/ef300405g
    Guo, X. W., Qin, Z. J., Yang, R., et al., 2019. Comparison of Pore Systems of Clay-Rich and Silica-Rich Gas Shales in the Lower Silurian Longmaxi Formation from the Jiaoshiba Area in the Eastern Sichuan Basin, China. Marine and Petroleum Geology, 101: 265–280. https://doi.org/10.1016/j.marpetgeo.2018.11.038
    Guo, T. L., 2013. Evaluation of Highly Thermally Mature Shale-Gas Reservoirs in Complex Structural Parts of the Sichuan Basin. Journal of Earth Science, 24(6): 863–873. https://doi.org/10.1007/s12583-013-0384-4
    Guo, T. L., Zhang, H. R., 2014. Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin. Petroleum Exploration and Development, 41(1): 31–40. https://doi.org/10.1016/s1876-3804(14)60003-3
    Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325–1346. https://doi.org/10.1306/02141312091
    Hao, F., Guo, T. L., Zhu, Y. M., et al., 2008. Evidence for Multiple Stages of Oil Cracking and Thermochemical Sulfate Reduction in the Puguang Gas Field, Sichuan Basin, China. AAPG Bulletin, 92(5): 611–637. https://doi.org/10.1306/01210807090
    Han, Y. F., Misra, S., Wang, H. M., et al., 2019. Hydrocarbon Saturation in a Lower-Paleozoic Organic-Rich Shale Gas Formation Based on Markov-Chain Monte Carlo Stochastic Inversion of Broadband Electromagnetic Dispersion Logs. Fuel, 243: 645–658. https://doi.org/10.1016/j.fuel.2018.11.120
    Hill, R. J., Zhang, E. T., Katz, B. J., et al., 2007. Modeling of Gas Generation from the Barnett Shale, Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 501–521. https://doi.org/10.1306/12060606063
    Huang, W. M., Liu, S. G., Ma, W. X., et al., 2011. Shale Gas Exploration Prospect of Lower Paleozoic in Southeastern Sichuan and Western Hubei-Eastern Chongqing Areas, China. Geological Bulletin of China, 30(S1): 364–371. https://doi.org/10.1007/s11589-011-0776-4 (in Chinese with English Abstract)
    Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475–499. https://doi.org/10.1306/12190606068
    Ji, L. M., Zhang, T. W., Milliken, K. L., et al., 2012. Experimental Investigation of Main Controls to Methane Adsorption in Clay-Rich Rocks. Applied Geochemistry, 27(12): 2533–2545. https://doi.org/10.1016/j.apgeochem.2012.08.027
    Krooss, B. M., van Bergen, F., Gensterblum, Y., et al., 2002. High-Pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture-Equilibrated Pennsylvanian Coals. International Journal of Coal Geology, 51(2): 69–92. https://doi.org/10.1016/s0166-5162(02)00078-2
    Lane, H. S., Lancaster, D. E., Watson, A. T., 1991. Characterizing the Role of Desorption in Gas Production from Devonian Shales. Energy Sources, 13(3): 337–359. https://doi.org/10.1080/00908319108908993
    Levy, J. H., Day, S. J., Killingley, J. S., 1997. Methane Capacities of Bowen Basin Coals Related to Coal Properties. Fuel, 76(9): 813–819. https://doi.org/10.1016/s0016-2361(97)00078-1
    Ma, Y. S., Cai, X. Y., Guo, T. L., 2007. The Controlling Factors of Oil and Gas Charging and Accumulation of Puguang Gas Field in the Sichuan Basin. Chinese Science Bulletin, 52(1): 193–200. https://doi.org/10.1007/s11434-007-6007-7
    Montgomery, S. L., Jarvie, D. M., Bowker, K. A., et al., 2005. Mississippian Barnett Shale, Fort Worth Basin, North-Central Texas: Gas-Shale Play with Multi-Trillion Cubic Foot Potential. AAPG Bulletin, 89(2): 155–175. https://doi.org/10.1306/09170404042
    Rexer, T. F., Mathia, E. J., Aplin, A. C., et al., 2014. High-Pressure Methane Adsorption and Characterization of Pores in Posidonia Shales and Isolated Kerogens. Energy & Fuels, 28(5): 2886–2901. https://doi.org/10.1021/ef402466m
    Rodriguez, N. D., Philp, R. P., 2010. Geochemical Characterization of Gases from the Mississippian Barnett Shale, Fort Worth Basin, Texas. AAPG Bulletin, 94(11): 1641–1656. https://doi.org/10.1306/04061009119
    Ross, D. J. K., Marc Bustin, R., 2009. The Importance of Shale Composition and Pore Structure Upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916–927. https://doi.org/10.1016/j.marpetgeo.2008.06.004
    Ross, D. J. K., Bustin, R. M., 2008. Characterizing the Shale Gas Resource Potential of Devonian–Mississippian Strata in the Western Canada Sedimentary Basin: Application of an Integrated Formation Evaluation. AAPG Bulletin, 92(1): 87–125. https://doi.org/10.1306/09040707048
    Strąpoć, D., Mastalerz, M., Schimmelmann, A., et al., 2010. Geochemical Constraints on the Origin and Volume of Gas in the New Albany Shale (Devonian–Mississippian), Eastern Illinois Basin. AAPG Bulletin, 94(11): 1713–1740. https://doi.org/10.1306/06301009197
    Su, W. B., 1999. On the ordovician-Silurian Boundary at the Viewpoint of Sequence Stratigraphy. Geology and Mineral Resources of South China, 15(1): 1–12 (in Chinese with English Abstract)
    Tang, X., Ripepi, N., Stadie, N. P., et al., 2016. A Dual-Site Langmuir Equation for Accurate Estimation of High Pressure Deep Shale Gas Resources. Fuel, 185: 10–17. https://doi.org/10.1016/j.fuel.2016.07.088
    Tathed, P., Han, Y. F., Misra, S., 2018. Hydrocarbon Saturation in Bakken Petroleum System Based on Joint Inversion of Resistivity and Dielectric Dispersion Logs. Fuel, 233: 45–55. https://doi.org/10.1016/j.fuel.2018.06.019
    Thommes, M., Kaneko, K., Neimark, A. V., et al., 2015. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9/10): 1051–1069. https://doi.org/10.1515/pac-2014-1117
    Wang, S. B., Song, Z. G., Cao, T. T., et al., 2013. The Methane Sorption Capacity of Paleozoic Shales from the Sichuan Basin, China. Marine and Petroleum Geology, 44: 112–119. https://doi.org/10.1016/j.marpetgeo.2013.03.007
    Wang, S. J., Wang, L. S., Huang, J. L., et al., 2009. Silurian Shale Gas Forming Conditions on the Yangtze area. Natural Gas Industry, 29: 45–50. https://doi.org/10.3787/j.issn.1000-0976.2009.0 (in Chinese with English Abstract)
    Wu, Z. R., He, S., Han, Y. J., et al., 2020. Effect of Organic Matter Type and Maturity on Organic Matter Pore Formation of Transitional Facies Shales: A Case Study on Upper Permian Longtan and Dalong Shales in Middle Yangtze Region, China. Journal of Earth Science, 31(2): 368–384. https://doi.org/10.1007/s12583-019-1237-6
    Zeng, X. L., Liu, S. G., Huang, W. M., et al., 2011. Comparison of Silurian Longmaxi Formation Shale of Sichuan Basin in China and Carboniferous Barnett Formation Shale of Fort Worth Basin in United States. Geological Bulletin of China, 30(S1): 372–384. https://doi.org/10.1007/s12182-011-0118-0 (in Chinese with English Abstract)
    Zhang, B., Yan, D. T., Drawarh, H. J., et al., 2020. Formation Mechanism and Numerical Model of Quartz in Fine-Grained Organic-Rich Shales: a Case Study of Wufeng and Longmaxi Formations in Western Hubei Province, South China. Journal of Earth Science, 31(2): 354–367. https://doi.org/10.1007/s12583-019-1247-4
    Zhang, T. W., Ellis, G. S., Ruppel, S. C., et al., 2012. Effect of Organic-Matter Type and Thermal Maturity on Methane Adsorption in Shale-Gas Systems. Organic Geochemistry, 47: 120–131. https://doi.org/10.1016/j.orggeochem.2012.03.012
    Zhou, W. D., Xie, S. Y., Bao, Z. Y., et al., 2019. Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. Journal of Earth Science, 30(5): 879–892. https://doi.org/10.1007/s12583-019-1013-7
    Zhu, B., Jiang, S. Y., Pi, D. H., et al., 2018. Trace Elements Characteristics of Black Shales from the Ediacaran Doushantuo Formation, Hubei Province, South China: Implications for Redox and Open Vs. Restricted Basin Conditions. Journal of Earth Science, 29(2): 342–352. https://doi.org/10.1007/s12583-017-0907-5
    Zhu, G. Y., Wang, T. S., Xie, Z. Y., et al., 2015. Giant Gas Discovery in the Precambrian Deeply Buried Reservoirs in the Sichuan Basin, China: Implications for Gas Exploration in Old Cratonic Basins. Precambrian Research, 262: 45–66. https://doi.org/10.1016/j.precamres.2015.02.023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(81) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return