Abudeif, A. M., Attia, M. M., Radwan, A. E., 2016. Petrophysical and Petrographic Evaluation of Sidri Member of Belayim Formation, Badri Field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 115: 108-120. https://doi.org/10.1016/j.jafrearsci.2015.11.028 |
Ahmadi, M. A., Chen, Z. X., 2019. Comparison of Machine Learning Methods for Estimating Permeability and Porosity of Oil Reservoirs via Petro-Physical Logs. Petroleum, 5(3): 271-284. https://doi.org/10.1016/j.petlm.2018.06.002 |
Ahmadi, M. A., Zendehboudi, S., Lohi, A., et al., 2013. Reservoir Permeability Prediction by Neural Networks Combined with Hybrid Genetic Algorithm and Particle Swarm Optimization. Geophysical Prospecting, 61(3): 582-598. https://doi.org/10.1111/j.1365-2478.2012.01080.x |
Al-Anazi, A. F., Gates, I. D., 2012. Support Vector Regression to Predict Porosity and Permeability: Effect of Sample Size. Computers & Geosciences, 39(1): 64-76. https://doi.org/10.1016/j.cageo.2011.06.011 |
Asoodeh, M., Bagheripour, P., 2013. Core Porosity Estimation through Different Training Approaches for Neural Network: Back-Propagation Learning vs. Genetic Algorithm. International Journal of Computer Applications, 63(5): 11-15. https://doi.org/10.5120/10461-5172 |
Bagheripour, P., 2014. Committee Neural Network Model for Rock Permeability Prediction. Journal of Applied Geophysics, 104: 142-148. https://doi.org/10.1016/j.jappgeo.2014.03.001 |
Bhatt, A., Helle, H. B., 2002. Committee Neural Networks for Porosity and Permeability Prediction from Well Logs. Geophysical Prospecting, 50(6): 645-660. https://doi.org/10.1046/j.1365-2478.2002.00346.x |
Cao, J. H., Yang, J. C., Wang, Y., et al., 2015. Extreme Learning Machine for Reservoir Parameter Estimation in Heterogeneous Reservoir. Mathematical Problems in Engineering, 2: 1-10. https://doi.org/10.1155/2015/287816 |
Chen, L., Lu, Y. C., Wu, J. Y., et al., 2015. Sedimentary Facies and Depositional Model of Shallow Water Delta Dominated by Fluvial for Chang 8 Oil-Bearing Group of Yanchang Formation in Southwestern Ordos Basin, China. Journal of Central South University, 22(12): 4749-4763. https://doi.org/10.1007/s11771-015-3027-3 |
Chen, W., Yang, L. Q., Zha, B., et al., 2020. Deep Learning Reservoir Porosity Prediction Based on Multilayer Long Short-Term Memory Network. Geophysics, 85(4): WA213-WA225. https://doi.org/10.1190/geo2019-0261.1 |
Chen, Y. F., Yu, G. Y., Long, Y., et al., 2019. Application of Radial Basis Function Artificial Neural Network to Quantify Interfacial Energies Related to Membrane Fouling in a Membrane Bioreactor. Bioresource Technology, 293: 122103. https://doi.org/10.1016/j.biortech.2019.122103 |
Das, B., Chatterjee, R., 2018. Well Log Data Analysis for Lithology and Fluid Identification in Krishna-Godavari Basin, India. Arabian Journal of Geosciences, 11(10): 1-12. https://doi.org/10.1007/s12517-018-3587-2 |
Deb, K., Pratap, A., Agarwal, S., et al., 2002. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 6(2): 182-197. https://doi.org/10.1109/4235.996017 |
Ding, Y. R., Cai, Y. J., Sun, P. D., et al., 2014. The Use of Combined Neural Networks and Genetic Algorithms for Prediction of River Water Quality. Journal of Applied Research and Technology, 12(3): 493-499. https://doi.org/10.1016/S1665-6423(14)71629-3 |
Dorrington, K. P., Link, C. A., 2004. Genetic-Algorithm/Neural-Network Approach to Seismic Attribute Selection for Well-Log Prediction. Geophysics, 69(1): 212-221. https://doi.org/10.1190/1.1649389 |
Ehrenberg, S. N., Nadeau, P. H., Steen, O., 2008. A Megascale View of Reservoir Quality in Producing Sandstones from the Offshore Gulf of Mexico. AAPG Bulletin, 92(2): 145-164. https://doi.org/10.1306/09280707062 |
Elkatatny, S., Mahmoud, M., 2018. Development of New Correlations for the Oil Formation Volume Factor in Oil Reservoirs Using Artificial Intelligent White Box Technique. Petroleum, 4(2): 178-186. https://doi.org/10.1016/j.petlm.2017.09.009 |
Félix, L. C. M., Muñoz, L. A. B., 2005. Representing a Relation between Porosity and Permeability Based on Inductive Rules. Journal of Petroleum Science and Engineering, 47(1/2): 23-34. https://doi.org/10.1016/j.petrol.2004.11.008 |
Goh, A. T. C., 1995. Back-Propagation Neural Networks for Modeling Complex Systems. Artificial Intelligence in Engineering, 9(3): 143-151. https://doi.org/10.1016/0954-1810(94)00011-S |
Gu, Y. F., Bao, Z. D., Lin, Y. B., et al., 2017. The Porosity and Permeability Prediction Methods for Carbonate Reservoirs with Extremely Limited Logging Data: Stepwise Regression vs. N-Way Analysis of Variance. Journal of Natural Gas Science and Engineering, 42: 99-119. https://doi.org/10.1016/j.jngse.2017.03.010 |
Gupta, D., Ghafir, S., 2012. An Overview of Methods Maintaining Diversity in Genetic Algorithms. International Journal of Emerging Technology and Advanced Engineering, 2(5): 56-60 http://www.researchgate.net/publication/285852995_An_Overview_of_methods_maintaining_Diversity_in_Genetic_Algorithms |
Harris, J. R., Grunsky, E. C., 2015. Predictive Lithological Mapping of Canada's North Using Random Forest Classification Applied to Geophysical and Geochemical Data. Computers & Geosciences, 80: 9-25. https://doi.org/10.1016/j.cageo.2015.03.013 |
Helle, H. B., Bhatt, A., Ursin, B., 2001. Porosity and Permeability Prediction from Wireline Logs Using Artificial Neural Networks: A North Sea Case Study. Geophysical Prospecting, 49(4): 431-444. https://doi.org/10.1046/j.1365-2478.2001.00271.x |
Janiga, D., Czarnota, R., Stopa, J., et al., 2019. Self-Adapt Reservoir Clusterization Method to Enhance Robustness of Well Placement Optimization. Journal of Petroleum Science and Engineering, 173: 37-52. https://doi.org/10.1016/j.petrol.2018.10.005 |
Ji, L. M., Yan, K., Meng, F. W., et al., 2010. The Oleaginous Botryococcus from the Triassic Yanchang Formation in Ordos Basin, Northwestern China: Morphology and Its Paleoenvironmental Significance. Journal of Asian Earth Sciences, 38(5): 175-185. https://doi.org/10.1016/j.jseaes.2009.12.010 |
Kamel, M. H., Mohamed, M. M., 2006. Effective Porosity Determination in Clean/Shaly Formations from Acoustic Logs with Applications. Journal of Petroleum Science and Engineering, 51(3/4): 267-274. https://doi.org/10.1016/j.petrol.2006.01.007 |
Kaydani, H., Mohebbi, A., Baghaie, A., 2011. Permeability Prediction Based on Reservoir Zonation by a Hybrid Neural Genetic Algorithm in One of the Iranian Heterogeneous Oil Reservoirs. Journal of Petroleum Science and Engineering, 78(2): 497-504. https://doi.org/10.1016/j.petrol.2011.07.017 |
Kaydani, H., Mohebbi, A., Eftekhari, M., 2014. Permeability Estimation in Heterogeneous Oil Reservoirs by Multi-Gene Genetic Programming Algorithm. Journal of Petroleum Science and Engineering, 123: 201-206. https://doi.org/10.1016/j.petrol.2014.07.035 |
Keane, A. J., 1995. Genetic Algorithm Optimization of Multi-Peak Problems: Studies in Convergence and Robustness. Artificial Intelligence in Engineering, 9(2): 75-83. https://doi.org/10.1016/0954-1810(95)95751-q |
Konaté, A. A., Pan, H. P., Khan, N., et al., 2015. Generalized Regression and Feed-Forward Back Propagation Neural Networks in Modelling Porosity from Geophysical Well Logs. Journal of Petroleum Exploration and Production Technology, 5(2): 157-166. https://doi.org/10.1007/s13202-014-0137-7 |
Leung, F. H. F., Lam, H. K., Ling, S. H., et al., 2003. Tuning of the Structure and Parameters of a Neural Network Using an Improved Genetic Algorithm. IEEE Transactions on Neural Networks, 14(1): 79-88. https://doi.org/10.1109/tnn.2002.804317 |
Li, D., Li, R., Zhu, Z., et al., 2017. Rare Earth Elements Geochemistry Characteristics and Their Geological Implications of Lacustrine Oil Shale from Chang 7 Oil Layer in Southern Ordos Basin, China. Geological Journal, 52: 119-131. https://doi.org/10.1002/gj.2980 |
Li, Y., Kang, Z. J., Xue, Z. J., et al., 2018. Theories and Practices of Carbonate Reservoirs Development in China. Petroleum Exploration and Development, 45(4): 712-722. https://doi.org/10.1016/s1876-3804(18)30074-0 |
Li, Z. X., Qu, X. F., Liu, W. T., et al., 2015. Development Modes of Triassic Yanchang Formation Chang 7 Member Tight Oil in Ordos Basin, NW China. Petroleum Exploration and Development, 42(2): 241-246. https://doi.org/10.1016/S1876-3804(15)30011-2 |
Lin, L., Zhang, W., Ma, Z. Y., et al., 2020. Porosity Estimation of Abradable Seal Coating with an Optimized Support Vector Regression Model Based on Multi-Scale Ultrasonic Attenuation Coefficient. NDT & E International, 113: 102272. https://doi.org/10.1016/j.ndteint.2020.102272 |
Lin, S. C., Ting, C. J., 1996. Drill Wear Monitoring Using Neural Networks. International Journal of Machine Tools and Manufacture, 36(4): 465-475. https://doi.org/10.1016/0890-6955(95)00059-3 |
Liu, S. Y., Zolfaghari, A., Sattarin, S., et al., 2019. Application of Neural Networks in Multiphase Flow through Porous Media: Predicting Capillary Pressure and Relative Permeability Curves. Journal of Petroleum Science and Engineering, 180: 445-455. https://doi.org/10.1016/j.petrol.2019.05.041 |
Lü, P., Yuan, L., Zhang, J. F., 2009. Cloud Theory-Based Simulated Annealing Algorithm and Application. Engineering Applications of Artificial Intelligence, 22(4/5): 742-749. https://doi.org/10.1016/j.engappai.2009.03.003 |
Majdi, A., Beiki, M., 2010. Evolving Neural Network Using a Genetic Algorithm for Predicting the Deformation Modulus of Rock Masses. International Journal of Rock Mechanics and Mining Sciences, 47(2): 246-253. https://doi.org/10.1016/j.ijrmms.2009.09.011 |
Matin, S. S., Chelgani, S. C., 2016. Estimation of Coal Gross Calorific Value Based on Various Analyses by Random Forest Method. Fuel, 177: 274-278. https://doi.org/10.1016/j.fuel.2016.03.031 |
Matin, S. S., Farahzadi, L., Makaremi, S., et al., 2018. Variable Selection and Prediction of Uniaxial Compressive Strength and Modulus of Elasticity by Random Forest. Applied Soft Computing, 70: 980-987. https://doi.org/10.1016/j.asoc.2017.06.030 |
Mohaghegh, S., Arefi, R., Ameri, S., et al., 1995. Design and Development of an Artificial Neural Network for Estimation of Formation Permeability. SPE Computer Applications, 7(6): 151-154. https://doi.org/10.2118/28237-pa |
Morris, G. M., Goodsell, D. S., Halliday, R. S., et al., 1998. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. Journal of Computational Chemistry, 19(14): 1639-1662. https://doi.org/10.1002/(sici)1096-987x(19981115)19:141639:aid-jcc10>3.0.co;2-b doi: 10.1002/(sici)1096-987x(19981115)19:141639:aid-jcc10>3.0.co;2-b |
Nur, A., Mavko, G., Dvorkin, J., et al., 1998. Critical Porosity: A Key to Relating Physical Properties to Porosity in Rocks. The Leading Edge, 17(3): 357-362. https://doi.org/10.1190/1.1437977 |
Onalo, D., Oloruntobi, O., Adedigba, S., et al., 2019. Dynamic Data Driven Sonic Well Log Model for Formation Evaluation. Journal of Petroleum Science and Engineering, 175: 1049-1062. https://doi.org/10.1016/j.petrol.2019.01.042 |
Paasche, H., Tronicke, J., Holliger, K., et al., 2006. Integration of Diverse Physical-Property Models: Subsurface Zonation and Petrophysical Parameter Estimation Based on Fuzzy c-Means Cluster Analyses. Geophysics, 71(3): H33-H44. https://doi.org/10.1190/1.2192927 |
Panda, S. S., Singh, A. K., Chakraborty, D., et al., 2006. Drill Wear Monitoring Using Back Propagation Neural Network. Journal of Materials Processing Technology, 172(2): 283-290. https://doi.org/10.1016/j.jmatprotec.2005.10.021 |
Paxton, S. T., Szabo, J. O., Ajdukiewicz, J. M., et al., 2002. Construction of an Intergranular Volume Compaction Curve for Evaluating and Predicting Compaction and Porosity Loss in Rigid-Grain Sandstone Reservoirs. AAPG Bulletin, 86(12): 2047-2067 |
Ren, X. X., Hou, J. G., Song, S. H., et al., 2019. Lithology Identification Using Well Logs: A Method by Integrating Artificial Neural Networks and Sedimentary Patterns. Journal of Petroleum Science and Engineering, 182: 106336. https://doi.org/10.1016/j.petrol.2019.106336 |
Ross, D. J. K., Bustin, R. M., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004 |
Rumpf, M., Tronicke, J., 2014. Predicting 2D Geotechnical Parameter Fields in Near-Surface Sedimentary Environments. Journal of Applied Geophysics, 101: 95-107. https://doi.org/10.1016/j.jappgeo.2013.12.002 |
Ruuth, S. J., 2006. Global Optimization of Explicit Strong-Stability-Preserving Runge-Kutta Methods. Mathematics of Computation, 75(253): 183-208. https://doi.org/10.1090/s0025-5718-05-01772-2 |
Saemi, M., Ahmadi, M., Varjani, A. Y., 2007. Design of Neural Networks Using Genetic Algorithm for the Permeability Estimation of the Reservoir. Journal of Petroleum Science and Engineering, 59(1/2): 97-105. https://doi.org/10.1016/j.petrol.2007.03.007 |
Shi, J. A., Wang, J. P., Mao, M. L., et al., 2003. Reservoir Sandstone Diagenesis of Member 6 to 8 in Yanchang Formation (Triassic), Xifeng Oilfield, Ordos Basin. Acta Sedimentologica Sinica, 21(3): 373-380. https://doi.org/10.1007/BF02873154 (in Chinese with English Abstract) |
Soepangkat, B. O. P., Pramujati, B., Effendi, M. K., et al., 2019. Multi-Objective Optimization in Drilling Kevlar Fiber Reinforced Polymer Using Grey Fuzzy Analysis and Backpropagation Neural Network-Genetic Algorithm (BPNN-GA) Approaches. International Journal of Precision Engineering and Manufacturing, 20(4): 593-607. https://doi.org/10.1007/s12541-019-00017-z |
Tan, M. J., Xiao, C. W., Han, C., et al., 2020. Fluid Identification Method and Adaptability Analysis of Ultra-Low Porosity Tight Sandstone in Kuqa Depression, Tarim Basin. Geophysics. https://doi.org/10.20944/preprints202008.0559.v1 |
Tsanas, A., Xifara, A., 2012. Accurate Quantitative Estimation of Energy Performance of Residential Buildings Using Statistical Machine Learning Tools. Energy and Buildings, 49: 560-567. https://doi.org/10.1016/j.enbuild.2012.03.003 |
van der Baan, M., Jutten, C., 2000. Neural Networks in Geophysical Applications. Geophysics, 65(4): 1032-1047 doi: 10.1190/1.1444797 |
Wang, G. W., Chang, X. C., Yin, W., et al., 2017. Impact of Diagenesis on Reservoir Quality and Heterogeneity of the Upper Triassic Chang 8 Tight Oil Sandstones in the Zhenjing Area, Ordos Basin, China. Marine and Petroleum Geology, 83: 84-96. https://doi.org/10.1016/j.marpetgeo.2017.03.008 |
Wang, H. J., Wu, W., Chen, T., et al., 2019. An Improved Neural Network for TOC, S1 and S2 Estimation Based on Conventional Well Logs. Journal of Petroleum Science and Engineering, 176: 664-678. https://doi.org/10.1016/j.petrol.2019.01.096 |
Wang, P., Peng, S. P., 2019. On a New Method of Estimating Shear Wave Velocity from Conventional Well Logs. Journal of Petroleum Science and Engineering, 180: 105-123. https://doi.org/10.1016/j.petrol.2019.05.033 |
Wang, Y., Lu, C. J., Zuo, C. P., 2015. Coal Mine Safety Production Forewarning Based on Improved BP Neural Network. International Journal of Mining Science and Technology, 25(2): 319-324. https://doi.org/10.1016/j.ijmst.2015.02.023 |
Wong, P. M., Gedeon, T. D., Taggart, I. J., 1995. An Improved Technique in Porosity Prediction: A Neural Network Approach. IEEE Transactions on Geoscience and Remote Sensing, 33(4): 971-980. https://doi.org/10.1109/36.406683 |
Xi, K. L., Cao, Y. C., Liu, K. Y., et al., 2019. Diagenesis of Tight Sandstone Reservoirs in the Upper Triassic Yanchang Formation, Southwestern Ordos Basin, China. Marine and Petroleum Geology, 99: 548-562. https://doi.org/10.1016/j.marpetgeo.2018.10.031 |
Yang, M. H., Li, L., Zhou, J., et al., 2015. Mesozoic Structural Evolution of the Hangjinqi Area in the Northern Ordos Basin, North China. Marine and Petroleum Geology, 66: 695-710. https://doi.org/10.1016/j.marpetgeo.2015.07.014 |
Yang, Y., Guo, C. H., Yuan, X. H., 2005. Application of BP Neural Network Improved by Genetic Algorithm in Log Interpretation in Luodai Gas Field. Natural Gas Industry, 25(8): 47-49. https://doi.org/10.1360/gs050303 (in Chinese with English Abstract) |
Yao, Y. B., Liu, D. M., Che, Y., et al., 2010. Petrophysical Characterization of Coals by Low-Field Nuclear Magnetic Resonance (NMR). Fuel, 89(7): 1371-1380. https://doi.org/10.1016/j.fuel.2009.11.005 |
You, H. H., Ma, Z. Y., Tang, Y. J., et al., 2017. Comparison of ANN (MLP), ANFIS, SVM, and RF Models for the Online Classification of Heating Value of Burning Municipal Solid Waste in Circulating Fluidized Bed Incinerators. Waste Management, 68: 186-197. https://doi.org/10.1016/j.wasman.2017.03.044 |
Yu, S. W., Zhu, K. J., Diao, F. Q., 2008. A Dynamic All Parameters Adaptive BP Neural Networks Model and Its Application on Oil Reservoir Prediction. Applied Mathematics and Computation, 195(1): 66-75. https://doi.org/10.1016/j.amc.2007.04.088 |
Zeng, L. B., Li, X. Y., 2009. Fractures in Sandstone Reservoirs with Ultra-Low Permeability: A Case Study of the Upper Triassic Yanchang Formation in the Ordos Basin, China. AAPG Bulletin, 93(4): 461-477. https://doi.org/10.1306/09240808047 |
Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2019. Relations of Uranium Enrichment and Carbonaceous Debris within the Daying Uranium Deposit, Northern Ordos Basin. Journal of Earth Science, 30(1): 142-157. https://doi.org/10.1007/s12583-017-0952-0 |
Zhao, X., Liu, C., Wang, J., et al., 2020. Provenance Analyses of Lower Cretaceous Strata in the Liupanshan Basin: From Paleocurrents Indicators, Conglomerate Clast Compositions, and Zircon U-Pb Geochronology. Journal of Earth Science, 31(4): 757-771. https://doi.org/10.1007/s12583-020-1324-8 |
Zhong, Z., Carr, T. R., 2016. Application of Mixed Kernels Function (MKF) Based Support Vector Regression Model (SVR) for CO2-Reservoir Oil Minimum Miscibility Pressure Prediction. Fuel, 184: 590-603. https://doi.org/10.1016/j.fuel.2016.07.030 |
Zhong, Z., Carr, T. R., Wu, X. M., et al., 2019. Application of a Convolutional Neural Network in Permeability Prediction: A Case Study in the Jacksonburg-Stringtown Oil Field, West Virginia, USA. Geophysics, 84(6): B363-B373. https://doi.org/10.1190/geo2018-0588.1 |
Zhou, Y., Ji, Y. L., Xu, L. M., et al., 2016. Controls on Reservoir Heterogeneity of Tight Sand Oil Reservoirs in Upper Triassic Yanchang Formation in Longdong Area, Southwest Ordos Basin, China: Implications for Reservoir Quality Prediction and Oil Accumulation. Marine and Petroleum Geology, 78: 110-135. https://doi.org/10.1016/j.marpetgeo.2016.09.006 |
Zou, C. N., Zhao, Q., Dong, D. Z., et al., 2017. Geological Characteristics, Main Challenges and Future Prospect of Shale Gas. Natural Gas Geoscience, 28(12): 1781-1796 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-TDKX201712001.htm |