Alan, İ., Balcı, V., Elibol, H., 2014. Türkiye Jeoloji Haritaları, Silifke. Maden Tetkik Arama Jeoloji Etüdleri Dairesi Yayınları, 222: 31-32 (in Turkish with English Abstract) |
Anovitz, L. M., Cole, D. R., 2015. Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80(1): 61-164. https://doi.org/10.2138/rmg.2015.80.04 |
Avnir, D., Jaroniec, M., 1989. An Isotherm Equation for Adsorption on Fractal Surfaces of Heterogeneous Porous Materials. Langmuir, 5(6): 1431-1433. https://doi.org/10.1021/la00090a032 |
Barrett, E. P., Joyner, L. G., Halenda, P. P., 1951. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1): 373-380. https://doi.org/10.1021/ja01145a126 |
Bernal, J. L. P., Bello, M. A., 2001. Fractal Geometry and Mercury Porosimetry: Comparison and Application of Proposed Models on Building Stones. Applied Surface Science, 185(1/2): 99-107. https://doi.org/10.1016/s0169-4332(01)00649-3 |
Beydoun, Z. R., 1991. Arabian Plate Hydrocarbon Geology and Potential—A Plate Tectonic Approach. AAPG Stud. Geol. , 33: 77 http://www.mendeley.com/research/arabian-plate-hydrocarbon-geology-potential-plate-tectonic-approach/ |
Brogowski, Z., Kwasowski, W., 2015. An Attempt of Using Soil Grain Size in Calculating the Capacity of Water Unavailable to Plants/Próba Wykorzystania Uziarnienia Gleby do Obliczania Zawartości Wody Niedostępnej Dla Roślin. Soil Science Annual, 66(1): 21-28. https://doi.org/10.1515/ssa-2015-0015 |
Brunauer, S., Deming, L. S., Deming, W. E., et al., 1940. On a Theory of the van Der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7): 1723-1732. https://doi.org/10.1021/ja01864a025 |
Brunauer, S., Emmett, P. H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2): 309-319. https://doi.org/10.1021/ja01269a023 |
Chen, Y., Chu, C., Zhou, Y. C., et al., 2011. Reversible Pore-Structure Evolution in Hollow Silica Nanocapsules: Large Pores for SiRNA Delivery and Nanoparticle Collecting. Porous Nanoparticles, 7(20): 2935-2944. https://doi.org/10.1002/smll.201101055 |
Civan, F., 2015. Reservoir Formation Damage: 3rd Edition. Gulf Professional Publishing, Oklahoma. 1012 |
Clarkson, C. R., Solano, N., Bustin, R. M., et al., 2013. Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion. Fuel, 103: 606-616. https://doi.org/10.1016/j.fuel.2012.06.119 |
Cohan, L. H., 1938. Sorption Hysteresis and the Vapor Pressure of Concave Surfaces. Journal of the American Chemical Society, 60(2): 433-435. https://doi.org/10.1021/ja01269a058 |
Craig, F. F. Jr., 1971. The Reservoir Engineering Aspects of Waterflooding. SPE Monogr, 3: 12-44 http://www.researchgate.net/publication/48485747_The_Reservoir_Engineering_Aspects_of_Waterflooding |
Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26-31. https://doi.org/10.1016/j.coal.2012.08.004 |
Dathe, A., Eins, S., Niemeyer, J., et al., 2001. The Surface Fractal Dimension of the Soil-Pore Interface as Measured by Image Analysis. Geoderma, 103(1/2): 203-229. https://doi.org/10.1016/s0016-7061(01)00077-5 |
Dollimore, D., Heal, G. R., 2007. An Improved Method for the Calculation of Pore Size Distribution from Adsorption Data. Journal of Applied Chemistry, 14(3): 109-114. https://doi.org/10.1002/jctb.5010140302 |
Doner, Z., Kumral, M., Demirel, I. H., et al., 2019. Geochemical Characteristics of the Silurian Shales from the Central Taurides, Southern Turkey: Organic Matter Accumulation, Preservation and Depositional Environment Modeling. Marine and Petroleum Geology, 102: 155-175. https://doi.org/10.1016/j.marpetgeo.2018.12.042 |
EIA (Energy Information Administration), 2013. Annual Energy Outlook 2013. Government Printing Office, Washington DC. 60-62 http://digital.library.unt.edu/ark:/67531/metadc841459/metadata/ |
EIA (Energy Information Administration), 2019. International Energy Outlook 2019: With Projections to 2050. Government Printing Office, Washington DC http://www.census.gov/newsroom/cspan/world_energy/20130725_cspan_world_energy.pdf |
Epstein, N., 1989. On Tortuosity and the Tortuosity Factor in Flow and Diffusion through Porous Media. Chemical Engineering Science, 44(3): 777-779. https://doi.org/10.1016/0009-2509(89)85053-5 |
Fernø, M. A., Haugen, Å., Graue, A., 2011. Wettability Effects on the Matrix-Fracture Fluid Transfer in Fractured Carbonate Rocks. Journal of Petroleum Science and Engineering, 77(1): 146-153. https://doi.org/10.1016/j.petrol.2011.02.015 |
Flint, A. L., Flint, L. E., 2002. Particle Density. Methods of Soil Analysis: Part 4 Physical Methods. Soil Science Society of America, Madison. 229-240 |
Fu, H. J., Wang, X. Z., Zhang, L. X., et al., 2015. Investigation of the Factors that Control the Development of Pore Structure in Lacustrine Shale: A Case Study of Block X in the Ordos Basin, China. Journal of Natural Gas Science and Engineering, 26: 1422-1432. https://doi.org/10.1016/j.jngse.2015.07.025 |
Gao, H., Li, H. A., 2016. Pore Structure Characterization, Permeability Evaluation and Enhanced Gas Recovery Techniques of Tight Gas Sandstones. Journal of Natural Gas Science and Engineering, 28: 536-547. https://doi.org/10.1016/j.jngse.2015.12.018 |
Gao, Z. Y., Hu, Q. H., 2013. Estimating Permeability Using Median Pore-Throat Radius Obtained from Mercury Intrusion Porosimetry. Journal of Geophysics and Engineering, 10(2): 025014. https://doi.org/10.1088/1742-2132/10/2/025014 |
Gao, Z. Y., Hu, Q. H., 2016. Wettability of Mississippian Barnett Shale Samples at Different Depths: Investigations from Directional Spontaneous Imbibition. AAPG Bulletin, 100(1): 101-114. https://doi.org/10.1306/09141514095 |
Gates, C. H., Perfect, E., Lokitz, B. S., et al., 2018. Transient Analysis of Advancing Contact Angle Measurements on Polished Rock Surfaces. Advances in Water Resources, 119: 142-149. https://doi.org/10.1016/j.advwatres.2018.03.017 |
Gregg, S. J., Sing, K. S. W., 1982. Adsorption, Surface Area and Porosity. Academic Press, New York. 303 |
Hager, J., 1998. Steam Drying of Porous Media: [Dissertation]. Department of Chemical Engineering, Lund University, Lund |
Hu, Q. H., 2018. Quantifying Effective Porosity of Oil and Gas Reservoirs. AAPG Search and Discovery Article, 70376. https://doi.org/10.1306/70376hu2018 |
Hu, Q. H., Ewing, R. P., Dultz, S., 2012. Low Pore Connectivity in Natural Rock. Journal of Contaminant Hydrology, 133: 76-83. https://doi.org/10.1016/j.jconhyd.2012.03.006 |
Hu, Q. H., Ewing, R. P., Rowe, H. D., 2015. Low Nanopore Connectivity Limits Gas Production in Barnett Formation. Journal of Geophysical Research: Solid Earth, 120(12): 8073-8087. https://doi.org/10.1002/2015jb012103 |
Hu, Q. H., Kalteyer, R., Wang, J. Y., et al., 2019. Nano-Petrophysical Characterization of the Mancos Shale Formation in the San Juan Basin of Northwestern New Mexico, USA. Interpretation, 7(4): SJ45-SJ65. https://doi.org/10.1190/int-2018-0239.1 |
Hu, Q. H., Persoff, P., Wang, J. S. Y., 2001. Laboratory Measurement of Water Imbibition into Low-Permeability Welded Tuff. Journal of Hydrology, 242(1/2): 64-78. https://doi.org/10.1016/s0022-1694(00)00388-7 |
Hu, Q. H., Quintero, R. P., El-Sobky, H. F., et al., 2020. Coupled Nano-Petrophysical and Organic-Geochemical Study of the Wolfberry Play in Howard County, Texas USA. Marine and Petroleum Geology, 122: 104663. https://doi.org/10.1016/j.marpetgeo.2020.104663 |
Hu, Q. H., Wang, J. S. Y., 2003. Aqueous-Phase Diffusion in Unsaturated Geologic Media: A Review. Critical Reviews in Environmental Science and Technology, 33(3): 275-297. https://doi.org/10.1080/10643380390814488 |
Hu, Q. H., Zhang, Y. X., Meng, X. H., et al., 2017. Characterization of Micro-Nano Pore Networks in Shale Oil Reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China. Petroleum Exploration and Development, 44(5): 720-730. https://doi.org/10.1016/s1876-3804(17)30083-6 |
Hu, Q. H., Zhou, W., Huggins, P., et al., 2018. Pore Structure and Fluid Uptake of the Springer/Goddard Shale Formation in Southeastern Oklahoma, USA. Geofluids, 2018: 1-16. https://doi.org/10.1155/2018/5381735 |
Hunt, A., Ewing, R., Ghanbarian, B., 2014. Percolation Theory for Flow in Porous Media. Springer, Switzerland doi: 10.1007/b136727 |
Husseini, M. I., 1990. The Cambro-Ordovician Arabian and Adjoining Plates: A Glacio-Eustatic Model. Journal of Petroleum Geology, 13(3): 267-288. https://doi.org/10.1111/j.1747-5457.1990.tb00847.x |
Ismail, I. M. K., Pfeifer, P., 1994. Fractal Analysis and Surface Roughness of Nonporous Carbon Fibers and Carbon Blacks. Langmuir, 10(5): 1532-1538. https://doi.org/10.1021/la00017a035 |
Jaroniec, M., 1995. Evaluation of the Fractal Dimension from a Single Adsorption Isotherm. Langmuir, 11(6): 2316-2317. https://doi.org/10.1021/la00006a076 |
Jarvie, D. M., 2012. Shale Resource Systems for Oil and Gas: Part 2—Shale-Oil Resource Systems. Breyer, J. A., ed., Shale Reservoirs—Giant Resources for the 21st Century. AAPG Memoir, 97: 89-119 http://ci.nii.ac.jp/naid/20000775540 |
Javadpour, F., Fisher, D., Unsworth, M., 2007. Nanoscale Gas Flow in Shale Gas Sediments. Journal of Canadian Petroleum Technology, 46(10): 55-61. https://doi.org/10.2118/07-10-06 |
Javaheri, A., Dehghanpour, H., Wood, J. M., 2017. Tight Rock Wettability and Its Relationship to other Petrophysical Properties: A Montney Case Study. Journal of Earth Science, 28(2): 381-390. https://doi.org/10.1007/s12583-017-0725-9 |
Jeppsson, L., 1990. An Oceanic Model for Lithological and Faunal Changes Tested on the Silurian Record. Journal of the Geological Society, 147(4): 663-674. https://doi.org/10.1144/gsjgs.147.4.0663 |
Katz, A. J., Thompson, A. H., 1986. Quantitative Prediction of Permeability in Porous Rock. Physical Review B, Condensed Matter, 34(11): 8179-8181. https://doi.org/10.1103/physrevb.34.8179 |
Kibria, M. G., Hu, Q. H., Liu, H., et al., 2018. Pore Structure, Wettability, and Spontaneous Imbibition of Woodford Shale, Permian Basin, West Texas. Marine and Petroleum Geology, 91: 735-748. https://doi.org/10.1016/j.marpetgeo.2018.02.001 |
Krohn, C. E., 1988. Fractal Measurements of Sandstones, Shales, and Carbonates. Journal of Geophysical Research Atmospheres, 93(B4): 3297. https://doi.org/10.1029/jb093ib04p03297 |
Kuila, U., McCarty, D. K., Derkowski, A., et al., 2014. Nano-Scale Texture and Porosity of Organic Matter and Clay Minerals in Organic-Rich Mudrocks. Fuel, 135: 359-373. https://doi.org/10.1016/j.fuel.2014.06.036 |
Labani, M. M., Rezaee, R., Saeedi, A., et al., 2013. Evaluation of Pore Size Spectrum of Gas Shale Reservoirs Using Low Pressure Nitrogen Adsorption, Gas Expansion and Mercury Porosimetry: A Case Study from the Perth and Canning Basins, Western Australia. Journal of Petroleum Science and Engineering, 112: 7-16. https://doi.org/10.1016/j.petrol.2013.11.022 |
Law, B. E., Spencer, C. W., 1993. Gas in Tight Reservoirs—An Emerging Major Source of Energy. Springer-Verlag, Berlin |
Le Heron, D. P., Craig, J., Etienne, J. L., 2009. Ancient Glaciations and Hydrocarbon Accumulations in North Africa and the Middle East. Earth-Science Reviews, 93(3/4): 47-76. https://doi.org/10.1016/j.earscirev.2009.02.001 |
Li, A., Ding, W. L., He, J. H., et al., 2016. Investigation of Pore Structure and Fractal Characteristics of Organic-Rich Shale Reservoirs: A Case Study of Lower Cambrian Qiongzhusi Formation in Malong Block of Eastern Yunnan Province, South China. Marine and Petroleum Geology, 70: 46-57. https://doi.org/10.1016/j.marpetgeo.2015.11.004 |
Li, J. Q., Zhang, P. F., Lu, S. F., et al., 2019. Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales: An Investigation by BIB-SEM and X-Ray CT Methods. Journal of Earth Science, 30(4): 823-833. https://doi.org/10.1007/s12583-018-0835-z |
Liu, X. J., Xiong, J., Liang, L. X., 2015. Investigation of Pore Structure and Fractal Characteristics of Organic-Rich Yanchang Formation Shale in Central China by Nitrogen Adsorption/Desorption Analysis. Journal of Natural Gas Science and Engineering, 22: 62-72. https://doi.org/10.1016/j.jngse.2014.11.020 |
Liu, Z. X., Yan, D. T., Niu, X., 2020. Insights into Pore Structure and Fractal Characteristics of the Lower Cambrian Niutitang Formation Shale on the Yangtze Platform, South China. Journal of Earth Science, 31(1): 169-180. https://doi.org/10.1007/s12583-020-1259-0 |
Lønøy, A., 2006. Making Sense of Carbonate Pore Systems. AAPG Bulletin, 90(9): 1381-1405. https://doi.org/10.1306/03130605104 |
Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092 |
Lüning, S., Craig, J., Loydell, D. K., et al., 2000. Lower Silurian 'Hot Shales' in North Africa and Arabia: Regional Distribution and Depositional Model. Earth-Science Reviews, 49(1/2/3/4): 121-200. https://doi.org/10.1016/S0012-8252(99)00060-4 |
Mahamud, M. M., Novo, M. F., 2008. The Use of Fractal Analysis in the Textural Characterization of Coals. Fuel, 87(2): 222-231. https://doi.org/10.1016/j.fuel.2007.04.020 |
Mandelbrot, B. B., 1983. The Fractal Geometry of Nature. Freeman, New York |
Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621-1643. https://doi.org/10.1306/04011312194 |
Mishra, S., Mendhe, V. A., Varma, A. K., et al., 2018. Influence of Organic and Inorganic Content on Fractal Dimensions of Barakar and Barren Measures Shale Gas Reservoirs of Raniganj Basin, India. Journal of Natural Gas Science and Engineering, 49: 393-409. https://doi.org/10.1016/j.jngse.2017.11.028 |
Neǐmark, A. V., 1990. Thermodynamic Method for Calculating Surface Fractal Dimension. Pis'ma Zh. Eksp. Teor. Fiz. , 51: 607-610 http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1990JETPL..51..607N |
Okay, A. I., Tüysüz, O., 1999. Tethyan Sutures of Northern Turkey. Geological Society, London, Special Publications, 156(1): 475-515. https://doi.org/10.1144/gsl.sp.1999.156.01.22 |
Pfeifer, P., Avnir, D., 1983. Chemistry in Noninteger Dimensions between Two and Three. I. Fractal Theory of Heterogeneous Surfaces. The Journal of Chemical Physics, 79(7): 3558-3565. https://doi.org/10.1063/1.446210 |
Ross, D. J. K., Bustin, R. M., 2009. Investigating the Use of Sedimentary Geochemical Proxies for Paleoenvironment Interpretation of Thermally Mature Organic-Rich Strata: Examples from the Devonian-Mississippian Shales, Western Canadian Sedimentary Basin. Chemical Geology, 260(1/2): 1-19. https://doi.org/10.1016/j.chemgeo.2008.10.027 |
Rouquerol, J., Avnir, D., Fairbridge, C. W., et al., 1994. Recommendations for the Characterization of Porous Solids (Technical Report). Pure and Applied Chemistry, 66(8): 1739-1758. https://doi.org/10.1351/pac199466081739 |
Salathiel, R. A., 1973. Oil Recovery by Surface Film Drainage in Mixed-Wettability Rocks. Journal of Petroleum Technology, 25(10): 1216-1224. https://doi.org/10.2118/4104-pa |
Shahri, M. P., Jamialahmadi, M., Shadizadeh, S. R., 2012. New Normalization Index for Spontaneous Imbibition. Journal of Petroleum Science and Engineering, 82/83: 130-139. https://doi.org/10.1016/j.petrol.2012.01.017 |
Sing, K. S. W., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): 603-619. https://doi.org/10.1351/pac198557040603 |
Singh, H., 2016. A Critical Review of Water Uptake by Shales. Journal of Natural Gas Science and Engineering, 34: 751-766. https://doi.org/10.1016/j.jngse.2016.07.003 |
Stauffer, D., Aharony, A., 1994. Introduction to Percolation Theory: 2nd Edition. Taylor and Francis, London. https://doi.org/10.1201/9781315274386 |
Takahashi, S., Kovscek, A. R., 2010. Spontaneous Countercurrent Imbibition and Forced Displacement Characteristics of Low-Permeability, Siliceous Shale Rocks. Journal of Petroleum Science and Engineering, 71(1/2): 47-55. https://doi.org/10.1016/j.petrol.2010.01.003 |
Treiber, L. E., Archer, D. L., Owens, W. W., 1972. A Laboratory Evaluation of the Wettability of Fifty Oil-Producing Reservoirs. Society of Petroleum Engineers Journal, 12(6): 531-540. https://doi.org/10.2118/3526-pa |
Wang, S., Javadpour, F., Feng, Q., 2016. Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores. Scientific Reports, 6: 20160. https://doi.org/10.1038/srep20160 |
Washburn, E. W., 1921. Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Proceedings of the National Academy of Sciences of the United States of America, 7(4): 115-116. https://doi.org/10.1073/pnas.7.4.115 |
Webb, P. A., 2001. An Introduction to the Physical Characterization of Materials by Mercury Intrusion Porosimetry with Emphasis on Reduction and Presentation of Experimental Data 2 Contents. Pharm online http://www.intranet.micromeritics.com/Repository/Files/An_Introduction_To_The_Physical_Characterization_of_Materials_by_Mercury.pdf |
Webb, P. A., Orr, C., 1997. Analytical Methods in Fine Particle Technology. Micromeritics Instrument Corp, Technical Report, Norcross http://www.researchgate.net/publication/283993378_Analytical_Methods_in_Fine_Particle_Technology_Micromeritics_Instrument_Corp |
Yang, F., Ning, Z. F., Liu, H. Q., 2014. Fractal Characteristics of Shales from a Shale Gas Reservoir in the Sichuan Basin, China. Fuel, 115: 378-384. https://doi.org/10.1016/j.fuel.2013.07.040 |
Yang, R., Hao, F., He, S., et al., 2017. Experimental Investigations on the Geometry and Connectivity of Pore Space in Organic-Rich Wufeng and Longmaxi Shales. Marine and Petroleum Geology, 84: 225-242. https://doi.org/10.1016/j.marpetgeo.2017.03.033 |
Yang, R., He, S., Yi, J. Z., et al., 2016. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019 |
Yao, Y. B., Liu, D. M., Tang, D. Z., et al., 2008. Fractal Characterization of Adsorption-Pores of Coals from North China: An Investigation on CH4 Adsorption Capacity of Coals. International Journal of Coal Geology, 73(1): 27-42. https://doi.org/10.1016/j.coal.2007.07.003 |
Zargari, S., Canter, K. L., Prasad, M., 2015. Porosity Evolution in Oil-Prone Source Rocks. Fuel, 153: 110-117. https://doi.org/10.1016/j.fuel.2015.02.072 |
Zhao, P. Q., Wang, Z. L., Sun, Z. C., et al., 2017. Investigation on the Pore Structure and Multifractal Characteristics of Tight Oil Reservoirs Using NMR Measurements: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin. Marine and Petroleum Geology, 86: 1067-1081. https://doi.org/10.1016/j.marpetgeo.2017.07.011 |
Zou, C. N., Zhu, R. K., Liu, K. Y., et al., 2012. Tight Gas Sandstone Reservoirs in China: Characteristics and Recognition Criteria. Journal of Petroleum Science and Engineering, 88: 82-91. https://doi.org/10.1016/j.petrol.2012.02.001 |