Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 4
Aug 2021
Turn off MathJax
Article Contents
Zeynep Doner, Qinhong Hu, Mustafa Kumral, Md Golam Kibria, Hongguo Qiao, Mengdi Sun. Petrophysical Characteristics of Silurian Mudstones from Central Taurides in Southern Turkey. Journal of Earth Science, 2021, 32(4): 778-798. doi: 10.1007/s12583-021-1408-0
Citation: Zeynep Doner, Qinhong Hu, Mustafa Kumral, Md Golam Kibria, Hongguo Qiao, Mengdi Sun. Petrophysical Characteristics of Silurian Mudstones from Central Taurides in Southern Turkey. Journal of Earth Science, 2021, 32(4): 778-798. doi: 10.1007/s12583-021-1408-0

Petrophysical Characteristics of Silurian Mudstones from Central Taurides in Southern Turkey

doi: 10.1007/s12583-021-1408-0
More Information
  • Corresponding author: Zeynep Doner, donerz@itu.edu.tr; Qinhong Hu, maxhu@uta.edu
  • Received Date: 22 Jul 2020
  • Accepted Date: 31 Dec 2020
  • Publish Date: 16 Aug 2021
  • This study used a range of integrated and complementary experiments to examine pore-structure, fluid-shale wetting characteristics, sample size-dependent porosity towards different fluids, and imbibition behavior, as well as the relationships between these properties and the mineralogy of Silurian mudstones in the Central Taurides of Turkey. Working with different sample-sizes, the experiments consisted of helium pycnometry, low-pressure nitrogen physisorption isotherm, mercury intrusion porosimetry, fluid immersion porosimetry, liquid displacement, fluid droplet wettability and contact angle measurements, and spontaneous imbibition of fluids; four fluids with different hydrophilicity were used to assess the characteristics of fluid-shale interaction and its influence on pore-structure. Results show that studied mudstones can be grouped into three rock types: siliceous, carbonate-dominated, and mixed mudstones. Siliceous and mixed mudstones have higher porosities, pore-throat diameters, surface areas and tortuosities than the carbonate-dominated mudstones, regardless of sample sizes and fluids used. With low permeabilities and medium pore-throat sizes for the siliceous and mixed mudstones, the wettability and imbibition results show that these mudstones are both oil-wet and moderately-to-high water-wet. In contrast, the carbonate-dominated mudstones exhibit oil-wet characteristics. These results indicate that studied siliceous and mixed mudstones in the Central Taurides seem to have appropriate petrophysical properties in the context of reservoir quality.

     

  • loading
  • Alan, İ., Balcı, V., Elibol, H., 2014. Türkiye Jeoloji Haritaları, Silifke. Maden Tetkik Arama Jeoloji Etüdleri Dairesi Yayınları, 222: 31-32 (in Turkish with English Abstract)
    Anovitz, L. M., Cole, D. R., 2015. Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80(1): 61-164. https://doi.org/10.2138/rmg.2015.80.04
    Avnir, D., Jaroniec, M., 1989. An Isotherm Equation for Adsorption on Fractal Surfaces of Heterogeneous Porous Materials. Langmuir, 5(6): 1431-1433. https://doi.org/10.1021/la00090a032
    Barrett, E. P., Joyner, L. G., Halenda, P. P., 1951. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1): 373-380. https://doi.org/10.1021/ja01145a126
    Bernal, J. L. P., Bello, M. A., 2001. Fractal Geometry and Mercury Porosimetry: Comparison and Application of Proposed Models on Building Stones. Applied Surface Science, 185(1/2): 99-107. https://doi.org/10.1016/s0169-4332(01)00649-3
    Beydoun, Z. R., 1991. Arabian Plate Hydrocarbon Geology and Potential—A Plate Tectonic Approach. AAPG Stud. Geol. , 33: 77 http://www.mendeley.com/research/arabian-plate-hydrocarbon-geology-potential-plate-tectonic-approach/
    Brogowski, Z., Kwasowski, W., 2015. An Attempt of Using Soil Grain Size in Calculating the Capacity of Water Unavailable to Plants/Próba Wykorzystania Uziarnienia Gleby do Obliczania Zawartości Wody Niedostępnej Dla Roślin. Soil Science Annual, 66(1): 21-28. https://doi.org/10.1515/ssa-2015-0015
    Brunauer, S., Deming, L. S., Deming, W. E., et al., 1940. On a Theory of the van Der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7): 1723-1732. https://doi.org/10.1021/ja01864a025
    Brunauer, S., Emmett, P. H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2): 309-319. https://doi.org/10.1021/ja01269a023
    Chen, Y., Chu, C., Zhou, Y. C., et al., 2011. Reversible Pore-Structure Evolution in Hollow Silica Nanocapsules: Large Pores for SiRNA Delivery and Nanoparticle Collecting. Porous Nanoparticles, 7(20): 2935-2944. https://doi.org/10.1002/smll.201101055
    Civan, F., 2015. Reservoir Formation Damage: 3rd Edition. Gulf Professional Publishing, Oklahoma. 1012
    Clarkson, C. R., Solano, N., Bustin, R. M., et al., 2013. Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion. Fuel, 103: 606-616. https://doi.org/10.1016/j.fuel.2012.06.119
    Cohan, L. H., 1938. Sorption Hysteresis and the Vapor Pressure of Concave Surfaces. Journal of the American Chemical Society, 60(2): 433-435. https://doi.org/10.1021/ja01269a058
    Craig, F. F. Jr., 1971. The Reservoir Engineering Aspects of Waterflooding. SPE Monogr, 3: 12-44 http://www.researchgate.net/publication/48485747_The_Reservoir_Engineering_Aspects_of_Waterflooding
    Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26-31. https://doi.org/10.1016/j.coal.2012.08.004
    Dathe, A., Eins, S., Niemeyer, J., et al., 2001. The Surface Fractal Dimension of the Soil-Pore Interface as Measured by Image Analysis. Geoderma, 103(1/2): 203-229. https://doi.org/10.1016/s0016-7061(01)00077-5
    Dollimore, D., Heal, G. R., 2007. An Improved Method for the Calculation of Pore Size Distribution from Adsorption Data. Journal of Applied Chemistry, 14(3): 109-114. https://doi.org/10.1002/jctb.5010140302
    Doner, Z., Kumral, M., Demirel, I. H., et al., 2019. Geochemical Characteristics of the Silurian Shales from the Central Taurides, Southern Turkey: Organic Matter Accumulation, Preservation and Depositional Environment Modeling. Marine and Petroleum Geology, 102: 155-175. https://doi.org/10.1016/j.marpetgeo.2018.12.042
    EIA (Energy Information Administration), 2013. Annual Energy Outlook 2013. Government Printing Office, Washington DC. 60-62 http://digital.library.unt.edu/ark:/67531/metadc841459/metadata/
    EIA (Energy Information Administration), 2019. International Energy Outlook 2019: With Projections to 2050. Government Printing Office, Washington DC http://www.census.gov/newsroom/cspan/world_energy/20130725_cspan_world_energy.pdf
    Epstein, N., 1989. On Tortuosity and the Tortuosity Factor in Flow and Diffusion through Porous Media. Chemical Engineering Science, 44(3): 777-779. https://doi.org/10.1016/0009-2509(89)85053-5
    Fernø, M. A., Haugen, Å., Graue, A., 2011. Wettability Effects on the Matrix-Fracture Fluid Transfer in Fractured Carbonate Rocks. Journal of Petroleum Science and Engineering, 77(1): 146-153. https://doi.org/10.1016/j.petrol.2011.02.015
    Flint, A. L., Flint, L. E., 2002. Particle Density. Methods of Soil Analysis: Part 4 Physical Methods. Soil Science Society of America, Madison. 229-240
    Fu, H. J., Wang, X. Z., Zhang, L. X., et al., 2015. Investigation of the Factors that Control the Development of Pore Structure in Lacustrine Shale: A Case Study of Block X in the Ordos Basin, China. Journal of Natural Gas Science and Engineering, 26: 1422-1432. https://doi.org/10.1016/j.jngse.2015.07.025
    Gao, H., Li, H. A., 2016. Pore Structure Characterization, Permeability Evaluation and Enhanced Gas Recovery Techniques of Tight Gas Sandstones. Journal of Natural Gas Science and Engineering, 28: 536-547. https://doi.org/10.1016/j.jngse.2015.12.018
    Gao, Z. Y., Hu, Q. H., 2013. Estimating Permeability Using Median Pore-Throat Radius Obtained from Mercury Intrusion Porosimetry. Journal of Geophysics and Engineering, 10(2): 025014. https://doi.org/10.1088/1742-2132/10/2/025014
    Gao, Z. Y., Hu, Q. H., 2016. Wettability of Mississippian Barnett Shale Samples at Different Depths: Investigations from Directional Spontaneous Imbibition. AAPG Bulletin, 100(1): 101-114. https://doi.org/10.1306/09141514095
    Gates, C. H., Perfect, E., Lokitz, B. S., et al., 2018. Transient Analysis of Advancing Contact Angle Measurements on Polished Rock Surfaces. Advances in Water Resources, 119: 142-149. https://doi.org/10.1016/j.advwatres.2018.03.017
    Gregg, S. J., Sing, K. S. W., 1982. Adsorption, Surface Area and Porosity. Academic Press, New York. 303
    Hager, J., 1998. Steam Drying of Porous Media: [Dissertation]. Department of Chemical Engineering, Lund University, Lund
    Hu, Q. H., 2018. Quantifying Effective Porosity of Oil and Gas Reservoirs. AAPG Search and Discovery Article, 70376. https://doi.org/10.1306/70376hu2018
    Hu, Q. H., Ewing, R. P., Dultz, S., 2012. Low Pore Connectivity in Natural Rock. Journal of Contaminant Hydrology, 133: 76-83. https://doi.org/10.1016/j.jconhyd.2012.03.006
    Hu, Q. H., Ewing, R. P., Rowe, H. D., 2015. Low Nanopore Connectivity Limits Gas Production in Barnett Formation. Journal of Geophysical Research: Solid Earth, 120(12): 8073-8087. https://doi.org/10.1002/2015jb012103
    Hu, Q. H., Kalteyer, R., Wang, J. Y., et al., 2019. Nano-Petrophysical Characterization of the Mancos Shale Formation in the San Juan Basin of Northwestern New Mexico, USA. Interpretation, 7(4): SJ45-SJ65. https://doi.org/10.1190/int-2018-0239.1
    Hu, Q. H., Persoff, P., Wang, J. S. Y., 2001. Laboratory Measurement of Water Imbibition into Low-Permeability Welded Tuff. Journal of Hydrology, 242(1/2): 64-78. https://doi.org/10.1016/s0022-1694(00)00388-7
    Hu, Q. H., Quintero, R. P., El-Sobky, H. F., et al., 2020. Coupled Nano-Petrophysical and Organic-Geochemical Study of the Wolfberry Play in Howard County, Texas USA. Marine and Petroleum Geology, 122: 104663. https://doi.org/10.1016/j.marpetgeo.2020.104663
    Hu, Q. H., Wang, J. S. Y., 2003. Aqueous-Phase Diffusion in Unsaturated Geologic Media: A Review. Critical Reviews in Environmental Science and Technology, 33(3): 275-297. https://doi.org/10.1080/10643380390814488
    Hu, Q. H., Zhang, Y. X., Meng, X. H., et al., 2017. Characterization of Micro-Nano Pore Networks in Shale Oil Reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China. Petroleum Exploration and Development, 44(5): 720-730. https://doi.org/10.1016/s1876-3804(17)30083-6
    Hu, Q. H., Zhou, W., Huggins, P., et al., 2018. Pore Structure and Fluid Uptake of the Springer/Goddard Shale Formation in Southeastern Oklahoma, USA. Geofluids, 2018: 1-16. https://doi.org/10.1155/2018/5381735
    Hunt, A., Ewing, R., Ghanbarian, B., 2014. Percolation Theory for Flow in Porous Media. Springer, Switzerland doi: 10.1007/b136727
    Husseini, M. I., 1990. The Cambro-Ordovician Arabian and Adjoining Plates: A Glacio-Eustatic Model. Journal of Petroleum Geology, 13(3): 267-288. https://doi.org/10.1111/j.1747-5457.1990.tb00847.x
    Ismail, I. M. K., Pfeifer, P., 1994. Fractal Analysis and Surface Roughness of Nonporous Carbon Fibers and Carbon Blacks. Langmuir, 10(5): 1532-1538. https://doi.org/10.1021/la00017a035
    Jaroniec, M., 1995. Evaluation of the Fractal Dimension from a Single Adsorption Isotherm. Langmuir, 11(6): 2316-2317. https://doi.org/10.1021/la00006a076
    Jarvie, D. M., 2012. Shale Resource Systems for Oil and Gas: Part 2—Shale-Oil Resource Systems. Breyer, J. A., ed., Shale Reservoirs—Giant Resources for the 21st Century. AAPG Memoir, 97: 89-119 http://ci.nii.ac.jp/naid/20000775540
    Javadpour, F., Fisher, D., Unsworth, M., 2007. Nanoscale Gas Flow in Shale Gas Sediments. Journal of Canadian Petroleum Technology, 46(10): 55-61. https://doi.org/10.2118/07-10-06
    Javaheri, A., Dehghanpour, H., Wood, J. M., 2017. Tight Rock Wettability and Its Relationship to other Petrophysical Properties: A Montney Case Study. Journal of Earth Science, 28(2): 381-390. https://doi.org/10.1007/s12583-017-0725-9
    Jeppsson, L., 1990. An Oceanic Model for Lithological and Faunal Changes Tested on the Silurian Record. Journal of the Geological Society, 147(4): 663-674. https://doi.org/10.1144/gsjgs.147.4.0663
    Katz, A. J., Thompson, A. H., 1986. Quantitative Prediction of Permeability in Porous Rock. Physical Review B, Condensed Matter, 34(11): 8179-8181. https://doi.org/10.1103/physrevb.34.8179
    Kibria, M. G., Hu, Q. H., Liu, H., et al., 2018. Pore Structure, Wettability, and Spontaneous Imbibition of Woodford Shale, Permian Basin, West Texas. Marine and Petroleum Geology, 91: 735-748. https://doi.org/10.1016/j.marpetgeo.2018.02.001
    Krohn, C. E., 1988. Fractal Measurements of Sandstones, Shales, and Carbonates. Journal of Geophysical Research Atmospheres, 93(B4): 3297. https://doi.org/10.1029/jb093ib04p03297
    Kuila, U., McCarty, D. K., Derkowski, A., et al., 2014. Nano-Scale Texture and Porosity of Organic Matter and Clay Minerals in Organic-Rich Mudrocks. Fuel, 135: 359-373. https://doi.org/10.1016/j.fuel.2014.06.036
    Labani, M. M., Rezaee, R., Saeedi, A., et al., 2013. Evaluation of Pore Size Spectrum of Gas Shale Reservoirs Using Low Pressure Nitrogen Adsorption, Gas Expansion and Mercury Porosimetry: A Case Study from the Perth and Canning Basins, Western Australia. Journal of Petroleum Science and Engineering, 112: 7-16. https://doi.org/10.1016/j.petrol.2013.11.022
    Law, B. E., Spencer, C. W., 1993. Gas in Tight Reservoirs—An Emerging Major Source of Energy. Springer-Verlag, Berlin
    Le Heron, D. P., Craig, J., Etienne, J. L., 2009. Ancient Glaciations and Hydrocarbon Accumulations in North Africa and the Middle East. Earth-Science Reviews, 93(3/4): 47-76. https://doi.org/10.1016/j.earscirev.2009.02.001
    Li, A., Ding, W. L., He, J. H., et al., 2016. Investigation of Pore Structure and Fractal Characteristics of Organic-Rich Shale Reservoirs: A Case Study of Lower Cambrian Qiongzhusi Formation in Malong Block of Eastern Yunnan Province, South China. Marine and Petroleum Geology, 70: 46-57. https://doi.org/10.1016/j.marpetgeo.2015.11.004
    Li, J. Q., Zhang, P. F., Lu, S. F., et al., 2019. Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales: An Investigation by BIB-SEM and X-Ray CT Methods. Journal of Earth Science, 30(4): 823-833. https://doi.org/10.1007/s12583-018-0835-z
    Liu, X. J., Xiong, J., Liang, L. X., 2015. Investigation of Pore Structure and Fractal Characteristics of Organic-Rich Yanchang Formation Shale in Central China by Nitrogen Adsorption/Desorption Analysis. Journal of Natural Gas Science and Engineering, 22: 62-72. https://doi.org/10.1016/j.jngse.2014.11.020
    Liu, Z. X., Yan, D. T., Niu, X., 2020. Insights into Pore Structure and Fractal Characteristics of the Lower Cambrian Niutitang Formation Shale on the Yangtze Platform, South China. Journal of Earth Science, 31(1): 169-180. https://doi.org/10.1007/s12583-020-1259-0
    Lønøy, A., 2006. Making Sense of Carbonate Pore Systems. AAPG Bulletin, 90(9): 1381-1405. https://doi.org/10.1306/03130605104
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092
    Lüning, S., Craig, J., Loydell, D. K., et al., 2000. Lower Silurian 'Hot Shales' in North Africa and Arabia: Regional Distribution and Depositional Model. Earth-Science Reviews, 49(1/2/3/4): 121-200. https://doi.org/10.1016/S0012-8252(99)00060-4
    Mahamud, M. M., Novo, M. F., 2008. The Use of Fractal Analysis in the Textural Characterization of Coals. Fuel, 87(2): 222-231. https://doi.org/10.1016/j.fuel.2007.04.020
    Mandelbrot, B. B., 1983. The Fractal Geometry of Nature. Freeman, New York
    Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621-1643. https://doi.org/10.1306/04011312194
    Mishra, S., Mendhe, V. A., Varma, A. K., et al., 2018. Influence of Organic and Inorganic Content on Fractal Dimensions of Barakar and Barren Measures Shale Gas Reservoirs of Raniganj Basin, India. Journal of Natural Gas Science and Engineering, 49: 393-409. https://doi.org/10.1016/j.jngse.2017.11.028
    Neǐmark, A. V., 1990. Thermodynamic Method for Calculating Surface Fractal Dimension. Pis'ma Zh. Eksp. Teor. Fiz. , 51: 607-610 http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1990JETPL..51..607N
    Okay, A. I., Tüysüz, O., 1999. Tethyan Sutures of Northern Turkey. Geological Society, London, Special Publications, 156(1): 475-515. https://doi.org/10.1144/gsl.sp.1999.156.01.22
    Pfeifer, P., Avnir, D., 1983. Chemistry in Noninteger Dimensions between Two and Three. I. Fractal Theory of Heterogeneous Surfaces. The Journal of Chemical Physics, 79(7): 3558-3565. https://doi.org/10.1063/1.446210
    Ross, D. J. K., Bustin, R. M., 2009. Investigating the Use of Sedimentary Geochemical Proxies for Paleoenvironment Interpretation of Thermally Mature Organic-Rich Strata: Examples from the Devonian-Mississippian Shales, Western Canadian Sedimentary Basin. Chemical Geology, 260(1/2): 1-19. https://doi.org/10.1016/j.chemgeo.2008.10.027
    Rouquerol, J., Avnir, D., Fairbridge, C. W., et al., 1994. Recommendations for the Characterization of Porous Solids (Technical Report). Pure and Applied Chemistry, 66(8): 1739-1758. https://doi.org/10.1351/pac199466081739
    Salathiel, R. A., 1973. Oil Recovery by Surface Film Drainage in Mixed-Wettability Rocks. Journal of Petroleum Technology, 25(10): 1216-1224. https://doi.org/10.2118/4104-pa
    Shahri, M. P., Jamialahmadi, M., Shadizadeh, S. R., 2012. New Normalization Index for Spontaneous Imbibition. Journal of Petroleum Science and Engineering, 82/83: 130-139. https://doi.org/10.1016/j.petrol.2012.01.017
    Sing, K. S. W., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): 603-619. https://doi.org/10.1351/pac198557040603
    Singh, H., 2016. A Critical Review of Water Uptake by Shales. Journal of Natural Gas Science and Engineering, 34: 751-766. https://doi.org/10.1016/j.jngse.2016.07.003
    Stauffer, D., Aharony, A., 1994. Introduction to Percolation Theory: 2nd Edition. Taylor and Francis, London. https://doi.org/10.1201/9781315274386
    Takahashi, S., Kovscek, A. R., 2010. Spontaneous Countercurrent Imbibition and Forced Displacement Characteristics of Low-Permeability, Siliceous Shale Rocks. Journal of Petroleum Science and Engineering, 71(1/2): 47-55. https://doi.org/10.1016/j.petrol.2010.01.003
    Treiber, L. E., Archer, D. L., Owens, W. W., 1972. A Laboratory Evaluation of the Wettability of Fifty Oil-Producing Reservoirs. Society of Petroleum Engineers Journal, 12(6): 531-540. https://doi.org/10.2118/3526-pa
    Wang, S., Javadpour, F., Feng, Q., 2016. Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores. Scientific Reports, 6: 20160. https://doi.org/10.1038/srep20160
    Washburn, E. W., 1921. Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Proceedings of the National Academy of Sciences of the United States of America, 7(4): 115-116. https://doi.org/10.1073/pnas.7.4.115
    Webb, P. A., 2001. An Introduction to the Physical Characterization of Materials by Mercury Intrusion Porosimetry with Emphasis on Reduction and Presentation of Experimental Data 2 Contents. Pharm online http://www.intranet.micromeritics.com/Repository/Files/An_Introduction_To_The_Physical_Characterization_of_Materials_by_Mercury.pdf
    Webb, P. A., Orr, C., 1997. Analytical Methods in Fine Particle Technology. Micromeritics Instrument Corp, Technical Report, Norcross http://www.researchgate.net/publication/283993378_Analytical_Methods_in_Fine_Particle_Technology_Micromeritics_Instrument_Corp
    Yang, F., Ning, Z. F., Liu, H. Q., 2014. Fractal Characteristics of Shales from a Shale Gas Reservoir in the Sichuan Basin, China. Fuel, 115: 378-384. https://doi.org/10.1016/j.fuel.2013.07.040
    Yang, R., Hao, F., He, S., et al., 2017. Experimental Investigations on the Geometry and Connectivity of Pore Space in Organic-Rich Wufeng and Longmaxi Shales. Marine and Petroleum Geology, 84: 225-242. https://doi.org/10.1016/j.marpetgeo.2017.03.033
    Yang, R., He, S., Yi, J. Z., et al., 2016. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019
    Yao, Y. B., Liu, D. M., Tang, D. Z., et al., 2008. Fractal Characterization of Adsorption-Pores of Coals from North China: An Investigation on CH4 Adsorption Capacity of Coals. International Journal of Coal Geology, 73(1): 27-42. https://doi.org/10.1016/j.coal.2007.07.003
    Zargari, S., Canter, K. L., Prasad, M., 2015. Porosity Evolution in Oil-Prone Source Rocks. Fuel, 153: 110-117. https://doi.org/10.1016/j.fuel.2015.02.072
    Zhao, P. Q., Wang, Z. L., Sun, Z. C., et al., 2017. Investigation on the Pore Structure and Multifractal Characteristics of Tight Oil Reservoirs Using NMR Measurements: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin. Marine and Petroleum Geology, 86: 1067-1081. https://doi.org/10.1016/j.marpetgeo.2017.07.011
    Zou, C. N., Zhu, R. K., Liu, K. Y., et al., 2012. Tight Gas Sandstone Reservoirs in China: Characteristics and Recognition Criteria. Journal of Petroleum Science and Engineering, 88: 82-91. https://doi.org/10.1016/j.petrol.2012.02.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views(406) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return