Agterberg, F. P., 2001. Multifractal Simulation of Geochemical Map Patterns. Geologic Modeling and Simulation, 26(2): 142-151. https://doi.org/10.1007/978-1-4615-1359-9_17 |
Baker, D. R., Mancini, L., Polacci, M., et al., 2012. An Introduction to the Application of X-Ray Microtomography to the Three-Dimensional Study of Igneous Rocks. Lithos, 148: 262-276. https://doi.org/10.1016/j.lithos.2012.06.008 |
Barreto, C. J. S., de Lima, E. F., Goldberg, K., 2017. Primary Vesicles, Vesicle-Rich Segregation Structures and Recognition of Primary and Secondary Porosities in Lava Flows from the Paraná Igneous Province, Southern Brazil. Bulletin of Volcanology, 79(4): 1-17. https://doi.org/10.1007/s00445-017-1116-x |
Bird, N., Díaz, M. C., Saa, A., et al., 2006. Fractal and Multifractal Analysis of Pore-Scale Images of Soil. Journal of Hydrology, 322(1/2/3/4): 211-219. https://doi.org/10.1016/j.jhydrol.2005.02.039 |
Blower, J. D., Keating, J. P., Mader, H. M., et al., 2001. Inferring Volcanic Degassing Processes from Vesicle Size Distributions. Geophysical Research Letters, 28(2): 347-350. https://doi.org/10.1029/2000gl012188 |
Blower, J. D., Keating, J. P., Mader, H. M., et al., 2003. The Evolution of Bubble Size Distributions in Volcanic Eruptions. Journal of Volcanology and Geothermal Research, 120(1/2): 1-23. https://doi.org/10.1016/s0377-0273(02)00404-3 |
Boichu, M., Villemant, B., Boudon, G., 2008. A Model for Episodic Degassing of an Andesitic Magma Intrusion. Journal of Geophysical Research Atmospheres, 113(B7): B07202. https://doi.org/10.1029/2007jb005130 |
Cai, J. C., Lin, D. L., Singh, H., et al., 2018. Shale Gas Transport Model in 3D Fractal Porous Media with Variable Pore Sizes. Marine and Petroleum Geology, 98: 437-447. https://doi.org/10.1016/j.marpetgeo.2018.08.040 |
Cashman, K. V., Mangan, M. T., 1994. Chapter 11b: Physical Aspects of Magmatic Degassing Ⅱ. Constraints on Vesiculation Processes from Textural Studies of Eruptive Products. In: Carroll, M. R., Holloway, J. R., eds., Volatiles in Magmas. De Gruyter, Berlin, Boston. 447-478. https://doi.org/10.1515/9781501509674-018 |
Chen, X. J., Yao, G. Q., Cai, J. C., et al., 2017. Fractal and Multifractal Analysis of Different Hydraulic Flow Units Based on Micro-CT Images. Journal of Natural Gas Science and Engineering, 48: 145-156. https://doi.org/10.1016/j.jngse.2016.11.048 |
Clarkson, C. R., Solano, N., Bustin, R. M., et al., 2013. Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion. Fuel, 103: 606-616. https://doi.org/10.1016/j.fuel.2012.06.119 |
Colombier, M., Wadsworth, F. B., Gurioli, L., et al., 2017. The Evolution of Pore Connectivity in Volcanic Rocks. Earth and Planetary Science Letters, 462: 99-109. https://doi.org/10.1016/j.epsl.2017.01.011 |
Davydov, M. N., 2012. Nucleation and Growth of a Gas Bubble in Magma. Journal of Applied Mechanics and Technical Physics, 53(3): 324-332. https://doi.org/10.1134/s0021894412030030 |
Degruyter, W., Bachmann, O., Burgisser, A., 2009. Controls on Magma Permeability in the Volcanic Conduit during the Climactic Phase of the Kos Plateau Tuff Eruption (Aegean Arc). Bulletin of Volcanology, 72(1): 63-74. https://doi.org/10.1007/s00445-009-0302-x |
Evertsz, C. J. G., Mandelbrot, B. B., 1992. Multifractal Measures (Appendix B). In: Peitgen, H. -O., Jurgens, H., Saupe, D., eds., Chaos and Fractals. Springer Verlag, New York. 922-953 |
Farquharson, J. I., Heap, M. J., Baud, P., 2016. Strain-Induced Permeability Increase in Volcanic Rock. Geophysical Research Letters, 43(22): 11603-11610. https://doi.org/10.1002/2016gl071540 |
Farquharson, J., Heap, M. J., Varley, N. R., et al., 2015. Permeability and Porosity Relationships of Edifice-Forming Andesites: A Combined Field and Laboratory Study. Journal of Volcanology and Geothermal Research, 297: 52-68. https://doi.org/10.1016/j.jvolgeores.2015.03.016 |
Ferreira, T. R., Pires, L. F., Wildenschild, D., et al., 2018. X-Ray Microtomography Analysis of Lime Application Effects on Soil Porous System. Geoderma, 324: 119-130. https://doi.org/10.1016/j.geoderma.2018.03.015 |
Ferreiro, J. P., Miranda, J. G. V., Vidal Vázquez, E., 2010. Multifractal Analysis of Soil Porosity Based on Mercury Injection and Nitrogen Adsorption. Vadose Zone Journal, 9(2): 325-335. https://doi.org/10.2136/vzj2009.0090 |
García-Gutiérrez, C., San José Martínez, F., Caniego, J., 2017. A Protocol for Fractal Studies on Porosity of Porous Media: High Quality Soil Porosity Images. Journal of Earth Science, 28(5): 888-896. https://doi.org/10.1007/s12583-017-0777-x |
Ge, X. M., Fan, Y. R., Zhu, X. J., et al., 2015. Determination of Nuclear Magnetic Resonance T2 Cutoff Value Based on Multifractal Theory—An Application in Sandstone with Complex Pore Structure. Geophysics, 80(1): D11-D21. https://doi.org/10.1190/geo2014-0140.1 |
Giachetti, T., Druitt, T. H., Burgisser, A., et al., 2010. Bubble Nucleation, Growth and Coalescence during the 1997 Vulcanian Explosions of Soufrière Hills Volcano, Montserrat. Journal of Volcanology and Geothermal Research, 193(3/4): 215-231. https://doi.org/10.1016/j.jvolgeores.2010.04.001 |
Halsey, T. C., Jensen, M. H., Kadanoff, L. P., et al., 1987. Fractal Measures and Their Singularities: The Characterization of Strange Sets. Nuclear Physics B—Proceedings Supplements, 2: 501-511 http://www.ncbi.nlm.nih.gov/pubmed/9896729 |
Houston, A. N., Otten, W., Falconer, R., et al., 2017. Quantification of the Pore Size Distribution of Soils: Assessment of Existing Software Using Tomographic and Synthetic 3D Images. Geoderma, 299: 73-82. https://doi.org/10.1016/j.geoderma.2017.03.025 |
Klug, C., Cashman, K. V., Bacon, C. R., 2002. Structure and Physical Characteristics of Pumice from the Climactic Eruption of Mount Mazama (Crater Lake), Oregon. Bulletin of Volcanology, 64(7): 486-501. https://doi.org/10.1007/s00445-002-0230-5 |
Krohn, C. E., 1988. Fractal Measurements of Sandstones, Shales, and Carbonates. Journal of Geophysical Research Atmospheres, 93(B4): 3297-3305. https://doi.org/10.1029/jb093ib04p03297 |
Kushnir, A. R. L., Martel, C., Champallier, R., et al., 2017. In situ Confirmation of Permeability Development in Shearing Bubble-Bearing Melts and Implications for Volcanic Outgassing. Earth and Planetary Science Letters, 458: 315-326. https://doi.org/10.1016/j.epsl.2016.10.053 |
Lai, J., Wang, G. W., Wang, Z. Y., et al., 2018. A Review on Pore Structure Characterization in Tight Sandstones. Earth-Science Reviews, 177: 436-457. https://doi.org/10.1016/j.earscirev.2017.12.003 |
Le Gall, N., Pichavant, M., 2016. Experimental Simulation of Bubble Nucleation and Magma Ascent in Basaltic Systems: Implications for Stromboli Volcano. American Mineralogist, 101(9): 1967-1985. https://doi.org/10.2138/am-2016-5639 |
Li, P., Zheng, M., Bi, H., et al., 2017. Pore Throat Structure and Fractal Characteristics of Tight Oil Sandstone: A Case Study in the Ordos Basin, China. Journal of Petroleum Science and Engineering, 149: 665-674. https://doi.org/10.1016/j.petrol.2016.11.015 |
Liu, D. K., Gu, Z. L., Liang, R. X., et al., 2020. Impacts of Pore-Throat System on Fractal Characterization of Tight Sandstones. Geofluids, 2020: 1-17. https://doi.org/10.1155/2020/4941501 |
Lyu, C., Cheng, Q. M., Zuo, R. G., et al., 2017. Mapping Spatial Distribution Characteristics of Lineaments Extracted from Remote Sensing Image Using Fractal and Multifractal Models. Journal of Earth Science, 28(3): 507-515. https://doi.org/10.1007/s12583-016-0914-x |
Mandelbrot, B. B., 1977. Fractals: Form, Chance and Dimension. Freeman, San Francisco. https://doi.org/10.1017/s0001924000090862 |
Manga, M., Castro, J., Cashman, K. V., et al., 1998. Rheology of Bubble-Bearing Magmas. Journal of Volcanology and Geothermal Research, 87(1/2/3/4): 15-28. https://doi.org/10.1016/s0377-0273(98)00091-2 |
Mongrain, J., Larsen, J. F., King, P. L., 2008. Rapid Water Exsolution, Degassing, and Bubble Collapse Observed Experimentally in K-Phonolite Melts. Journal of Volcanology and Geothermal Research, 173(3/4): 178-184. https://doi.org/10.1016/j.jvolgeores.2008.01.026 |
Namiki, A., Manga, M., 2006. Influence of Decompression Rate on the Expansion Velocity and Expansion Style of Bubbly Fluids. Journal of Geophysical Research: Solid Earth, 111(B11): 17. https://doi.org/10.1029/2005jb004132 |
Okumura, S., Kushnir, A. R. L., Martel, C., et al., 2016. Rheology of Crystal-Bearing Natural Magmas: Torsional Deformation Experiments at 800 ℃ and 100 MPa. Journal of Volcanology and Geothermal Research, 328: 237-246. https://doi.org/10.1016/j.jvolgeores.2016.11.009 |
Okumura, S., Nakamura, M., Tsuchiyama, A., et al., 2008. Evolution of Bubble Microstructure in Sheared Rhyolite: Formation of a Channel-Like Bubble Network. Journal of Geophysical Research Atmospheres, 113(B7): B07208. https://doi.org/10.1029/2007jb005362 |
Orsi, G., Gallo, G., Heiken, G., et al., 1992. A Comprehensive Study of Pumice Formation and Dispersal: The Cretaio Tephra of Ischia (Italy). Journal of Volcanology and Geothermal Research, 53(1/2/3/4): 329-354. https://doi.org/10.1016/0377-0273(92)90090-Z |
Papale, P., Neri, A., Macedonio, G., 1998. The Role of Magma Composition and Water Content in Explosive Eruptions: 1. Conduit Ascent Dynamics. Journal of Volcanology and Geothermal Research, 87(1/2/3/4): 75-93. https://doi.org/10.1016/s0377-0273(98)00101-2 |
Parmigiani, A., Degruyter, W., Leclaire, S., et al., 2017. The Mechanics of Shallow Magma Reservoir Outgassing. Geochemistry, Geophysics, Geosystems, 18(8): 2887-2905. https://doi.org/10.1002/2017gc006912 |
Pioli, L., Azzopardi, B. J., Bonadonna, C., et al., 2017. Outgassing and Eruption of Basaltic Magmas: The Effect of Conduit Geometry. Geology, 45(8): 759-762. https://doi.org/10.1130/g38787.1 |
Pistone, M., Caricchi, L., Fife, J. L., et al., 2015. In situ X-Ray Tomographic Microscopy Observations of Vesiculation of Bubble-Free and Bubble-Bearing Magmas. Bulletin of Volcanology, 77(12): 1-15. https://doi.org/10.1007/s00445-015-0992-1 |
Pistone, M., Whittington, A. G., Andrews, B. J., et al., 2017. Crystal-Rich Lava Dome Extrusion during Vesiculation: An Experimental Study. Journal of Volcanology and Geothermal Research, 347: 1-14. https://doi.org/10.1016/j.jvolgeores.2017.06.018 |
Prodanović, M., Lindquist, W. B., Seright, R. S., 2007.3D Image-Based Characterization of Fluid Displacement in a Berea Core. Advances in Water Resources, 30(2): 214-226. https://doi.org/10.1016/j.advwatres.2005.05.015 |
Rahner, M. S., Halisch, M., Peres Fernandes, C., et al., 2018. Fractal Dimensions of Pore Spaces in Unconventional Reservoir Rocks Using X-Ray Nano- and Micro-Computed Tomography. Journal of Natural Gas Science and Engineering, 55: 298-311. https://doi.org/10.1016/j.jngse.2018.05.011 |
Shields, J. K., Mader, H. M., Pistone, M., et al., 2014. Strain-Induced Outgassing of Three-Phase Magmas during Simple Shear. Journal of Geophysical Research: Solid Earth, 119(9): 6936-6957. https://doi.org/10.1002/2014jb011111 |
Spina, L., Morgavi, D., Costa, A., et al., 2019. Gas Mobility in Rheologically-Layered Volcanic Conduits: The Role of Decompression Rate and Crystal Content on the Ascent Dynamics of Magmas. Earth and Planetary Science Letters, 524: 115732. https://doi.org/10.1016/j.epsl.2019.115732 |
Tarquis, A. M., Heck, R. J., Andina, D., et al., 2009. Pore Network Complexity and Thresholding of 3D Soil Images. Ecological Complexity, 6(3): 230-239. https://doi.org/10.1016/j.ecocom.2009.05.010 |
Toramaru, A., 1995. Numerical Study of Nucleation and Growth of Bubbles in Viscous Magmas. Journal of Geophysical Research: Solid Earth, 100(B2): 1913-1931. https://doi.org/10.1029/94jb02775 |
Turcotte, D. L., 1989. Fractals in Geology and Geophysics. Pure and Applied Geophysics, 131(1/2): 171-196. https://doi.org/10.1007/BF00874486 |
Vona, A., Ryan, A. G., Russell, J. K., et al., 2016. Models for Viscosity and Shear Localization in Bubble-Rich Magmas. Earth and Planetary Science Letters, 449: 26-38. https://doi.org/10.1016/j.epsl.2016.05.029 |
Wang, F. Y., Jiao, L., Lian, P. Q., et al., 2019. Apparent Gas Permeability, Intrinsic Permeability and Liquid Permeability of Fractal Porous Media: Carbonate Rock Study with Experiments and Mathematical Modelling. Journal of Petroleum Science and Engineering, 173: 1304-1315. https://doi.org/10.1016/j.petrol.2018.10.095 |
Wang, F. Y., Lian, P. Q., Jiao, L., et al., 2018. Fractal Analysis of Microscale and Nanoscale Pore Structures in Carbonates Using High-Pressure Mercury Intrusion. Geofluids, 1: 1-15. https://doi.org/10.1155/2018/4023150 |
Wright, H. M. N., Cashman, K. V., Gottesfeld, E. H., et al., 2009. Pore Structure of Volcanic Clasts: Measurements of Permeability and Electrical Conductivity. Earth and Planetary Science Letters, 280(1/2/3/4): 93-104. https://doi.org/10.1016/j.epsl.2009.01.023 |
Xia, Y. X., Cai, J. C., Perfect, E., et al., 2019. Fractal Dimension, Lacunarity and Succolarity Analyses on CT Images of Reservoir Rocks for Permeability Prediction. Journal of Hydrology, 579: 124198. https://doi.org/10.1016/j.jhydrol.2019.124198 |
Xie, S. Y., Cheng, Q. M., Ling, Q. C., et al., 2010. Fractal and Multifractal Analysis of Carbonate Pore-Scale Digital Images of Petroleum Reservoirs. Marine and Petroleum Geology, 27(2): 476-485. https://doi.org/10.1016/j.marpetgeo.2009.10.010 |
Yang, F., Ning, Z. F., Liu, H. Q., 2014. Fractal Characteristics of Shales from a Shale Gas Reservoir in the Sichuan Basin, China. Fuel, 115: 378-384. https://doi.org/10.1016/j.fuel.2013.07.040 |
Yang, Z. Y., Pourghasemi, H. R., Lee, Y. H., 2016. Fractal Analysis of Rainfall-Induced Landslide and Debris Flow Spread Distribution in the Chenyulan Creek Basin, Taiwan. Journal of Earth Science, 27(1): 151-159. https://doi.org/10.1007/s12583-016-0633-4 |
Yin, L. R., Li, X. L., Zheng, W. F., et al., 2019. Fractal Dimension Analysis for Seismicity Spatial and Temporal Distribution in the Circum-Pacific Seismic Belt. Journal of Earth System Science, 128(1): 1-7. https://doi.org/10.1007/s12040-018-1040-2 |
Yu, B. M., 2006. Fractal Dimensions for Multiphase Fractal Media. Fractals, 14(2): 111-118. https://doi.org/10.1142/s0218348x06003155 |
Zheng, Q. H., You, J. Y., 2019. Hydrocarbon Accumulation Characteristics of Cretaceous Volcanic Rocks in Wangguantun Tectonic Zone, Huanghua Depression. Lithologic Reservoirs, 31(5): 44-51 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YANX201905005.htm |
Zhou, L. H., Qin, M. T., Xiao, D. Q., et al., 2021. Multi-Scaling Properties of 2D Reservoir Micro-Pore Heterogeneity Based on Digital Casting Thin-Section Images. Natural Resources Research, 30(1): 359-370. https://doi.org/10.1007/s11053-020-09747-8 |
Zhou, W. D., Xie, S. Y., Bao, Z. Y., et al., 2019. Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. Journal of Earth Sciences, 30(5): 879-892. https://doi.org/10.1007/s12583-019-1013-7 |