Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 4
Aug 2021
Turn off MathJax
Article Contents
Tianlei Zhai, Shengxuan Huang, Shan Qin, Jingjing Niu, Yu Gong. Redox-Induced Destabilization of Dolomite at Earth's Mantle Transition Zone. Journal of Earth Science, 2021, 32(4): 880-886. doi: 10.1007/s12583-021-1410-6
Citation: Tianlei Zhai, Shengxuan Huang, Shan Qin, Jingjing Niu, Yu Gong. Redox-Induced Destabilization of Dolomite at Earth's Mantle Transition Zone. Journal of Earth Science, 2021, 32(4): 880-886. doi: 10.1007/s12583-021-1410-6

Redox-Induced Destabilization of Dolomite at Earth's Mantle Transition Zone

doi: 10.1007/s12583-021-1410-6
More Information
  • Corresponding author: Shan Qin, sqin@pku.edu.cn
  • Received Date: 14 Oct 2020
  • Accepted Date: 03 Jan 2021
  • Publish Date: 16 Aug 2021
  • Carbonates are considered to be important hosts of oxidized carbon during subduction processes. Here we investigate the redox interactions between dolomite and metallic iron in laser-heated diamond anvil cells up to ~20 GPa. The identification of recovered samples via in-situ synchrotron X-ray diffraction and ex-situ Raman spectroscopy shows that the reaction occurs with the formation of ferropericlase, graphite and hexagonal diamond, while CaCO3 remains stable. The experimental results indicate dolomite and metallic iron phases cannot coexist and demonstrate a possible formation mechanism of ultradeep diamonds via redox reaction between dolomite and iron under the mantle transition zone conditions. The results are significant for understanding carbon transportation during subduction processes and have further implications to the processes in the more complex systems regarding to carbonate-silicate-metal phase relations.

     

  • loading
  • Ballhaus, C., 1995. Is the Upper Mantle Metal-Saturated? Earth and Planetary Science Letters, 132(1/2/3/4): 75-86. https://doi.org/10.1016/0012-821x(95)00047-g
    Bayarjargal, L., Fruhner, C. J., Schrodt, N., et al., 2018. CaCO3 Phase Diagram Studied with Raman Spectroscopy at Pressures up to 50 GPa and High Temperatures and DFT Modeling. Physics of the Earth and Planetary Interiors, 281: 31-45. https://doi.org/10.1016/j.pepi.2018.05.002
    Brenker, F. E., Vollmer, C., Vincze, L., et al., 2007. Carbonates from the Lower Part of Transition Zone or even the Lower Mantle. Earth and Planetary Science Letters, 260(1/2): 1-9. https://doi.org/10.1016/j.epsl.2007.02.038
    Bureau, H., Frost, D. J., Bolfan-Casanova, N., et al., 2016. Diamond Growth in Mantle Fluids. Lithos, 265: 4-15. https://doi.org/10.1016/j.lithos.2016.10.004
    Chen, M., Shu, J. F., Xie, X. D., et al., 2018. Natural Diamond Formation by Self-Redox of Ferromagnesian Carbonate. Proceedings of the National Academy of Sciences of the United States of America, 115(11): 2676-2680. https://doi.org/10.1073/pnas.1720619115
    Dasgupta, R., Hirschmann, M. M., 2006. Melting in the Earth's Deep Upper Mantle Caused by Carbon Dioxide. Nature, 440(7084): 659-662. https://doi.org/10.1038/nature04612
    Dasgupta, R., Hirschmann, M. M., 2010. The Deep Carbon Cycle and Melting in Earth's Interior. Earth and Planetary Science Letters, 298(1/2): 1-13. https://doi.org/10.1016/j.epsl.2010.06.039
    Dorfman, S. M., Badro, J., Nabiei, F., et al., 2018. Carbonate Stability in the Reduced Lower Mantle. Earth and Planetary Science Letters, 489: 84-91. https://doi.org/10.1016/j.epsl.2018.02.035
    Drewitt, J. W. E., Walter, M. J., Zhang, H. L., et al., 2019. The Fate of Carbonate in Oceanic Crust Subducted into Earth's Lower Mantle. Earth and Planetary Science Letters, 511: 213-222. https://doi.org/10.1016/j.epsl.2019.01.041
    Dubrovinsky, L., Glazyrin, K., McCammon, C., et al., 2009. Portable Laser-Heating System for Diamond Anvil Cells. Journal of Synchrotron Radiation, 16(6): 737-741. https://doi.org/10.1107/s0909049509039065
    Farsang, S., Facq, S., Redfern, S. A. T., 2018. Raman Modes of Carbonate Minerals as Pressure and Temperature Gauges up to 6 GPa and 500 ℃. American Mineralogist, 103(12): 1988-1998. https://doi.org/10.2138/am-2018-6442
    Fei, Y. W., Zhang, L., Corgne, A., et al., 2007. Spin Transition and Equations of State of (Mg, Fe)O Solid Solutions. Geophysical Research Letters, 34(17): L17307. https://doi.org/10.1029/2007gl030712
    Fiquet, G., Guyot, F., Kunz, M., et al., 2002. Structural Refinements of Magnesite at very High Pressure. American Mineralogist, 87(8/9): 1261-1265. https://doi.org/10.2138/am-2002-8-927
    Gao, J., Niu, J. J., Qin, S., et al., 2017. Ultradeep Diamonds Originate from Deep Subducted Sedimentary Carbonates. Science China Earth Sciences, 60(2): 207-217. https://doi.org/10.1007/s11430-016-5151-4
    Hammersley, A. P., Svensson, S. O., Hanfland, M., et al., 1996. Two-Dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan. High Pressure Research, 14(4/5/6): 235-248. https://doi.org/10.1080/08957959608201408
    Jephcoat, A. P., Finger, L. W., Cox, D. E., 1992. High Pressure, High Resolution Synchrotron X-Ray Powder Diffraction with a Position-Sensitive Detector. High Pressure Research, 8(5/6): 667-676. https://doi.org/10.1080/08957959208206318
    Kaminsky, F., Matzel, J., Jacobsen, B., et al., 2016. Isotopic Fractionation of Oxygen and Carbon in Decomposed Lower-Mantle Inclusions in Diamond. Mineralogy and Petrology, 110(2/3): 379-385. https://doi.org/10.1007/s00710-015-0401-7
    Kaminsky, F., Wirth, R., Matsyuk, S., et al., 2009. Nyerereite and Nahcolite Inclusions in Diamond: Evidence for Lower-Mantle Carbonatitic Magmas. Mineralogical Magazine, 73(5): 797-816. https://doi.org/10.1180/minmag.2009.073.5.797
    Li, X. Y., Zhang, Z. G., Lin, J. F., et al., 2018. New High-Pressure Phase of CaCO3 at the Topmost Lower Mantle: Implication for the Deep-Mantle Carbon Transportation. Geophysical Research Letters, 45(3): 1355-1360. https://doi.org/10.1002/2017gl076536
    Litvin, Y. A., Spivak, A. V., Dubrovinsky, L. S., 2016. Magmatic Evolution of the Material of the Earth's Lower Mantle: Stishovite Paradox and Origin of Superdeep Diamonds (Experiments at 24-26 GPa). Geochemistry International, 54(11): 936-947. https://doi.org/10.1134/s0016702916090032
    Liu, J., Dubrovinsky, L., Boffa Ballaran, T., et al., 2007. Equation of State and Thermal Expansivity of LiF and NaF. High Pressure Research, 27(4): 483-489. https://doi.org/10.1080/08957950701684690
    Maeda, F., Ohtani, E., Kamada, S., et al., 2017. Diamond Formation in the Deep Lower Mantle: A High-Pressure Reaction of MgCO3 and SiO2. Scientific Reports, 7: 40602. https://doi.org/10.1038/srep40602
    Mao, H. K., Bassett, W. A., Takahashi, T., 1967. Effect of Pressure on Crystal Structure and Lattice Parameters of Iron up to 300 kbar. Journal of Applied Physics, 38(1): 272-276. https://doi.org/10.1063/1.1708965
    Mao, Z., Armentrout, M., Rainey, E., et al., 2011a. Dolomite Ⅲ: A New Candidate Lower Mantle Carbonate. Geophysical Research Letters, 38(22): L22303. https://doi.org/10.1029/2011gl049519
    Mao, Z., Lin, J. F., Liu, J., et al., 2011b. Thermal Equation of State of Lower-Mantle Ferropericlase across the Spin Crossover. Geophysical Research Letters, 38(23): L23308. https://doi.org/10.1029/2011gl049915
    Martinez, I., Zhang, J., Reeder, R. J., 1996. In situ X-Ray Diffraction of Aragonite and Dolomite at High Pressure and High Temperature: Evidence for Dolomite Breakdown to Aragonite and Magnesite. American Mineralogist, 81(5/6): 611-624. https://doi.org/10.2138/am-1996-5-608
    Martirosyan, N. S., Litasov, K. D., Lobanov, S. S., et al., 2019a. The Mg-Carbonate-Fe Interaction: Implication for the Fate of Subducted Carbonates and Formation of Diamond in the Lower Mantle. Geoscience Frontiers, 10(4): 1449-1458. https://doi.org/10.1016/j.gsf.2018.10.003
    Martirosyan, N. S., Shatskiy, A., Chanyshev, A. D., et al., 2019b. Effect of Water on the Magnesite-Iron Interaction, with Implications for the Fate of Carbonates in the Deep Mantle. Lithos, 326/327: 435-445. https://doi.org/10.1016/j.lithos.2019.01.004
    Martirosyan, N. S., Litasov, K. D., Shatskiy, A. F., et al., 2015a. Reactions of Iron with Calcium Carbonate at 6 GPa and 1 273-1 873 K: Implications for Carbonate Reduction in the Deep Mantle. Russian Geology and Geophysics, 56(9): 1322-1331. https://doi.org/10.1016/j.rgg.2015.08.008
    Martirosyan, N. S., Litasov, K. D., Shatskiy, A., et al., 2015b. The Reactions between Iron and Magnesite at 6 GPa and 1 273-1 873 K: Implication to Reduction of Subducted Carbonate in the Deep Mantle. Journal of Mineralogical and Petrological Sciences, 110(2): 49-59. https://doi.org/10.2465/jmps.141003a
    Martirosyan, N. S., Yoshino, T., Shatskiy, A., et al., 2016. The CaCO3-Fe Interaction: Kinetic Approach for Carbonate Subduction to the Deep Earth's Mantle. Physics of the Earth and Planetary Interiors, 259: 1-9. https://doi.org/10.1016/j.pepi.2016.08.008
    Merlini, M., Cerantola, V., Gatta, G. D., et al., 2017. Dolomite-Ⅳ: Candidate Structure for a Carbonate in the Earth's Lower Mantle. American Mineralogist, 102(8): 1763-1766. https://doi.org/10.2138/am-2017-6161
    Merlini, M., Crichton, W. A., Hanfland, M., et al., 2012. Structures of Dolomite at Ultrahigh Pressure and Their Influence on the Deep Carbon Cycle. Proceedings of the National Academy of Sciences of the United States of America, 109(34): 13509-13514. https://doi.org/10.1073/pnas.1201336109
    Németh, P., Garvie, L. A. J., Aoki, T., et al., 2014. Lonsdaleite is Faulted and Twinned Cubic Diamond and does not Exist as a Discrete Material. Nature Communications, 5: 5447. https://doi.org/10.1038/ncomms6447
    Nestola, F., Korolev, N., Kopylova, M., et al., 2018. CaSiO3 Perovskite in Diamond Indicates the Recycling of Oceanic Crust into the Lower Mantle. Nature, 555(7695): 237-241. https://doi.org/10.1038/nature25972
    Oganov, A. R., Hemley, R. J., Hazen, R. M., et al., 2013. Structure, Bonding, and Mineralogy of Carbon at Extreme Conditions. Reviews in Mineralogy and Geochemistry, 75(1): 47-77. https://doi.org/10.2138/rmg.2013.75.3
    Palyanov, Y. N., Bataleva, Y. V., Sokol, A. G., et al., 2013. Mantle-Slab Interaction and Redox Mechanism of Diamond Formation. Proceedings of the National Academy of Sciences of the United States of America, 110(51): 20408-20413. https://doi.org/10.1073/pnas.1313340110
    Patterson, J. R., Kudryavtsev, A., Vohra, Y. K., 2002. X-Ray Diffraction and Nanoindentation Studies of Nanocrystalline Graphite at High Pressures. Applied Physics Letters, 81(11): 2073-2075. https://doi.org/10.1063/1.1508169
    Pócsik, I., Hundhausen, M., Koós, M., et al., 1998. Origin of the D Peak in the Raman Spectrum of Microcrystalline Graphite. Journal of Non- Crystalline Solids, 227-230(2): 1083-1086. https://doi.org/10.1016/s0022-3093(98)00349-4
    Reich, S., Thomsen, C., 2004. Raman Spectroscopy of Graphite. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 362(1824): 2271-2288. https://doi.org/10.1098/rsta.2004.1454
    Rohrbach, A., Ballhaus, C., Golla-Schindler, U., et al., 2007. Metal Saturation in the Upper Mantle. Nature, 449(7161): 456-458. https://doi.org/10.1038/nature06183
    Rohrbach, A., Schmidt, M. W., 2011. Redox Freezing and Melting in the Earth's Deep Mantle Resulting from Carbon-Iron Redox Coupling. Nature, 472(7342): 209-212. https://doi.org/10.1038/nature09899
    Santillán, J., Williams, Q., Knittle, E., 2003. Dolomite-Ⅱ: A High-Pressure Polymorph of CaMg(CO3)2. Geophysical Research Letters, 30(2): 1054. https://doi.org/10.1029/2002gl016018
    Sato, K., Katsura, T., 2001. Experimental Investigation on Dolomite Dissociation into Aragonite+Magnesite up to 8.5 GPa. Earth and Planetary Science Letters, 184(2): 529-534. https://doi.org/10.1016/S0012-821X(00)00346-0
    Schindler, T. L., Vohra, Y. K., 1995. A Micro-Raman Investigation of High-Pressure Quenched Graphite. Journal of Physics: Condensed Matter, 7(47): L637-L642. https://doi.org/10.1088/0953-8984/7/47/001
    Smith, D. C., Godard, G., 2009. UV and VIS Raman Spectra of Natural Lonsdaleites: Towards a Recognised Standard. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(3): 428-435. https://doi.org/10.1016/j.saa.2008.10.025
    Stagno, V., Frost, D. J., McCammon, C. A., et al., 2015. The Oxygen Fugacity at which Graphite or Diamond Forms from Carbonate-Bearing Melts in Eclogitic Rocks. Contributions to Mineralogy and Petrology, 169(2): 1-18. https://doi.org/10.1007/s00410-015-1111-1
    Sung, J., 2000. Graphite→Diamond Transition under High Pressure: A Kinetics Approach. Journal of Materials Science, 35(23): 6041-6054. https://doi.org/10.1023/a:1026779802263
    Thomson, A. R., Kohn, S. C., Bulanova, G. P., et al., 2014. Origin of Sub-Lithospheric Diamonds from the Juina-5 Kimberlite (Brazil): Constraints from Carbon Isotopes and Inclusion Compositions. Contributions to Mineralogy and Petrology, 168(6): 1-29. https://doi.org/10.1007/s00410-014-1081-8
    Thomson, A. R., Walter, M. J., Kohn, S. C., et al., 2016. Slab Melting as a Barrier to Deep Carbon Subduction. Nature, 529(7584): 76-79. https://doi.org/10.1038/nature16174
    Toby, B. H., 2001. EXPGUI, a Graphical User Interface for GSAS. Journal of Applied Crystallography, 34(2): 210-213. https://doi.org/10.1107/s0021889801002242
    van der Hilst, R. D., Widiyantoro, S., Engdahl, E. R., 1997. Evidence for Deep Mantle Circulation from Global Tomography. Nature, 386(6625): 578-584. https://doi.org/10.1038/386578a0
    van Westrenen, W., Li, J., Fei, Y. W., et al., 2005. Thermoelastic Properties of (Mg0.64Fe0.36)O Ferropericlase Based on in situ X-Ray Diffraction to 26.7 GPa and 2 173 K. Physics of the Earth and Planetary Interiors, 151(1/2): 163-176. https://doi.org/10.1016/j.pepi.2005.03.001
    Walter, M. J., Kohn, S. C., Araujo, D., et al., 2011. Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 334(6052): 54-57. https://doi.org/10.1126/science.1209300
    Yang, J. S., Shen, T. T., Zhang, C., et al., 2019. Preface: Introduction of IGCP 649 Project-Diamonds and Recycled Mantle. Journal of Earth Science, 30(3): 429-430. https://doi.org/10.1007/s12583-019-1229-6
    Zhang, X., Yang, S. Y., Zhao, H., et al., 2019. Effect of Beam Current and Diameter on Electron Probe Microanalysis of Carbonate Minerals. Journal of Earth Science, 30(4): 834-842. https://doi.org/10.1007/s12583-017-0939-x
    Zhu, F., Li, J., Liu, J. C., et al., 2019. Kinetic Control on the Depth Distribution of Superdeep Diamonds. Geophysical Research Letters, 46(4): 1984-1992. https://doi.org/10.1029/2018gl080740
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views(245) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return