Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 6
Dec 2021
Turn off MathJax
Article Contents
Botao Li, Hans-Joachim Massonne, Xiaoping Yuan. Pressure-Temperature Evolution of a Mylonitic Gneiss from the Lower Seve Nappe in the Handöl Area, Central Sweden. Journal of Earth Science, 2021, 32(6): 1496-1511. doi: 10.1007/s12583-021-1413-3
Citation: Botao Li, Hans-Joachim Massonne, Xiaoping Yuan. Pressure-Temperature Evolution of a Mylonitic Gneiss from the Lower Seve Nappe in the Handöl Area, Central Sweden. Journal of Earth Science, 2021, 32(6): 1496-1511. doi: 10.1007/s12583-021-1413-3

Pressure-Temperature Evolution of a Mylonitic Gneiss from the Lower Seve Nappe in the Handöl Area, Central Sweden

doi: 10.1007/s12583-021-1413-3
More Information
  • Corresponding author: Botao Li, libotao123@hotmail.com
  • Received Date: 21 Nov 2020
  • Accepted Date: 14 Jan 2021
  • Publish Date: 30 Dec 2021
  • Ultrahigh-pressure metamorphism has recently been reported from various crustal rocks in the Seve Nappe Complex (SNC) in which microdiamonds were found. However, in gneiss from the Lower Seve Nappe (LSN), neither any direct petrographic indication for UHP was reported nor the metamorphic evolution was well constrained. We studied a mylonitic gneiss from the Handöl area of the LSN and applied phase-diagram modeling and Ti-in-biotite thermometry. Based on the compositions of garnet and biotite and observed mineral assemblages, a path was reconstructed passing through about 8 kbar and 730℃ at prograde metamorphism. Peak-pressure and initial retrograde stages occurred at 9.0-10.2 kbar at 745-775℃, and 7-9 kbar at < 750℃, respectively. No ultrahigh-pressure evidence was recognized compatible with medium-pressure metamorphism deduced in earlier studies of gneiss from the SNC. As higher peak pressures were reported recently for metamorphic rocks of the LSN, a possible interpretation is that slices or erased blocks were subducted, metamorphosed at different depths, and exhumed in a subduction channel. However, the dominant gneiss of the SNC experienced only a medium-pressure metamorphism in the upper part of the downgoing Baltica Plate. Rocks from different depth levels were brought together in an exhumation channel located between Baltica and the overlying plate.

     

  • Electronic Supplementary Materials: Supplementary materials containing Figs. S1 and S2 are available in the online version of this article at https://doi.org/10.1007/s12583-021-1413-3.
  • loading
  • Andersen, T. B., Jamtveit, B., 1990. Uplift of Deep Crust during Orogenic Extensional Collapse: A Model Based on Field Studies in the Sogn-Sunnfjord Region of Western Norway. Tectonics, 9(5): 1097-1111. https://doi.org/10.1029/tc009i005p01097
    Andréasson, P. G., 1994. The Baltoscandian Margin in Neoproterozoic- Early Palaeozoic Times: Some Constraints on Terrane Derivation and Accretion in the Arctic Scandinavian Caledonides. Tectonophysics, 231(1-3): 1-32. https://doi.org/10.1016/0040-1951(94)90118-x
    Andréasson, P. G., Gorbatschev, R., 1980. Metamorphism in Extensive Nappe Terrains: A Study of the Central Scandinavian Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 102(4): 335-357. https://doi.org/10.1080/11035898009454492
    Andréasson, P. G., Svenningsen, O. M., Albrecht, L., 1998. Dawn of Phanerozoic Orogeny in the North Atlantic Tract; Evidence from the Seve-Kalak Superterrane, Scandinavian Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 120(2): 159-172. https://doi.org/10.1080/11035899801202159
    Arnbom, J. O., 1980. Metamorphism of the Seve Nappes at Åreskutan, Swedish Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 102(4): 359-371. https://doi.org/10.1080/11035898009454493
    Barnes, C., Majka, J., Schneider, D., et al., 2019. High-Spatial Resolution Dating of Monazite and Zircon Reveals the Timing of Subduction-Exhumation of the Vaimok Lens in the Seve Nappe Complex (Scandinavian Caledonides). Contributions to Mineralogy and Petrology, 174(1): 1-18. https://doi.org/10.1007/s00410-018-1539-1
    Bender, H., Ring, U., Almqvist, B. S. G., et al., 2018. Metamorphic Zonation by Out-of-Sequence Thrusting at Back-Stepping Subduction Zones: Sequential Accretion of the Caledonian Internides, Central Sweden. Tectonics, 37(10): 3545-3576. https://doi.org/10.1029/2018tc005088
    Benisek, A., Dachs, E., Kroll, H., 2010. A Ternary Feldspar-Mixing Model Based on Calorimetric Data: Development and Application. Contributions to Mineralogy and Petrology, 160(3): 327-337. https://doi.org/10.1007/s00410-009-0480-8
    Bergman, S., 1992. P-T Paths in the Handöl Area, Central Scandinavia: Record of Caledonian Accretion of Outboard Rocks to the Baltoscandian Margin. Journal of Metamorphic Geology, 10(2): 265-281. https://doi.org/10.1111/j.1525-1314.1992.tb00082.x
    Brandelik, A., 2009. CALCMIN-An EXCEL™ Visual Basic Application for Calculating Mineral Structural Formulae from Electron Microprobe Analyses. Computers & Geosciences, 35(7): 1540-1551. https://doi.org/10.1016/j.cageo.2008.09.011
    Brown, M., 2007. Crustal Melting and Melt Extraction, Ascent and Emplacement in Orogens: Mechanisms and Consequences. Journal of the Geological Society, 164(4): 709-730. https://doi.org/10.1144/0016-76492006-171
    Brueckner, H. K., van Roermund, H. L. M., 2004. Dunk Tectonics: A Multiple Subduction/Eduction Model for the Evolution of the Scandinavian Caledonides. Tectonics, 23(2): 1-20. https://doi.org/10.1029/2003tc001502
    Brueckner, H. K., van Roermund, H. L. M., 2007. Concurrent HP Metamorphism on both Margins of Iapetus: Ordovician Ages for Eclogites and Garnet Pyroxenites from the Seve Nappe Complex, Swedish Caledonides. Journal of the Geological Society, 164(1): 117-128. https://doi.org/10.1144/0016-76492005-139
    Bukała, M., Klonowska, I., Barnes, C., et al., 2018. UHP Metamorphism Recorded by Phengite Eclogite from the Caledonides of Northern Sweden: P-T Path and Tectonic Implications. Journal of Metamorphic Geology, 36(5): 547-566. https://doi.org/10.1111/jmg.12306
    Butler, J. P., Jamieson, R. A., Steenkamp, H. M., et al., 2013. Discovery of Coesite-Eclogite from the Nordøyane UHP Domain, Western Gneiss Region, Norway: Field Relations, Metamorphic History, and Tectonic Significance. Journal of Metamorphic Geology, 31(2): 147-163. https://doi.org/10.1111/jmg.12004
    Carswell, D. A., Tucker, R. D., O'Brien, P. J., et al., 2003. Coesite Micro-Inclusions and the U/Pb Age of Zircons from the Hareidland Eclogite in the Western Gneiss Region of Norway. Lithos, 67(3/4): 181-190. https://doi.org/10.1016/s0024-4937(03)00014-8
    Chen, S., Li, X. P., Kong, F. M., et al., 2018. Metamorphic Evolution and Zircon U-Pb Ages of the Nanshankou Mafic High Pressure Granulites from the Jiaobei Terrane, North China Craton. Journal of Earth Science, 29(5): 1219-1235. https://doi.org/10.1007/s12583-017-0956-9
    Connolly, J. A. D., 2005. Computation of Phase Equilibria by Linear Programming: A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation. Earth and Planetary Science Letters, 236(1/2): 524-541. https://doi.org/10.1016/j.epsl.2005.04.033
    Corfu, F., Gasser, D., Chew, D. M., 2014. New Perspectives on the Caledonides of Scandinavia and Related Areas: Introduction. Geological Society, London, Special Publications, 390(1): 1-8. https://doi.org/10.1144/sp390.28
    Cuthbert, S. J., Carswell, D. A., Krogh-Ravna, E. J., et al., 2000. Eclogites and Eclogites in the Western Gneiss Region, Norwegian Caledonides. Lithos, 52(1-4): 165-195. https://doi.org/10.1016/s0024-4937(99)00090-0
    Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821x(94)00237-s
    Day, H. W., 2012. A Revised Diamond-Graphite Transition Curve. American Mineralogist, 97(1): 52-62. https://doi.org/10.2138/am.2011.3763
    Dobrzhinetskaya, L. F., Eide, E. A., Larsen, R. B., et al., 1995. Microdiamond in High-Grade Metamorphic Rocks of the Western Gneiss Region, Norway. Geology, 23(7): 597-600. https://doi.org/10.1130/0091-7613(1995)0230597:mihgmr>2.3.co;2 doi: 10.1130/0091-7613(1995)0230597:mihgmr>2.3.co;2
    Faryad, S. W., 2012. High-Pressure Polymetamorphic Garnet Growth in Eclogites from the Mariánské Lázně Complex (Bohemian Massif). European Journal of Mineralogy, 24(3): 483-497. https://doi.org/10.1127/0935-1221/2012/0024-2184
    Faryad, S. W., Cuthbert, S. J., 2020. High-Temperature Overprint in (U)HPM Rocks Exhumed from Subduction Zones: A Product of Isothermal Decompression or a Consequence of Slab Break-off (Slab Rollback)? Earth-Science Reviews, 202: 103108. https://doi.org/10.1016/j.earscirev.2020.103108
    Fassmer, K., Klonowska, I., Walczak, K., et al., 2017. Middle Ordovician Subduction of Continental Crust in the Scandinavian Caledonides: An Example from Tjeliken, Seve Nappe Complex, Sweden. Contributions to Mineralogy and Petrology, 172(11/12): 1-21. https://doi.org/10.1007/s00410-017-1420-7
    Fossen, H., 2000. Extensional Tectonics in the Caledonides: Synorogenic or Postorogenic? Tectonics, 19(2): 213-224. https://doi.org/10.1029/1999tc900066
    Garfunkel, Z., Greiling, R. O., 1998. A Thin Orogenic Wedge upon Thick Foreland Lithosphere and the Missing Foreland Basin. Geologische Rundschau, 87(3): 314-325. https://doi.org/10.1007/s005310050212
    Gee, D. G., 2020. Chapter 23 Swedish Caledonides: Key Components of an Early-Middle Paleozoic Himalaya-Type Collisional Orogen. Geological Society, London, Memoirs, 50(1): 577-599. https://doi.org/10.1144/m50-2019-20
    Gee, D. G., Janák, M., Majka, J., et al., 2013. Subduction along and within the Baltoscandian Margin during Closing of the Iapetus Ocean and Baltica-Laurentia Collision. Lithosphere, 5(2): 169-178. https://doi.org/10.1130/l220.1
    Gee, D. G., Juhlin, C., Pascal, C., et al., 2010. Collisional Orogeny in the Scandinavian Caledonides (COSC). GFF, 132 (1): 29-44. https://doi.org/10.1080/11035891003759188
    Gee, D. G., Kumpulainen, R., Roberts, D., et al., 1985. Scandinavian Caledonides, Tectonostratigraphic Map, Scale 1: 2 000 000. In: Gee, D. G., Sturt, B. A., eds., The Caledonide Orogen-Scandinavia and Related Areas. Wiley, Chichester
    Giuntoli, F., Menegon, L., Warren, C. J., 2018. Replacement Reactions and Deformation by Dissolution and Precipitation Processes in Amphibolites. Journal of Metamorphic Geology, 36(9): 1263-1286. https://doi.org/10.1111/jmg.12445
    Griffin, W. L., Brueckner, H. K., 1980. Caledonian Sm-Nd Ages and a Crustal Origin for Norwegian Eclogites. Nature, 285(5763): 319-321. https://doi.org/10.1038/285319a0
    Grimmer, J. C., Glodny, J., Drüppel, K., et al., 2015. Early-to Mid-Silurian Extrusion Wedge Tectonics in the Central Scandinavian Caledonides. Geology, 43(4): 347-350. https://doi.org/10.1130/g36433.1
    Gromet, L. P., Sjöström, H., Bergman, S., et al., 1996. Contrasting Ages of Metamorphism in the Seve Nappes: U-Pb Results from the Central and Northern Swedish Caledonides. GFF, 118(Suppl. 4): 36-37. https://doi.org/10.1080/11035899609546308
    Hacker, B. R., Gans, P. B., 2005. Continental Collisions and the Creation of Ultrahigh-Pressure Terranes: Petrology and Thermochronology of Nappes in the Central Scandinavian Caledonides. Geological Society of America Bulletin, 117(1): 117-134. https://doi.org/10.1130/b25549.1
    Holland, T. J. B., Powell, R., 2011. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 29(3): 333-383. https://doi.org/10.1111/j.1525-1314.2010.00923.x
    Holland, T., Baker, J., Powell, R., 1998. Mixing Properties and Activity-Composition Relationships of Chlorites in the System MgO-FeO-Al2O3-SiO2-H2O. European Journal of Mineralogy, 10(3): 395-406. https://doi.org/10.1127/ejm/10/3/0395
    Holland, T., Powell, R., 1996. Thermodynamics of Order-Disorder in Minerals: Ⅱ, Symmetric Formalism Applied to Solid Solutions. American Mineralogist, 81(11/12): 1425-1437. https://doi.org/10.2138/am-1996-11-1215
    Holness, M. B., Cesare, B., Sawyer, E. W., 2011. Melted Rocks under the Microscope: Microstructures and Their Interpretation. Elements, 7(4): 247-252. https://doi.org/10.2113/gselements.7.4.247
    Janák, M., van Roermund, H., Majka, J., et al., 2013. UHP Metamorphism Recorded by Kyanite-Bearing Eclogite in the Seve Nappe Complex of Northern Jämtland, Swedish Caledonides. Gondwana Research, 23(3): 865-879. https://doi.org/10.1016/j.gr.2012.06.012
    Klonowska, I., Janák, M., Majka, J., et al., 2016. Eclogite and Garnet Pyroxenite from Stor Jougdan, Seve Nappe Complex, Sweden: Implications for UHP Metamorphism of Allochthons in the Scandinavian Caledonides. Journal of Metamorphic Geology, 34(2): 103-119. https://doi.org/10.1111/jmg.12173
    Klonowska, I., Janák, M., Majka, J., et al., 2017. Microdiamond on Åreskutan Confirms Regional UHP Metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides. Journal of Metamorphic Geology, 35(5): 541-564. https://doi.org/10.1111/jmg.12244
    Klonowska, I., Majka, J., Janák, M., et al., 2014. Pressure-Temperature Evolution of a Kyanite-Garnet Pelitic Gneiss from Åreskutan: Evidence of Ultra-High-Pressure Metamorphism of the Seve Nappe Complex, West-Central Jämtland, Swedish Caledonides. Geological Society, London, Special Publications, 390(1): 321-336. https://doi.org/10.1144/sp390.7
    Kretz, R., 1983. Symbols for Rock Forming Minerals. American Mineralogist, 68(1/2): 277-279 http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=68/1-2/277
    Kriegsman, L. M., Álvarez-Valero, A. M., 2010. Melt-Producing versus Melt-Consuming Reactions in Pelitic Xenoliths and Migmatites. Lithos, 116(3/4): 310-320. https://doi.org/10.1016/j.lithos.2009.09.001
    Kylander-Clark, A. R. C., Hacker, B. R., Mattinson, J. M., 2008. Slow Exhumation of UHP Terranes: Titanite and Rutile Ages of the Western Gneiss Region, Norway. Earth and Planetary Science Letters, 272(3/4): 531-540. https://doi.org/10.1016/j.epsl.2008.05.019
    Li, B. T., Massonne, H. -J., 2016. Early Variscan P-T Evolution of an Eclogite Body and Adjacent Orthogneiss from the Northern Malpica-Tuy Shear-Zone in NW Spain. European Journal of Mineralogy, 28(6): 1131-1154. https://doi.org/10.1127/ejm/2016/0028-2569
    Li, B. T., Massonne, H. -J., Koller, F., et al., 2021. Metapelite from the High-to Ultrahigh-Pressure Terrane of the Eastern Alps (Pohorje Mountains, Slovenia)-New Pressure, Temperature and Time Constraints on a Polymetamorphic Rock. Journal of Metamorphic Geology. https://doi.org/10.1111/jmg.12581
    Li, B. T., Massonne, H. -J., Opitz, J., 2017. Clockwise and Anticlockwise P-T Paths of High-Pressure Rocks from the 'La Pioza' Eclogite Body of the Malpica-Tuy Complex, NW Spain. Journal of Petrology, 58(7): 1363-1392. https://doi.org/10.1093/petrology/egx057
    Li, B. T., Massonne, H. -J., Zhang, J. F., 2020. Evolution of a Gneiss in the Seve Nappe Complex of Central Sweden-Hints at an Early Caledonian, Medium-Pressure Metamorphism. Lithos, 376/377: 105746. https://doi.org/10.1016/j.lithos.2020.105746
    Li, Z. Y., Li, Y. L., Zhao, L. M., et al., 2019. Petrology and Metamorphic P-T Paths of Metamorphic Zones in the Huangyuan Group, Central Qilian Block, NW China. Journal of Earth Science, 30(6): 1280-1292. https://doi.org/10.1007/s12583-018-0879-0
    Litjens, A., 2002. PT Estimates of High-Pressure Metamorphic Rocks from the Seve Nappe Complex, Jämtland, Central Scandinavian Caledonides: [Dissertation]. University of Utrecht, The Netherlands
    Liu, P. L., Massonne, H. -J., 2019. An Anticlockwise P-T Path at High-Pressure, High-Temperature Conditions for a Migmatitic Gneiss from the Island of Fjørtoft, Western Gneiss Region, Norway, Indicates Two Burial Events during the Caledonian Orogeny. Journal of Metamorphic Geology, 37(4): 567-588. https://doi.org/10.1111/jmg.12476
    Majka, J., Be'eri-Shlevin, Y., Gee, D. G., et al., 2012. Multiple Monazite Growth in the Åreskutan Migmatite: Evidence for a Polymetamorphic Late Ordovician to Late Silurian Evolution in the Seve Nappe Complex of West-Central Jämtland, Sweden. Journal of Geosciences, 57(1): 3-23. https://doi.org/10.3190/jgeosci.112
    Majka, J., Janák, M., Andersson, B., et al., 2014a. Pressure-Temperature Estimates on the Tjeliken Eclogite: New Insights into the (Ultra)-High-Pressure Evolution of the Seve Nappe Complex in the Scandinavian Caledonides. Geological Society, London, Special Publications, 390(1): 369-384. https://doi.org/10.1144/sp390.14
    Majka, J., Rosén, Å., Janák, M., et al., 2014b. Microdiamond Discovered in the Seve Nappe (Scandinavian Caledonides) and Its Exhumation by the "Vacuum-Cleaner" Mechanism. Geology, 42(12): 1107-1110. https://doi.org/10.1130/g36108.1
    Massonne, H. -J., 2010. Phase Relations and Dehydration Behaviour of Calcareous Sediments at Very-Low to Low Grade Metamorphic Conditions. Periodico di Mineralogia, 79(2): 21-43. https://doi.org/10.2451/2010PM0008
    Massonne, H. -J., 2012. Formation of Amphibole and Clinozoisite-Epidote in Eclogite Owing to Fluid Infiltration during Exhumation in a Subduction Channel. Journal of Petrology, 53(10): 1969-1998. https://doi.org/10.1093/petrology/egs040
    Massonne, H. -J., 2016. Hydration of the Lithospheric Mantle by the Descending Plate in a Continent-Continent Collisional Setting and Its Geodynamic Consequences. Journal of Geodynamics, 96: 50-61. https://doi.org/10.1016/j.jog.2015.06.006
    Massonne, H. -J., 2021. Key Patterns of S-Type Granitic Gneiss to Define the Baric (Low-to High-Pressure) Nature of Phanerozoic Basement Terranes. Terra Nova, 33(3): 225-239. https://doi.org/10.1111/ter.12510
    Massonne, H. -J., Cruciani, G., Franceschelli, M., et al., 2018. Anti-clockwise Pressure-Temperature Paths Record Variscan Upper-Plate Exhumation: Example from Micaschists of the Porto Vecchio Region, Corsica. Journal of Metamorphic Geology, 36(1): 55-77. https://doi.org/10.1111/jmg.12283
    Massonne, H. -J., Li, B. T., 2020. Zoning of Eclogitic Garnet Cores——A Key Pattern Demonstrating the Dominance of Tectonic Erosion as Part of the Burial Process of Worldwide Occurring Eclogites. Earth-Science Reviews, 210: 103356. https://doi.org/10.1016/j.earscirev.2020.103356
    Nicholson, R., 1984. An Eclogite from the Caledonides of Southern Norrbotten. Norsk Geologisk Tidsskrift, 64: 165-169 http://www.geologi.no/images/NJG_articles/NGT_64_2_165-169.pdf
    Petrík, I., Janák, M., Klonowska, I., et al., 2019. Monazite Behaviour during Metamorphic Evolution of a Diamond-Bearing Gneiss: A Case Study from the Seve Nappe Complex, Scandinavian Caledonides. Journal of Petrology, 60(9): 1773-1796. https://doi.org/10.1093/petrology/egz051
    Powell, R., Holland, T., 1999. Relating Formulations of the Thermodynamics of Mineral Solid Solutions: Activity Modeling of Pyroxenes, Amphiboles, and Micas. American Mineralogist, 84(1/2): 1-14. https://doi.org/10.2138/am-1999-1-201
    Rahimi, G., Massonne, H. -J., 2020. Metamorphic Evolution of Chloritoid-Bearing Micaschist from the Variscan Elstergebirge: Evidences for Stacking of High-Pressure Rocks in the Saxothuringian Zone of Central Europe. Journal of Earth Science, 31(3): 425-446. https://doi.org/10.1007/s12583-020-1300-3
    Roberts, D., 2003. The Scandinavian Caledonides: Event Chronology, Palaeogeographic Settings and Likely Modern Analogues. Tectonophysics, 365(1-4): 283-299. https://doi.org/10.1016/s0040-1951(03)00026-x
    Rosenberg, C. L., Handy, M. R., 2005. Experimental Deformation of Partially Melted Granite Revisited: Implications for the Continental Crust. Journal of Metamorphic Geology, 23(1): 19-28. https://doi.org/10.1111/j.1525-1314.2005.00555.x
    Santallier, D. S., 1988. Mineralogy and Crystallization of the Seve Eclogites in the Vuoggatjålme Area, Swedish Caledonides of Norrbotten. Geologiska Föreningen i Stockholm Förhandlingar, 110(2): 89-98. https://doi.org/10.1080/11035898809452646
    Sjöström, H., 1983. The Seve-Köli Nappe Complex of the Handöl-Storlien-Essandsjøen Area, Scandinavian Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 105(2): 93-117. https://doi.org/10.1080/11035898309454553
    Smith, D. C., 1984. Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics. Nature, 310(5979): 641-644. https://doi.org/10.1038/310641a0
    Spear, F. S., 2017. Garnet Growth after Overstepping. Chemical Geology, 466: 491-499. https://doi.org/10.1016/j.chemgeo.2017.06.038
    Stephens, M. B., Gee, D. G., 1985. A Plate Tectonic Model for the Evolution of the Eugeoclinal Terranes in the Central Scandinavian Caledonides. In: Gee, D. G., Sturt, B. A., eds., The Caledonide Orogen- Scandinavia and Related Areas. Wiley, Chichester. 953-978
    Sun, G. M., Li, X. P., Duan, W. L., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5): 1026-1039. https://doi.org/10.1007/s12583-018-0854-9
    Terry, M. P., Robinson, P., Krogh Ravna, E. J., 2000. Kyanite Eclogite Thermobarometry and Evidence for Thrusting of UHP over HP Metamorphic Rocks, Nordøyane, Western Gneiss Region, Norway. American Mineralogist, 85(11/12): 1637-1650. https://doi.org/10.2138/am-2000-11-1207
    Tomkins, H. S., Powell, R., Ellis, D. J., 2007. The Pressure Dependence of the Zirconium-in-Rutile Thermometer. Journal of Metamorphic Geology, 25(6): 703-713. https://doi.org/10.1111/j.1525-1314.2007.00724.x
    Törnebohm, A. E., 1888. Om Fjällproblemet. Geologiska Föreningen i Stockholm Förhandlingar, 10(5): 328-336. https://doi.org/10.1080/11035898809444211
    van Roermund, H., 1989. High-Pressure Ultramafic Rocks from the Allochthonous Nappes of the Swedish Caledonides. The Caledonide Geology of Scandinavia. Springer Netherlands, Dordrecht. 205-219. https://doi.org/10.1007/978-94-009-2549-6_17
    van Roermund, H., 1985. Eclogites of the Seve Nappe, Central Scandinavian Caledonides. In: Gee, D. G., Sturt, B. A., eds., The Caledonide Orogen-Scandinavia and Related Areas. Wiley, Chichester. 873-886
    van Roermund, H., Bakker, E., 1983. Structure and Metamorphism of the Tången-Inviken Area, Seve Nappes, Central Scandinavian Caledonides. Geologiska Föreningen i Stockholm Förhandlingar, 105(4): 301-319. https://doi.org/10.1080/11035898309454568
    Wain, A., 1997. New Evidence for Coesite in Eclogite and Gneisses: Defining an Ultrahigh-Pressure Province in the Western Gneiss Region of Norway. Geology, 25(10): 927-930. https://doi.org/10.1130/0091-7613(1997)0250927:nefcie>2.3.co;2 doi: 10.1130/0091-7613(1997)0250927:nefcie>2.3.co;2
    Wain, A., Waters, D., Jephcoat, A., et al., 2000. The High-Pressure to Ultrahigh-Pressure Eclogite Transition in the Western Gneiss Region, Norway. European Journal of Mineralogy, 12(3): 667-687. https://doi.org/10.1127/0935-1221/2000/0012-0667
    Waizenhöfer, F., Massonne, H. -J., 2017. Monazite in a Variscan Mylonitic Paragneiss from the Münchberg Metamorphic Complex (NE Bavaria) Records Cadomian Protolith Ages. Journal of Metamorphic Geology, 35(4): 453-469. https://doi.org/10.1111/jmg.12240
    Wei, C. J., Powell, R., Zhang, L. F., 2003. Eclogites from the South Tianshan, NW China: Petrological Characteristic and Calculated Mineral Equilibria in the Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O System. Journal of Metamorphic Geology, 21(2): 163-179. https://doi.org/10.1046/j.1525-1314.2003.00435.x
    White, R. W., Powell, R., Holland, T. J. B., 2001. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2): 139-153. https://doi.org/10.1046/j.0263-4929.2000.00303.x
    White, R. W., Powell, R., Holland, T. J. B., 2007. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 25(5): 511-527. https://doi.org/10.1111/j.1525-1314.2007.00711.x
    Wu, C. M., Chen, H. X., 2015. Revised Ti-in-Biotite Geothermometer for Ilmenite-or Rutile-Bearing Crustal Metapelites. Science Bulletin, 60(1): 116-121. https://doi.org/10.1007/s11434-014-0674-y
    Xiang, H., Zhang, Z. M., Zhao, L. M., et al., 2018. Metamorphic P-T-t Path of UHT Granulites from the North Tongbai Orogen, Central China. Journal of Earth Science, 29(5): 1116-1131. https://doi.org/10.1007/s12583-018-0855-8
    Yin, C., Zhao, G., Sun, M., 2015. High-Pressure Pelitic Granulites from the Helanshan Complex in the Khondalite Belt, North China Craton: Metamorphic P-t Path and Tectonic Implications. American Journal of Science, 315(9): 846-879. https://doi.org/10.2475/09.2015.03
    Zeh, A., Holland, T. J. B., Klemd, R., 2005. Phase Relationships in Grunerite-Garnet-Bearing Amphibolites in the System CFMASH, with Applications to Metamorphic Rocks from the Central Zone of the Limpopo Belt, South Africa. Journal of Metamorphic Geology, 23(1): 1-17. https://doi.org/10.1111/j.1525-1314.2005.00554.x
    Zhang, Y. C., Li, X. P., Sun, G. M., et al., 2019. Metamorphic Petrology of Clinopyroxene Amphibolite from the Xigaze Ophiolite, Southern Tibet: P-T Constraints and Phase Equilibrium Modeling. Journal of Earth Science, 30(3): 549-562. https://doi.org/10.1007/s12583-019-1222-0
    Zhou, G. S., Zhang, J. X., Li, Y. S., et al., 2019. Metamorphic Evolution and Tectonic Implications of the Granulitized Eclogites from the Luliangshan Terrane in the North Qaidam Ultrahigh Pressure Metamorphic Belt, NW China: New Constraints from Phase Equilibrium Modeling. Journal of Earth Science, 30(3): 585-602. https://doi.org/10.1007/s12583-019-0897-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(262) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return