Citation: | Yueshuang Du, Zhiguang Zhou, Guosheng Wang, Chen Wu, Wenchao Xu. Druse Calcite Crystals Formed by Mesoproterozoic Paleo-Earthquake Activity in the Northern Margin of the North China Craton. Journal of Earth Science, 2024, 35(2): 514-524. doi: 10.1007/s12583-021-1416-0 |
The Meso-neoproterozoic Bayan Obo rift is located along the northern margin of the North China Craton, and was associated with the break-up of the Columbia supercontinent. During rift evolution, syn-sedimentary deformation occurred due to tectonic activity and earthquakes. Seismic events are recorded in the Jianshan Formation of the Bayan Obo Group, Inner Mongolia, as soft sediment deformation structures in the central Bayan Obo rift. Druse calcite crystals and collapse breccias in the Jianshan Formation may provide information on the rift evolution. The druse calcite crystals are idiomorphic-columnar in shape and associated with graphite, pyrite, and quartz. δ13C values of the graphite are -20‰, indicative of biogenic deoxygenation and formation in water. The druse calcite crystals are inorganic in origin and formed in water at a temperature of 55 ℃, based on calcite δ13C and δ18O data. The calcite grew in paleo-caves containing fault breccias, with heat derived from faulting. As such, the druse calcite crystals are important evidence for seismic events. The collapse breccias (i.e., fault breccias) and other indicators of slip show that displacement occurred from NE to SW, which is different from the paleocurrent direction in the Jianshan Formation. The thickness of the collapse breccia is ~200 m, which represents the height of the fault scarp. The strike of the fault scarp was NE-SW, based on the distribution of the collapse breccia. The Bayan Obo and Yanliao rifts experienced rapid NW-SE extension, and developed similar deformation structures at ca. 1.6 Ga related to break-up of the Columbia supercontinent.
Allen, J. R. L., 1982. Sedimentary Structures: Their Character and Physical Basis. Elsevier, New York, |
Allmendinger, R. W., Cardozo, N. C., Fisher, D., 2012. Structural Geology Algorithms: Vectors & Tensors. Cambridge University Press, Cambridge |
Alsop, G. I., Marco, S., 2012. Tsunami and Seiche-Triggered Deformation within Offshore Sediments. Sedimentary Geology, 261/262: 90–107. https://doi.org/10.1016/j.sedgeo.2012.03.013 |
Anketell, J. M., Cegła, J., Dżułyński, S., 1970. On the Deformational Structures in Systems with Reversed Density Gradients. Ann. Soc. Geol. Pol., 40(1): 3–30 |
Cai, G. Q., Guo, F., Liu, X. T., et al., 2009. Carbon and Oxygen Isotope Characteristics and Palaeoenvironmental Implications of Lacustrine Carbonate Rocks from the Shahejie Formation in the Dongying Sag. Earth and Environment, 37(4): 347–354 (in Chinese with English Abstract) |
Calvo, J. P., Rodriguez-Pascua, M., Martin-Velazquez, S., et al., 1998. Microdeformation of Lacustrine Laminite Sequences from Late Miocene Formations of SE Spain: An Interpretation of Loop Bedding. Sedimentology, 45(2): 279–292. https://doi.org/10.1046/j.1365-3091.1998.00145.x |
Cojan, I., Thiry, M., 1992. Seismically Induced Deformation Structures in Oligocene Shallow-Marine and Aeolian Coastal Sands (Paris Basin). Tectonophysics, 206(1/2): 79–89. https://doi.org/10.1016/0040-1951(92)90369h |
Fan, H. R., Hu, F. F., Yang, K. F., et al., 2014. Integrated U-Pb and Sm-Nd Geochronology for a REE-Rich Carbonatite Dyke at the Giant Bayan Obo REE Deposit, Northern China. Ore Geology Reviews, 63: 510–519. https://doi.org/10.1016/j.oregeorev.2014.03.005 |
Fan, H. R., Chen, F. K., Wang, K. Y., et al., 2002. Zircon U-Pb Age of a Carbonatite Dyke from Bayan Obo REE-Fe-Nb Deposit, Inner Mongolia and Its Geological Significance. Acta Petrologica Sinica, 18(3): 363–368 (in Chinese with English Abstract) |
Feng, X. L., Zhou, S. W., Lin, L., et al., 2004. The Thixotropy of Silt in Huanghe Delta. Journal of Ocean University of Qingdao, 34(6): 1053–1056 (in Chinese with English Abstract) doi: 10.3969/j.issn.1672-5174.2004.06.024 |
Guiraud, M., Plaziat, J. C., 1993. Seismites in the Fluviatile Bima Sandstones: Identification of Paleoseisms and Discussion of Their Magnitudes in a Cretaceous Synsedimentary Strike-Slip Basin (Upper Benue, Nigeria). Tectonophysics, 225(4): 493–522. https://doi.org/10.1016/0040-1951(93)90312-8 |
He, B. Z., 2010. Late Ordovician Paleo-Seismic Records of the Manjiaer Depression and Adjacent Areas in Tarim Basin, Xinjiang, and Its Geologic Significance. Acta Geologica Sinica, 84(12): 1805–1816 |
He, B. Z., Qiao, X. F., 2015. Advances and Overview of the Study on Paleo-Earthquake Events: A Review of Seismites. Acta Geologica Sinica-English Edition, 89(5): 1702–1746. https://doi.org/10.1111/1755-6724.12575 |
Hou, G. T., Li, J. H., Liu, Y. L., et al., 2006. The Late Paleoproterozoic Extension Event Aulacogens and Dyke Swarms in the North China Craton. Progress in Natural Science, 16(2): 202–208. https://doi.org/10.1080/10020070612331343214 |
Inner Mongolia BGMR (Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region), 1991. Regional Geology of Inner Mongolia Autonomous Region. Geological Publishing House, Beijing |
Inner Mongolia BGMR (Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region), 1996. China University of Geosciences Press, Wuhan, 127–138 |
Jiao, D. Y., Cui, X. H., Su, H. W., 2011. Seismites from Bayan Obo Group in the Bainaimiao Area of Inner Mongolia and Their Tectonic Implications. Geoscience, 25(3): 503–509 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-8527.2011.03.012 |
Kuenen, P. H., 1958. Ⅰ. —Experiments in Geology. Transactions of the Geological Society of Glasgow, 23(centenary): 1–28. https://doi.org/10.1144/transglas.23.centenary.1 |
Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 162: 387–432. https://doi.org/10.1016/j.earscirev.2016.09.002 |
Kusky, T. M., Windley, B. F., Polat, A., 2018. Geological Evidence for the Operation of Plate Tectonics Throughout the Archean: Records from Archean Paleo-Plate Boundaries. Journal of Earth Science, 29(6): 1291–1303. https://doi.org/10.1007/s12583-018-0999-6 |
Li, C., Peng, P. A., Sheng, G. Y., et al., 2003. A Molecular and Isotopic Geochemical Study of Meso- to Neoproterozoic (1.73–0.85 Ga) Sediments from the Jixian Section, Yanshan Basin, North China. Precambrian Research, 125(3/4): 337–356. https://doi.org/10.1016/s0301-9268(03)00111-6 |
Li, J. L., Zhou, Z. G., He, Y. F., et al., 2018. Geochronological and Sedimentological Evidences of Panyangshan Foreland Basin for Tectonic Control on the Late Paleozoic Plate Marginal Orogenic Belt along the Northern Margin of the North China Craton. International Journal of Earth Sciences, 107(4): 1193–1213. https://doi.org/10.1007/s00531-017-1528-z |
Li, L. H., Chen, L., Gao, S. Y., 2010. Experimental Research on Thixotropy of Wetland Soft Soil in Cuihu. Rock and Soil Mechanics, 31(3): 765–768 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-7598.2010.03.017 |
Li, R. Q., 1994. Charaecters of Forms and Surface Microstructure of Calcite Crystals Occurred in Polymetallic Deposits in South Hunan. Hunan Geology, 13(1): 25–28 (in Chinese with English Abstract) |
Lin, Y. T., El Goresy, A., Hu, S., et al., 2014. NanoSIMS Analysis of Organic Carbon from the Tissint Martian Meteorite: Evidence for the Past Existence of Subsurface Organic-Bearing Fluids on Mars. Meteoritics & Planetary Science, 49(12): 2201–2218. https://doi.org/10.1111/maps.12389 |
Lin, Y., 2016. Exploration of Paleoclimate and Possible Life on Mars. Chinese Journal of Nature, 38(1): 1–7 |
Liu, C. F., Zhang, H. R., Yu, Y. S., et al., 2010. Dating and Petrochemistry of the Beijige Pluton in Siziwangqi, Inner Mongolia. Geoscience, 24(1): 112–119 (in Chinese with English Abstract) |
Liu, C. H., Liu, F. L., 2015. The Mesoproterozoic Rifting in the North China Craton: A Case Study for Magmatism and Sedimentation of the Zhaertai-Bayan Obo-Huade Rift Zone. Acta Petrologica Sinica, 31(10): 3107–3128 (in Chinese with English Abstract) |
Liu, Y., Xie, J. P., 1984. Vibration Liquefication of Sandy Soil. Seismological Press, Beijing (in Chinese) |
Lowe, D. R., LoPiccolo, R. D., 1974. The Characteristics and Origins of Dish and Pillar Structures. SEPM Journal of Sedimentary Research, 44(2): 484–501. https://doi.org/10.1306/74d72a68-2b21-11d7-8648000102c1865d |
Lowe, D. R., 1975. Water Escape Structures in Coarse-Grained Sediments. Sedimentology, 22(2): 157–204 doi: 10.1111/j.1365-3091.1975.tb00290.x |
Lü H. B., Zhang Y. X., Xiao G. W., et al., 2006. Earthquake Slump Blocks Dicovered in Lower Part of the Sailinhudong Group, Heinaobao, Southeast Bayan Obo, Inner Mongolia. Geological Review, 52(2): 163–169 (in Chinese with English Abstract) |
Lu, S. N., Yang, C. L., Li, H. K., et al., 2002. North China Continent and Columbia Supercontinent. Earth Science Frontiers, 9(4): 225–233 (in Chinese with English Abstract) |
McLaughlin, P. I., Brett, C. E., 2004. Eustatic and Tectonic Control on the Distribution of Marine Seismites: Examples from the Upper Ordovician of Kentucky, USA. Sedimentary Geology, 168(3/4): 165–192. https://doi.org/10.1016/j.sedgeo.2004.02.005 |
Mohindra, R., Bagati, T. N., 1996. Seismically Induced Soft-Sediment Deformation Structures (Seismites) around Sumdo in the Lower Spiti Valley (Tethys Himalaya). Sedimentary Geology, 101(1/2): 69–83. https://doi.org/10.1016/0037-0738(95)00022-4 |
Montenat, C., Barrier, P., d'Estevou, P. O., 1991. Some Aspects of the Recent Tectonics in the Strait of Messina, Italy. Tectonophysics, 194(3): 203–215. https://doi.org/10.1016/0040-1951(91)90261-p |
Montenat, C., Barrier, P., Ottd'Estevou, P., et al., 2007. Seismites: an Attempt at Critical Analysis and Classification. Sedimentary Geology, 196(1/2/3/4): 5–30. https://doi.org/10.1016/j.sedgeo.2006.08.004 |
Moretti, M., Alfaro, P., Caselles, O., et al., 1999. Modelling Seismites with a Digital Shaking Table. Tectonophysics, 304(4): 369–383. https://doi.org/10.1016/s0040-1951(98)00289-3 |
Moretti, M., Sabato, L., 2007. Recognition of Trigger Mechanisms for Soft-Sediment Deformation in the Pleistocene Lacustrine Deposits of the Sant'Arcangelo Basin (Southern Italy): Seismic Shock vs. Overloading. Sedimentary Geology, 196(1/2/3/4): 31–45. https://doi.org/10.1016/j.sedgeo.2006.05.012 |
Nichols, R. J., Sparks, R. S. J., Wilson, C. J. N., 1994. Experimental Studies of the Fluidization of Layered Sediments and the Formation of Fluid Escape Structures. Sedimentology, 41(2): 233–253 doi: 10.1111/j.1365-3091.1994.tb01403.x |
Obermeier, S. F., 1996. Use of Liquefaction-Induced Features for Paleoseismic Analysis—An Overview of how Seismic Liquefaction Features can be Distinguished from Other Features and how Their Regional Distribution and Properties of Source Sediment can be Used to Infer the Location and Strength of Holocene Paleo-Earthquakes. Engineering Geology, 44(1/2/3/4): 1–76. https://doi.org/10.1016/s0013-7952(96)00040-3 |
Owen, G., 1995. Soft-Sediment Deformation in Upper Proterozoic Torridonian Sandstones (Applecross Formation) at Torridon, Northwest Scotland. SEPM Journal of Sedimentary Research, 65(3a): 495–504. https://doi.org/10.1306/d4268108-2b26-11d7-8648000102c1865d |
Owen, G., 1996. Experimental Soft-Sediment Deformation: Structures Formed by the Liquefaction of Unconsolidated Sands and some Ancient Examples. Sedimentology, 43(2): 279–293. https://doi.org/10.1046/j.1365-3091.1996.d01-5.x |
Owen, G., 2003. Load Structures: Gravity-Driven Sediment Mobilization in the Shallow Subsurface. Geological Society, London, Special Publications, 216(1): 21–34. https://doi.org/10.1144/gsl.sp.2003.216.01.03 |
Peng, P. A., Sheng, G. Y., Fu, J. M., et al., 1998. Biological Markers in 1.7 Billion Year Old Rock from the Tuanshanzi Formation, Jixian Strata Section, North China. Organic Geochemistry, 29(5/6/7): 1321–1329. https://doi.org/10.1016/s0146-6380(98)00107-7 |
Peng, P., 2010. Reconstruction and Interpretation of Giant Mafic Dyke Swarms: A Case Study of 1.78 Ga Magmatism in the North China Craton. Geological Society, London, Special Publications, 338(1): 163–178. https://doi.org/10.1144/sp338.8 |
Peng, P., 2015. Precambrian Mafic Dyke Swarms in the North China Craton and Their Geological Implications. Science China Earth Sciences, 58(5): 649–675. https://doi.org/10.1007/s11430-014-5026-x |
Peng, P., Zhai, M. G., Guo, J. H., 2006. 1.80–1.75 Ga Mafic Dyke Swarms in the Central North China Craton. Hanski, E., Mertanen, S., Rämö, T., et al., eds. Dyke Swarms-Time Markers of Crustal Evolution. Taylor & Francis. |
Plaziat, J. C., Purser, B. H., Philobbos, E. R., 1990. Seismic Deformation Structures (Seismites) in the Syn-Rift Sediments of the NW Red Sea (Egypt). Bulletin de la Société Géologique de France, Ⅵ(3): 419–434. https://doi.org/10.2113/gssgfbull.vi.3.419 |
Plaziat, J. C., Poisson, A. M., 1992. First Record of Several Major Paleo-Seisms in the Continental Latest Stampian (Rupelian) South of Paris: Sedimentary Expression of the Early Oligocene Tectonics. Bulletin-Societe Geologique de France, 163(5): 541–551 |
Qiao, X. F., Gao, L. Z., Peng, Y., et al., 2002. Seismic Event, Sequence and Tectonic Significance in Canglangpu Stage in Paleo-Tanlu Fault Zone. Science in China Series D: Earth Sciences, 45(9): 781–791. https://doi.org/10.1007/bf02879513 |
Qiao, X. F., Song, T. R., Gao, L. Z., et al., 1994. Seismic Sequence in Carbonate Rocks by Vibrational Liquefaction. Acta Geologica Sinica-English Edition, 7(3): 243–265. https://doi.org/10.1111/j.1755-6724.1994.mp7003002.x |
Qiao, X. F., Gao, L. Z., 2007. Mesoproterozoic Paleo-Earthquake and Paleo-Geography in Yan-Liao Aulacogen. Journal of Palaeogeography, 9(4): 337–352 (in Chinese with English Abstract) |
Qiao, X. F., Guo, X. P., Li, H. B., et al., 2012. Soft-Sediment Deformation in the Late Triassic and the Indosinian Tectonic Movement in Longmenshan. Acta Geologica Sinica, 86(1): 132–156 (in Chinese with English Abstract) |
Qiao, X. F., Li, H. B., 2008. Pillow, Ball-and-Pillow Structures: Paleo-Seismic Records within Strata. Geological Review, 54(6): 721–730 (in Chinese with English Abstract) |
Qiao, X. F., Li, H. B., 2009. Effect of Earthquake and Ancient Earthquake on Sediments. Journal of Palaeogeography, 11(6): 593–610 (in Chinese with English Abstract) |
Reineck, H. E., Singh, I. B., 1980. Depositional Sedimentary Environments. Springer-Verlag, Berlin-Heideberg, New York |
Rodríguez-Pascua, M. A., Calvo, J. P., de Vicente, G., et al., 2000. Soft-Sediment Deformation Structures Interpreted as Seismites in Lacustrine Sediments of the Prebetic Zone, SE Spain, and Their Potential Use as Indicators of Earthquake Magnitudes during the Late Miocene. Sedimentary Geology, 135(1/2/3/4): 117–135. https://doi.org/10.1016/s0037-0738(00)00067-1 |
Roep, T. B., Everts, A. J., 1992. Pillow-Beds: A New Type of Seismites? An Example from an Oligocene Turbidite Fan Complex, Alicante, Spain. Sedimentology, 39(5): 711–724. https://doi.org/10.1111/j.1365-3091.1992.tb02148.x |
Rossetti, D. F., Góes, A. M., 2000. Deciphering the Sedimentological Imprint of Paleoseismic Events: An Example from the Aptian Codó Formation, Northern Brazil. Sedimentary Geology, 135(1/2/3/4): 137–156. https://doi.org/10.1016/s0037-0738(00)00068-3 |
Rossetti, D. F., 1999. Soft-Sediment Deformation Structures in Late Albian to Cenomanian Deposits, São Luís Basin, Northern Brazil: Evidence for Palaeoseismicity. Sedimentology, 46(6): 1065–1081. https://doi.org/10.1046/j.1365-3091.1999.00265.x |
Scott, B., Price, S., 1988. Earthquake-Induced Structures in Young Sediments. Tectonophysics, 147(1/2): 165–170. https://doi.org/10.1016/0040-1951(88)90154-0 |
Seilacher, A., 1969. Fault-Graded Beds Interpreted as Seismites. Sedimentology, 13(1/2): 155–159. https://doi.org/10.1111/j.1365-3091.1969.tb01125.x |
Shackleton, N. J., Kennett, J. P., 1975. Paleotemperature History of the Cenozoic and the Initiation of Antarctic Glaciation: Oxygen and Carbon Isotope Analyses in DSDP Sites 277, 279 and 281. Initial Reports of the Deep Sea Drilling Project. U. S. Government Printing Office, |
Shanmugam, G., Wang, Y., 2015. The Landslide Problem. Journal of Palaeogeography, 4(2): 109–166. https://doi.org/10.3724/SP.J.1261.2015.00071 |
Shao, Z. F., Zhong, J. H., Li, Y., et al., 2014. The Sedimentary Characteristics and Environmental Analysis of Late Mesozoic Gravity Flows in Lingshan Island. Geological Review, 60(3): 555–566 (in Chinese with English Abstract) |
Shen, C. L., Zhang, M., Yang, S. S., 2009. The Geological Evidences and Significance of Westard Extension of Langshan-Zhaertai Shan Rift System, Northern Margin of North China Terrane. Geology and Exploration, 45(6): 661–668 (in Chinese with English Abstract) |
Sims, J. D., 1975. Determining Earthquake Recurrence Intervals from Deformational Structures in Young Lacustrine Sediments. Tectonophysics, 29(1/2/3/4): 141–152. https://doi.org/10.1016/0040-1951(75)90139-0 |
Song, T. R., 1988. A Set of Earthquake-Tsunami Sequence in Carbonate Stratigraphy of the Precambrian at Thirteen Imperial in Beijing. Chinese Science Bulletin, 8: 51–53 (in Chinese with English Abstract) |
Takahama, N., Otsuka, T., Brahmantyo, B., 2000. A New Phenomenon in Ancient Liquefaction—The Draw-in Process, Its Final Stage. Sedimentary Geology, 135(1/2/3/4): 157–165. https://doi.org/10.1016/S0037-0738(00)00069-5 |
Tian, H. S., Zhang, S. H., Zhang, A. S., 2016. Test Investigation on Liquefied Deformation Structure in Saturated Lime-Mud Composites Triggered by Strong Earthquakes. Acta Geologica Sinica-English Edition, 90(6): 2008–2021. https://doi.org/10.1111/1755-6724.13018 |
van Loon, A. J., 2002. Soft-Sediment Deformations in the Kleszczów Graben (Central Poland). Sedimentary Geology, 147(1/2): 57–70. https://doi.org/10.1016/S0037-0738(01)00187-7 |
van Loon, A. J., 2009. Soft-Sediment Deformation Structures in Siliciclastic Sediments: An Overview. Geologos, 15(1): 3–55 |
Visher, G. S., Cunningham, R. D., 1981. Convolute Laminations—A Theoretical Analysis: Example of a Pennsylvanian Sandstone. Sedimentary Geology, 28(3): 175–188. https://doi.org/10.1016/0037-0738(81)90064-6 |
Wang, J. P., Li, X. W., Ning, W. B., et al., 2019. Geology of a Neoarchean Suture: Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin, 131(11/12): 1943–1964. https://doi.org/10.1130/b35138.1 |
Wang, Q., Zhuo, X. Z., Chen, G. J., et al., 2007. Characteristics of Carbon and Oxygen Isotopic Compositions of Carbonate Cements in Triassic Yanchang Sandstone in Ordos Basin. Natural Gas Industry, 27(10): 28–32, 132 (in Chinese with English Abstract) |
Wang, Z. Y., Shen, J. F., Wan, J. W., 1998. An Analysis of the Formation of Paleokarst Breccia and the Karst Evolution in Gaobazhou Area of Qingjiang River. Earth Science, 23(5): 524–528 (in Chinese with English Abstract) |
Williams, E., 1960. Intra-Stratal Flow and Convolute Folding. Geological Magazine, 97(3): 208–214. https://doi.org/10.1017/s0016756800061380 |
Wu, C., Liu, C. F., Zhu, Y., et al., 2016a. Early Paleozoic Magmatic History of Central Inner Mongolia, China: Implications for the Tectonic Evolution of the Southeast Central Asian Orogenic Belt. International Journal of Earth Sciences, 105(5): 1307–1327. https://doi.org/10.1007/s00531-015-1250-7 |
Wu, C., Yin, A., Zuza, A. V., et al., 2016b. Pre-Cenozoic Geologic History of the Central and Northern Tibetan Plateau and the Role of Wilson Cycles in Constructing the Tethyan Orogenic System. Lithosphere, 8(3): 254–292. https://doi.org/10.1130/l494.1 |
Wu, C., Zhou, Z. G., Zuza, A. V., et al., 2018. A 1.9-Ga Mélange along the Northern Margin of the North China Craton: Implications for the Assembly of Columbia Supercontinent. Tectonics, 37(10): 3610–3646. https://doi.org/10.1029/2018tc005103 |
Xia, X. P., Sun, M., Zhao, G. C., et al., 2006. U-Pb and Hf Isotopic Study of Detrital Zircons from the Wulashan Khondalites: Constraints on the Evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 241(3/4): 581–593. https://doi.org/10.1016/j.epsl.2005.11.024 |
Xiao, Y. P., 2009. Concise Tutorial on Petrology. Geological Publishing House, Beijing |
Zhai, M. G., 2004. Precambrian Tectonic Evolution of the North China Craton. Geological Society, London, Special Publications, 226(1): 57–72. https://doi.org/10.1144/gsl.sp.2004.226.01.04 |
Zhai, M. G., 2011. Cratonization and the Ancient North China Continent: A Summary and Review. Science China Earth Sciences, 54(8): 1110–1120. https://doi.org/10.1007/s11430-011-4250-x |
Zhai, M. G., Liu, W. J., 2003. Palaeoproterozoic Tectonic History of the North China Craton: A Review. Precambrian Research, 122(1/2/3/4): 183–199. https://doi.org/10.1016/s0301-9268(02)00211-5 |
Zhang, X., Lü, H. B., Dong, X. P., et al., 2013. Olistostromes Discovered in the Halahuogete Formation, Bayan Obo Group and Its Geological Significance. Geological Review, 59(6): 1199–1206 (in Chinese with English Abstract) |
Zhang, Y. X., Liu, J. Y., 2010. Macrofossils Discovered in the Sailinhudong Group in Heinaobao, Darhan-Maoming'an Qi, Inner Mongolia. Geological Review, 56(1): 123–124 (in Chinese with English Abstract) |
Zhang, Y. X., Lü, H. B., Wang, J., et al., 2012. Analysis of Ore-Forming Tectonic Settings of the Bayan Obo REE Deposit. Acta Geologica Sinica, 86(5): 767–774 (in Chinese with English Abstract) |
Zhang, H. C., 1989. Thixotropic Research of Mud Foundation Triggered by Earthquake. J. Geotechnical Engineering, 11(3): 78–85 (in Chinese with English Abstract) |
Zhang, S. H., Zhao, Y., Li, X. H., et al., 2017. The 1.33–1.30 Ga Yanliao Large Igneous Province in the North China Craton: Implications for Reconstruction of the Nuna (Columbia) Supercontinent, and Specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112–125. https://doi.org/10.1016/j.epsl.2017.02.034 |
Zhang, Y. M., Zhang, H. F., Liu, W. C., et al., 2009. Timing and Petrogenesis of the Damiao Granodiorite, Siziwangqi, Inner Mongolia. Acta Petrologica Sinica, 25(12): 3165–3181 (in Chinese with English Abstract) |
Zhao, G. C., 2009. Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton: Key Issues and Discussion. Acta Petrologica Sinica, 25(8): 1772–1792 (in Chinese with English Abstract) |
Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002. Review of Global 2.1–1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1/2/3/4): 125–162. https://doi.org/10.1016/s0012-8252(02)00073-9 |
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177–202. https://doi.org/10.1016/j.precamres.2004.10.002 |
Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 1999. Thermal Evolution of Two Textural Types of Mafic Granulites in the North China Craton: Evidence for both Mantle Plume and Collisional Tectonics. Geological Magazine, 136(3): 223–240 (in Chinese with English Abstract) |
Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1/2): 45–73. https://doi.org/10.1016/s0301-9268(00)00154-6 |
Zhou, Z. G., Wang, G. S., Zhang, D., et al., 2016. Zircon Ages of Gabbros in the Siziwangqi, Inner Mongolia and Its Constrain on the Formation Time of the Bayan Obo Group. Acta Petrologica Sinica, 32(6): 1809–1822 (in Chinese with English Abstract) |
Zhou, Z. G., Zhang, D. S., Gu, Y., et al., 2018. Characteristics of Bainaimiao Thrust Belt along Central Inner Mongolia in North China and Its Geological Significance. Geotectonica et Metallogenia, 42(1): 1–17 (in Chinese with English Abstract) |
Zhou, Z. G., Wu, J. W., Niu, Y., et al., 2020. Geochemistry of the Mesoproterozoic Intrusions, Geochronology and Isotopic Constraints on the Xiaonanshan Cu-Ni Deposit along the Northern Margin of the North China Craton. Journal of Earth Science, 31(4): 653–667. https://doi.org/10.1007/s12583-020-1296-8 |
Zhou, Z. G., Liang, D. Y., Liu, W. C., et al., 2006. Characters of Slumping Accumulation of Upper Cretaceous Zongzuo Formation and Demonstrate Its Caused by Large Break-up and Earthquakes, Southern Xizang (Tibet). Geological Review, 52(3): 314–320, 435 (in Chinese with English Abstract) |