Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 1
Feb 2022
Turn off MathJax
Article Contents
Sergey G. Skublov, Natalia A. Rumyantseva, Qiuli Li, Boris G. Vanshtein, Dmitriy I. Rezvukhin, Xianhua Li. Zircon Xenocrysts from the Shaka Ridge Record Ancient Continental Crust: New U-Pb Geochronological and Oxygen Isotopic Data. Journal of Earth Science, 2022, 33(1): 5-16. doi: 10.1007/s12583-021-1422-2
Citation: Sergey G. Skublov, Natalia A. Rumyantseva, Qiuli Li, Boris G. Vanshtein, Dmitriy I. Rezvukhin, Xianhua Li. Zircon Xenocrysts from the Shaka Ridge Record Ancient Continental Crust: New U-Pb Geochronological and Oxygen Isotopic Data. Journal of Earth Science, 2022, 33(1): 5-16. doi: 10.1007/s12583-021-1422-2

Zircon Xenocrysts from the Shaka Ridge Record Ancient Continental Crust: New U-Pb Geochronological and Oxygen Isotopic Data

doi: 10.1007/s12583-021-1422-2
More Information
  • Corresponding author: Sergey G. Skublov, skublov@yandex.ru
  • Received Date: 24 Nov 2020
  • Accepted Date: 17 Jan 2021
  • Publish Date: 28 Feb 2022
  • Over the past two decades, a significant number of discoveries of ancient zircon xenocrysts in ocean-floor magmatic rocks have been reported. These findings provide compelling evidence for the presence of ancient continental crust within young oceanic lithosphere. Almost all finds of ancient zircon xenocrysts within oceanic crust are from the Mid-Atlantic Ridge. For other localities, however, similar data are very limited. This report presents the first age determinations (U-Pb, SHRIMP-II) and isotope-geochemical data (oxygen, trace and rare earth elements) for zircon xenocrysts from gabbro-diorites of the Shaka Ridge, in the vicinity of the Shaka fracture zone, near the western end of the Southwest Indian Ridge. The work is based on a study of bottom rock material dredged during expeditionary research on the R/V "Akademik Fedorov" (Russia) in 2016. The U-Pb isotope system of the zircon xenocrysts recorded a crystallization age of ~2.8 Ga at an upper discordia intercept and an age of ~600 Ma interpreted as the timing of a superimposed thermal event at a lower discordia intercept. The zircon xenocrysts show geochemical signatures of magmatic origin, i.e., fractionated REE distribution spectra with an increase in chondrite-normalized values from light to heavy REE, positive Ce anomalies and negative Eu anomalies, and high Th/U ratios (0.59-7.77). In discrimination diagrams based on a series of inter-element relationships, zircon compositions fall into the fields of zircons from rocks of continental crust, mostly granitoids. The Li content of the zircons is high (1.8 ppm-50 ppm), adding further evidence to their derivation from rocks of continental crust. During their residence within young oceanic crust, the zircon xenocrysts experienced alterations under the influence of submarine high-temperature hydrothermal fluids, which selectively affected the distribution of trace elements in the zircons and reduced the δ18O values to 1.75‰-3.15‰. The presence of obviously older zircons in Shaka gabbro-diorites clearly demonstrates the presence of ancient continental fragments and their recycling into the mantle at the western end of the Southwest Indian Ridge.

     

  • Electronic Supplementary Material: Supplementary material (Table S1) is available in the online version of this article at https://doi.org/10.1007/s12583-021-1422-2.
    Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
  • loading
  • Aranovich, L. Y., Zinger, T. F., Bortnikov, N. S., et al., 2013. Zircon in Gabbroids from the Axial Zone of the Mid-Atlantic Ridge, Markov Deep, 6°N: Correlation of Geochemical Features with Petrogenetic Processes. Petrology, 21(1): 1-15. https://doi.org/10.1134/s0869591113010025
    Ashwal, L. D., Wiedenbeck, M., Torsvik, T. H., 2017. Archaean Zircons in Miocene Oceanic Hotspot Rocks Establish Ancient Continental Crust beneath Mauritius. Nature Communications, 8: 14086. https://doi.org/10.1038/ncomms14086
    Balashov, Y. A., Skublov, S. G., 2011. Contrasting Geochemistry of Magmatic and Secondary Zircons. Geochemistry International, 49(6): 594-604. https://doi.org/10.1134/s0016702911040033
    Ballard, J. R., Palin, M. J., Campbell, I. H., 2002. Relative Oxidation States of Magmas Inferred from Ce(IV)/Ce(III) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347-364. https://doi.org/10.1007/s00410-002-0402-5
    Bau, M., Dulski, P., 1999. Comparing Yttrium and Rare Earths in Hydrothermal Fluids from the Mid-Atlantic Ridge: Implications for Y and REE Behaviour during Near-Vent Mixing and for the Y/Ho Ratio of Proterozoic Seawater. Chemical Geology, 155(1/2): 77-90. https://doi.org/10.1016/s0009-2541(98)00142-9
    Bea, F., Bortnikov, N., Montero, P., et al., 2020. Zircon Xenocryst Evidence for Crustal Recycling at the Mid-Atlantic Ridge. Lithos, 354/355: 105361. https://doi.org/10.1016/j.lithos.2019.105361
    Belousova, E. A., Griffin, W. L., O'Reilly, S. Y., 2006. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples from Eastern Australian Granitoids. Journal of Petrology, 47(2): 329-353. https://doi.org/10.1093/petrology/egi077
    Belousova, E. A., Griffin, W. L., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
    Belyatskii, B. V., Levskii, L., Trukhalev, A. I., et al., 1997. Precambrian Granite-Gneiss from the Mid-Atlantic Ridge (26°N): A U-Pb and Sm-Nd Isotopic Study. Geochemistry International, 35(8): 770-773
    Bindeman, I., 2008. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis. Reviews in Mineralogy and Geochemistry, 69(1): 445-478. https://doi.org/10.2138/rmg.2008.69.12
    Black, L. P., Kamo, S. L., Allen, C. M., et al., 2004. Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace-Element-Related Matrix Effect; SHRIMP, ID-TIMS, ELA-ICP-MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chemical Geology, 205(1/2): 115-140. https://doi.org/10.1016/j.chemgeo.2004.01.003
    Bortnikov, N. S., Sharkov, E. V., Bogatikov, O. A., et al., 2008. Finds of Young and Ancient Zircons in Gabbroids of the Markov Deep, Mid-Atlantic Ridge, 5°54'-5°02.2'N (Results of SHRIMP-II U-Pb Dating): Implication for Deep Geodynamics of Modern Oceans. Doklady Earth Sciences, 421: 859-866. https://doi.org/10.1134/s1028334x08050334
    Bortnikov, N. S., Silantyev, S. A., Bea, F., et al., 2019. U-Pb Dating, Oxygen and Hafnium Isotope Ratios of Zircon from Rocks of Oceanic Core Complexes at the Mid-Atlantic Ridge: Evidence for the Interaction of Contemporary and Ancient Crusts in the Spreading Center of the Ocean Floor. Doklady Earth Sciences, 489(2): 1396-1401. https://doi.org/10.1134/s1028334x19120109
    Bouvier, A. S., Ushikubo, T., Kita, N. T., et al., 2012. Li Isotopes and Trace Elements as a Petrogenetic Tracer in Zircon: Insights from Archean TTGs and Sanukitoids. Contributions to Mineralogy and Petrology, 163(5): 745-768. https://doi.org/10.1007/s00410-011-0697-1
    Bröcker, M., Löwen, K., Rodionov, N., 2014. Unraveling Protolith Ages of Meta-Gabbros from Samos and the Attic-Cycladic Crystalline Belt, Greece: Results of a U-Pb Zircon and Sr-Nd Whole Rock Study. Lithos, 198/199: 234-248. https://doi.org/10.1016/j.lithos.2014.03.029
    Cheng, H., Zhou, H. Y., Yang, Q. H., et al., 2016. Jurassic Zircons from the Southwest Indian Ridge. Scientific Reports, 6: 26260. https://doi.org/10.1038/srep26260
    Corfu, F., Hanchar, J. M., Hoskin, P. W. O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469
    Dokukina, K. A., Kaulina, T. V., Konilov, A. N., et al., 2014. Archaean to Palaeoproterozoic High-Grade Evolution of the Belomorian Eclogite Province in the Gridino Area, Fennoscandian Shield: Geochronological Evidence. Gondwana Research, 25(2): 585-613. https://doi.org/10.1016/j.gr.2013.02.014
    Douglass, J., Schilling, J. G., Fontignie, D., 1999. Plume-Ridge Interactions of the Discovery and Shona Mantle Plumes with the Southern Mid-Atlantic Ridge (40°-55°S). Journal of Geophysical Research: Solid Earth, 104(B2): 2941-2962. https://doi.org/10.1029/98jb02642
    Eiler, J. M., 2001. Oxygen Isotope Variations of Basaltic Lavas and Upper Mantle Rocks. Reviews in Mineralogy and Geochemistry, 43(1): 319-364. https://doi.org/10.2138/gsrmg.43.1.319
    Fedotova, A. A., Bibikova, E. V., Simakin, S. G., 2008. Ion-Microprobe Zircon Geochemistry as an Indicator of Mineral Genesis during Geochronological Studies. Geochemistry International, 46(9): 912-927. https://doi.org/10.1134/s001670290809005x
    Finch, R. J., Hanchar, J. M., 2003. Structure and Chemistry of Zircon and Zircon-Group Minerals. Reviews in Mineralogy and Geochemistry, 53(1): 1-25. https://doi.org/10.2113/0530001
    Fisher, R. L., Sclater, J. G., 1983. Tectonic Evolution of the Southwest Indian Ocean since the Mid-Cretaceous: Plate Motions and Stability of the Pole of Antarctica/Africa for at Least 80 Myr. Geophysical Journal International, 73(2): 553-576. https://doi.org/10.1111/j.1365-246x.1983.tb03330.x
    Frey, F. A., Weis, D., Borisova, A. Y., et al., 2002. Involvement of Continental Crust in the Formation of the Cretaceous Kerguelen Plateau: New Perspectives from ODP Leg 120 Sites. Journal of Petrology, 43(7): 1207-1239. https://doi.org/10.1093/petrology/43.7.1207
    Fu, B., Mernagh, T. P., Kita, N. T., et al., 2009. Distinguishing Magmatic Zircon from Hydrothermal Zircon: A Case Study from the Gidginbung High-Sulphidation Au-Ag-(Cu) Deposit, SE Australia. Chemical Geology, 259(3/4): 131-142. https://doi.org/10.1016/j.chemgeo.2008.10.035
    Geisler, T., Schleicher, H., 2000. Improved U-Th-Total Pb Dating of Zircons by Electron Microprobe Using a Simple New Background Modeling Procedure and Ca as a Chemical Criterion of Fluid-Induced U-Th-Pb Discordance in Zircon. Chemical Geology, 163(1/2/3/4): 269-285. https://doi.org/10.1016/s0009-2541(99)00099-6
    Georgen, J. E., Lin, J., Dick, H. J. B., 2001. Evidence from Gravity Anomalies for Interactions of the Marion and Bouvet Hotspots with the Southwest Indian Ridge: Effects of Transform Offsets. Earth and Planetary Science Letters, 187(3/4): 283-300. https://doi.org/10.1016/s0012-821x(01)00293-x
    Gregory, R. T., Taylor, H. P. Jr., 1981. An Oxygen Isotope Profile in a Section of Cretaceous Oceanic Crust, Samail Ophiolite, Oman: Evidence for δ18O Buffering of the Oceans by Deep (>5 km) Seawater-Hydrothermal Circulation at Mid-Ocean Ridges. Journal of Geophysical Research: Solid Earth, 86(B4): 2737-2755. https://doi.org/10.1029/jb086ib04p02737
    Grimes, C. B., John, B. E., Cheadle, M. J., et al., 2009. On the Occurrence, Trace Element Geochemistry, and Crystallization History of Zircon from in situ Ocean Lithosphere. Contributions to Mineralogy and Petrology, 158(6): 757-783. https://doi.org/10.1007/s00410-009-0409-2
    Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643-646. https://doi.org/10.1130/g23603a.1
    Grimes, C. B., Ushikubo, T., John, B. E., et al., 2011. Uniformly Mantle-Like δ18O in Zircons from Oceanic Plagiogranites and Gabbros. Contributions to Mineralogy and Petrology, 161(1): 13-33. https://doi.org/10.1007/s00410-010-0519-x
    Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5/6): 46. https://doi.org/10.1007/s00410-015-1199-3
    Hinton, R. W., Upton, B. G. J., 1991. The Chemistry of Zircon: Variations within and between Large Crystals from Syenite and Alkali Basalt Xenoliths. Geochimica et Cosmochimica Acta, 55(11): 3287-3302. https://doi.org/10.1016/0016-7037(91)90489-r
    Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. https://doi.org/10.1016/j.gca.2004.07.006
    Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
    Jochum, K. P., Dingwell, D. B., Rocholl, A., et al., 2000. The Preparation and Preliminary Characterisation of Eight Geological MPI-DING Reference Glasses for in-situ Microanalysis. Geostandards and Geoanalytical Research, 24(1): 87-133. https://doi.org/10.1111/j.1751-908x.2000.tb00590.x
    Jochum, K. P., Stoll, B., Herwig, K., et al., 2006. MPI-DING Reference Glasses for in situ Microanalysis: New Reference Values for Element Concentrations and Isotope Ratios. Geochemistry, Geophysics, Geosystems, 7(2). https://doi.org/10.1029/2005gc001060
    Kamenetsky, V. S., Maas, R., Sushchevskaya, N. M., et al., 2001. Remnants of Gondwanan Continental Lithosphere in Oceanic Upper Mantle: Evidence from the South Atlantic Ridge. Geology, 29(3): 243-246. https://doi.org/10.1130/0091-7613(2001)0290243:rogcli>2.0.co;2 doi: 10.1130/0091-7613(2001)0290243:rogcli>2.0.co;2
    Kirkland, C. L., Whitehouse, M. J., Slagstad, T., 2009. Fluid-Assisted Zircon and Monazite Growth within a Shear Zone: A Case Study from Finnmark, Arctic Norway. Contributions to Mineralogy and Petrology, 158(5): 637-657. https://doi.org/10.1007/s00410-009-0401-x
    Korolev, N. M., Melnik, A. E., Li, X. H., et al., 2018. The Oxygen Isotope Composition of Mantle Eclogites as a Proxy of Their Origin and Evolution: A Review. Earth-Science Reviews, 185: 288-300. https://doi.org/10.1016/j.earscirev.2018.06.007
    Kostitsyn, Y. A., Belousova, E. A., Bortnikov, N. S., et al., 2009. Zircons in Gabbroids from the Axial Zone of the Mid-Atlantic Ridge: U-Pb Age and 176Hf/177Hf Ratio (Results of Investigations by the Laser Ablation Method). Doklady Earth Sciences, 429: 1305. https://doi.org/10.1134/s1028334x09080145
    Kostitsyn, Y. A., Belousova, E. A., Silant'ev, S. A., et al., 2015. Modern Problems of Geochemical and U-Pb Geochronological Studies of Zircon in Oceanic Rocks. Geochemistry International, 53(9): 759-785. https://doi.org/10.1134/s0016702915090025
    Kostitsyn, Y. A., Silantyev, S. A., Anosova, M. O., et al., 2018. Age of Plutonic Rocks from the Vema Fracture Zone (Central Atlantic) and Nature of Their Mantle Sources. Geochemistry International, 56(2): 89-110. https://doi.org/10.1134s0016702918020039
    Kremenetskiy, A. A., Gromalova, N. A., Skolotnev, S. G., et al., 2018. Sources of Magmatic Rocks from the Deep-Sea Floor of the Arctic Ocean and the Central Atlantic: Evidence from Data on the U-Pb Age, Hf Isotopes, and REE Geochemistry of Zircons. Doklady Earth Sciences, 481(1): 852-856. https://doi.org/10.1134/s1028334x18070139
    le Roux, P. J., le Roex, A. P., Schilling, J. G., et al., 2002. Mantle Heterogeneity beneath the Southern Mid-Atlantic Ridge: Trace Element Evidence for Contamination of Ambient Asthenospheric Mantle. Earth and Planetary Science Letters, 203(1): 479-498. https://doi.org/10.1016/s0012-821x(02)00832-4
    Leontev, V. I., Skublov, S. G., Shatova, N. V., et al., 2020. Zircon U-Pb Geochronology Recorded Late Cretaceous Fluid Activation in the Central Aldan Gold Ore District, Aldan Shield, Russia: First Data. Journal of Earth Science, 31(3): 481-491. https://doi.org/10.1007/s12583-020-1304-z
    Li, X. H., Long, W. G., Li, Q. L., et al., 2010. Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination of Hf-O Isotopes and U-Pb Age. Geostandards and Geoanalytical Research, 34(2): 117-134. https://doi.org/10.1111/j.1751-908x.2010.00036.x
    Lin, J., Dick, H. J., Schouten, H., et al., 2001. Evidence for Off-Axis Volcanic Relicts of the Bouvet Hotspot and Its Interaction with the Southwest Indian Ridge. (2022-01-12). https://ui.adsabs.harvard.edu/abs/2001AGUFM.T31D..10L/abstract
    Lin, J., Georgen, J. E., Dick, H., 2003. Ridge-Hotspot Interactions at Ultra-Slow Spreading Conditions: Bouvet/Marion Hotspot and the SW Indian Ridge. InterRidge Symposium and Workshop: Ridge-Hotspot Interaction: Recent Progress and Prospects for Enhanced International Collaboration, September 8-10, 2003, Brest. 30
    Ludwig, K. R., 2001. Squid 1.02: A User's Manual. Berkeley Geochronological Center Special Publication, Berkeley. 2: 19
    Ludwig, K. R., 2003. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. 4: 71
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
    Michard, A., Albarède, F., 1986. The REE Content of some Hydrothermal Fluids. Chemical Geology, 55(1/2): 51-60. https://doi.org/10.1016/0009-2541(86)90127-0
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
    Norton, I. O., Sclater, J. G., 1979. A Model for the Evolution of the Indian Ocean and the Breakup of Gondwanaland. Journal of Geophysical Research: Solid Earth, 84(B12): 6803-6830. https://doi.org/10.1029/jb084ib12p06803
    Pilot, J., Werner, C. D., Haubrich, F., et al., 1998. Palaeozoic and Proterozoic Zircons from the Mid-Atlantic Ridge. Nature, 393(6686): 676-679. https://doi.org/10.1038/31452
    Rocholl, A. B. E., Simon, K., Jochum, K. P., et al., 1997. Chemical Characterisation of NIST Silicate Glass Certified Reference Material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE. Geostandards and Geoanalytical Research, 21(1): 101-114. https://doi.org/10.1111/j.1751-908x.1997.tb00537.x
    Rodionov, N. V., Belyatsky, B. V., Antonov, A. V., et al., 2012. Comparative in-situ U-Th-Pb Geochronology and Trace Element Composition of Baddeleyite and Low-U Zircon from Carbonatites of the Palaeozoic Kovdor Alkaline-Ultramafic Complex, Kola Peninsula, Russia. Gondwana Research, 21(4): 728-744. https://doi.org/10.1016/j.gr.2011.10.005
    Rumyantseva, N. A., Vanshteyn, B. G., Skublov, S. G., 2021. Petrochemical Features of Tholeiites from the Shaka Ridge (South Atlantic). Journal of Mining Institute, 248: 223-231. https://doi.org/10.31897/pmi.2021.2.6
    Sauter, D., Cannat, M., 2010. The Ultraslow Spreading Southwest Indian Ridge. In: Rona, P. A., Devey, C. W., Dyment, J., eds., Geophysical Monograph Series. American Geophysical Union, Washington D. C. 153-173. https://doi.org/10.1029/2008gm000843
    Sharkov, E. V., Bortnikov, N. S., Bogatikov, O. A., et al., 2004. Mesozoic Zircon from Gabbronorites of the Axial Mid-Atlantic Ridge, 6°N, Markov Deep. Doklady Earth Sciences, 397(5): 654-657
    Shulyatin, O. G., Belyatsky, B. V., Kremenetsky, A. A., 2019. Geochemical and Geochronological Studies of Polychronic Zircons in Igneous Rocks from the Mid-Atlantic Ridge and Some Features of Its Structure. Regional Geology and Metallogeny, 77: 11-19 (in Russian)
    Skolotnev, S. G., Bel'tenev, V. E., Lepekhina, E. N., et al., 2010. Younger and Older Zircons from Rocks of the Oceanic Lithosphere in the Central Atlantic and Their Geotectonic Implications. Geotectonics, 44(6): 462-492. https://doi.org/10.1134/s0016852110060038
    Tang, G. Q., Li, X. H., Li, Q. L., et al., 2015. Deciphering the Physical Mechanism of the Topography Effect for Oxygen Isotope Measurements Using a Cameca IMS-1280 SIMS. Journal of AnalyticalAtomic Spectrometry, 30(4): 950-956. https://doi.org/10.1039/c4ja00458b
    Torsvik, T. H., Amundsen, H., Hartz, E. H., et al., 2013. A Precambrian Microcontinent in the Indian Ocean. Nature Geoscience, 6(3): 223-227. https://doi.org/10.1038/ngeo1736
    Ushikubo, T., Kita, N. T., Cavosie, A. J., et al., 2008. Lithium in Jack Hills Zircons: Evidence for Extensive Weathering of Earth's Earliest Crust. Earth and Planetary Science Letters, 272(3/4): 666-676. https://doi.org/10.1016/j.epsl.2008.05.032
    Valley, J. W., Kinny, P. D., Schulze, D. J., et al., 1998. Zircon Megacrysts from Kimberlite: Oxygen Isotope Variability among Mantle Melts. Contributions to Mineralogy and Petrology, 133(1/2): 1-11. https://doi.org/10.1007/s004100050432
    Valley, J. W., Lackey, J. S., Cavosie, A. J., et al., 2005. 4.4 Billion Years of Crustal Maturation: Oxygen Isotope Ratios of Magmatic Zircon. Contributions to Mineralogy and Petrology, 150(6): 561-580. https://doi.org/10.1007/s00410-005-0025-8
    Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
    Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x
    Wiedenbeck, M., Hanchar, J. M., Peck, W. H., et al., 2004. Further Characterisation of the 91500 Zircon Crystal. Geostandards and Geoanalytical Research, 28(1): 9-39. https://doi.org/10.1111/j.1751-908x.2004.tb01041.x
    Williams, I. S., 1998. U-Th-Pb Geochronology by Ion Microprobe. Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Society of Economic Geologists, 7: 1-35
    Xu, H. J., Zhang, J. F., 2018. Zircon Geochronological Evidence for Participation of the North China Craton in the Protolith of Migmatite of the North Dabie Terrane. Journal of Earth Science, 29(1): 30-42. https://doi.org/10.1007/s12583-017-0805-x
    Zhao, Y., Zheng, J. P., Xiong, Q., 2019. Zircon from Orogenic Peridotite: an Ideal Indicator for Mantle-Crust Interaction in Subduction Zones. Journal of Earth Science, 30(3): 666-678. doi: 10.1007/s12583-019-1220-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(717) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return