Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 2
Apr 2024
Turn off MathJax
Article Contents
Jinhong Xu, Yuping Jiang, Shuli Hu, Zhengwei Zhang, Chengquan Wu, Chaofei Zheng, Xiyao Li, Ziru Jin, Sensen Zhang, Yatao Zhou. Petrogenesis and Tectonic Implications of the Paleoproterozoic A-Type Granites in the Xiong'ershan Area along the Southern Margin of the North China Craton. Journal of Earth Science, 2024, 35(2): 416-429. doi: 10.1007/s12583-021-1424-0
Citation: Jinhong Xu, Yuping Jiang, Shuli Hu, Zhengwei Zhang, Chengquan Wu, Chaofei Zheng, Xiyao Li, Ziru Jin, Sensen Zhang, Yatao Zhou. Petrogenesis and Tectonic Implications of the Paleoproterozoic A-Type Granites in the Xiong'ershan Area along the Southern Margin of the North China Craton. Journal of Earth Science, 2024, 35(2): 416-429. doi: 10.1007/s12583-021-1424-0

Petrogenesis and Tectonic Implications of the Paleoproterozoic A-Type Granites in the Xiong'ershan Area along the Southern Margin of the North China Craton

doi: 10.1007/s12583-021-1424-0
More Information
  • Paleoproterozoic A-type granites are widely distributed in the southern margin of the North China Craton (SNCC), providing important information for understanding the Paleoproterozoic tectonic regimes in this area. This paper reports newly obtained whole-rock compositions and zircon U-Pb ages for the Tieluping syenogranite porphyry (TLP) and Huoshenmiao alkali granite porphyry (HSM) in the SNCC. Zircons from the TLP and HSM have U-Pb ages of 1 805 ± 12 and 1 792 ± 14 Ma, respectively. These ages are taken to date the emplacement of these intrusions. They had high total alkali contents (K2O + Na2O > 7.13 wt.%), with high 10 000 × Ga/Al ratios (3.06–3.41) and Zr + Y + Nb + Ce values (709 ppm–910 ppm) as well as high zircon saturation temperatures (864–970 ℃), indicative of A-type granite affinities. High Y/Nb (1.75–3.32), Ce/Nb (7.72–9.72), and Yb/Ta (2.89–5.60) ratios suggested that TLP and HSM belonged to the A2-type granite. The negative whole rock εNd(t) values (-8.4 to -6.6) and negative zircon εHf(t) values (-15.9 to -6.3) confirmed that TLP and HSM were likely generated by the partial melting of an ancient continental crust. The εHf(t) (-7.4 to +4.0) values of inherited zircons in the TLP suggested that they were derived from the partial melting of Archean basement rocks. Considering the geochemical similarity of the 1.80 Ga A-type granitoids in the SNCC, we propose that the TLP and HSM were formed in a post-collisional regime that was likely associated with the break-off of the Paleoproterozoic subducted slab. Upwelling of the asthenosphere provided huge heat to generate the regional 1.80 Ga A-type granite in the SNCC.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S5) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1424-0.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Atherton, M. P., Ghani, A. A., 2002. Slab Breakoff: A Model for Caledonian, Late Granite Syn-Collisional Magmatism in the Orthotectonic (Metamorphic) Zone of Scotland and Donegal, Ireland. Lithos, 62(3/4): 65–85. https://doi.org/10.1016/s0024-4937(02)00111-1
    Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605–626. https://doi.org/10.1016/s0024-4937(98)00085-1
    Bi, S. J., Li, J. W., Li, Z. K., 2011. Geological Significance and Geochronology of Paleoproterozoic Mafic Dykes of Xiaoqinling Gold District, Southern Margin of the North China Craton. Earth Science, 36(1): 17–32 (in Chinese with English Abstract)
    Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1–29. https://doi.org/10.1016/j.lithos.2006.12.007
    Chen, H. X., Wang, J., Wang, H., et al., 2015. Metamorphism and Geochronology of the Luoning Metamorphic Terrane, Southern Terminal of the Palaeoproterozoic Trans-North China Orogen, North China Craton. Precambrian Research, 264: 156–178. https://doi.org/10.1016/j.precamres.2015.04.013
    Chen, Y. J., Fu, S. G., Qiang, L. Z., 1992. The Tectonic Environment for the Formation of the Xiong'er Group and the Xiyanghe Group. Geological Review, 38(4): 325–333 (in Chinese with English Abstract) doi: 10.3321/j.issn:0371-5736.1992.04.005
    Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200. https://doi.org/10.1007/bf00374895
    Creaser, R. A., Price, R. C., Wormald, R. J., 1991. A-Type Granites Revisited: Assessment of a Residual-Source Model. Geology, 19(2): 163. https://doi.org/10.1130/0091-7613(1991)0190163:atgrao>2.3.co;2 doi: 10.1130/0091-7613(1991)0190163:atgrao>2.3.co;2
    Cui, M. L., Zhang, L. C., Zhang, B. L., et al., 2013. Geochemistry of 1.78 Ga A-Type Granites along the Southern Margin of the North China Craton: Implications for Xiong'er Magmatism during the Break-up of the Supercontinent Columbia. International Geology Review, 55(4): 496–509. https://doi.org/10.1080/00206814.2012.736709
    Dall'Agnol, R., Frost, C. D., Rämö, O. T., 2012. IGCP Project 510 "A-Type Granites and Related Rocks through Time": Project Vita, Results, and Contribution to Granite Research. Lithos, 151: 1–16. https://doi.org/10.1016/j.lithos.2012.08.003
    Davies, J. H., Blanckenburg, F. V., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1/2/3/4): 85–102. https://doi.org/10.1016/0012-821x(94)00237-s
    Deng, X. Q., Peng, T. P., Zhao, T. P., 2016. Geochronology and Geochemistry of the Late Paleoproterozoic Aluminous A-Type Granite in the Xiaoqinling Area along the Southern Margin of the North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 285: 127–146. https://doi.org/10.1016/j.precamres.2016.09.013
    Diwu, C. R., Sun, Y., Lin, C. L., et al., 2010. LA-(MC)-ICPMS U-Pb Zircon Geochronology and Lu-Hf Isotope Compositions of the Taihua Complex on the Southern Margin of the North China Craton. Chinese Science Bulletin, 55(23): 2557–2571. https://doi.org/10.1007/s11434-010-3273-6
    Diwu, C. R., Sun, Y., Zhao, Y., et al., 2014. Early Paleoproterozoic (2.45–2.20 Ga) Magmatic Activity during the Period of Global Magmatic Shutdown: Implications for the Crustal Evolution of the Southern North China Craton. Precambrian Research, 255: 627–640. https://doi.org/10.1016/j.precamres.2014.08.001
    Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2
    Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429–437. https://doi.org/10.1007/s00410-007-0201-0
    Frost, C. D., Frost, B. R., 2011. On Ferroan (a-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology, 52(1): 39–53. https://doi.org/10.1093/petrology/egq070
    Gao, S. L., Lin, J. Y., Lu, Y. J., 2012. Formation Epoch and Its Geological Implications of Paleo-Protozoic A-type Granite in Shizuizi of Jingyuan County, Ningxia Province. Acta Petrologica Sinica, 29(8): 2676–2684 (in Chinese with English Abstract)
    Han, B. F., Zhang, L., Wang, Y. M., et al., 2007. Enriched Mantle Source for Palcoproterozoic High Mg and Low Ti-P Mafic Dykes in Central Part of the North China Craton: Constraints from Zircon Hf Isotopic Compositions. Acta Petrologica Sinica, 23(2): 277–284 (in Chinese with English Abstract)
    Han, J. S., Chen, H. Y., Yao, J. M., et al., 2015. 2.24 Ga Mafic Dykes from Taihua Complex, Southern Trans-North China Orogen, and Their Tectonic Implications. Precambrian Research, 270: 124–138. https://doi.org/10.1016/j.precamres.2015.09.009
    He, Y. H., Zhao, G. C., Sun, M., et al., 2008. Geochemistry, Isotope Systematics and Petrogenesis of the Volcanic Rocks in the Zhongtiao Mountain: An Alternative Interpretation for the Evolution of the Southern Margin of the North China Craton. Lithos, 102(1/2): 158–178. https://doi.org/10.1016/j.lithos.2007.09.004
    He, Y. H., Zhao, G. C., Sun, M., et al., 2009. SHRIMP and LA-ICP-MS Zircon Geochronology of the Xiong'er Volcanic Rocks: Implications for the Paleo-Mesoproterozoic Evolution of the Southern Margin of the North China Craton. Precambrian Research, 168(3/4): 213–222. https://doi.org/10.1016/j.precamres.2008.09.011
    He, Y. H., Zhao, G. C., Sun, M., et al., 2010. Petrogenesis and Tectonic Setting of Volcanic Rocks in the Xiaoshan and Waifangshan Areas along the Southern Margin of the North China Craton: Constraints from Bulk-Rock Geochemistry and Sr-Nd Isotopic Composition. Lithos, 114(1/2): 186–199. https://doi.org/10.1016/j.lithos.2009.08.008
    Henan Institute of Geological Survey, 2009. 1 : 50 000 Mineral Geological Map of Xiong'ershan Region of Baitujie (I49E012014): 60 (in Chinese)
    Hu, G. H., Hu, J. L., Chen, W., et al., 2010. Geochemistry and Tectonic Setting of the 1.78 Ga Mafic Dyke Swarms in the Mt. Zhongtiao and Mt. Song Areas, the Southern Margin of the North China Craton. Acta Petrologica Sinica, 26(5): 1563–1576 (in Chinese with English Abstract)
    Hu, S. X., Lin, Q. L., 1988. Geology and Metallogeny of the Collision Belt Between the South China and North China Plates. Nanjing University Press, Nanjing. 558 (in Chinese)
    Huang, C., Wang, H., Yang, J. H., et al., 2020. SA01——A Proposed Zircon Reference Material for Microbeam U-Pb Age and Hf-O Isotopic Determination. Geostandards and Geoanalytical Research, 44(1): 103–123. https://doi.org/10.1111/ggr.12307
    Huang, X. L., Niu, Y. L., Xu, Y. G., et al., 2010. Geochemistry of TTG and TTG-Like Gneisses from Lushan-Taihua Complex in the Southern North China Craton: Implications for Late Archean Crustal Accretion. Precambrian Research, 182(1/2): 43–56. https://doi.org/10.1016/j.precamres.2010.06.020
    Huang, X. L., Wilde, S. A., Yang, Q. J., et al., 2012. Geochronology and Petrogenesis of Gray Gneisses from the Taihua Complex at Xiong'er in the Southern Segment of the Trans-North China Orogen: Implications for Tectonic Transformation in the Early Paleoproterozoic. Lithos, 134/135: 236–252. https://doi.org/10.1016/j.lithos.2012.01.004
    Huang, X. L., Wilde, S. A., Zhong, J. W., 2013. Episodic Crustal Growth in the Southern Segment of the Trans-North China Orogen across the Archean–Proterozoic Boundary. Precambrian Research, 233: 337–357. https://doi.org/10.1016/j.precamres.2013.05.016
    Jiang, N., Liu, Y. S., Zhou, W. G., et al., 2007. Derivation of Mesozoic Adakitic Magmas from Ancient Lower Crust in the North China Craton. Geochimica et Cosmochimica Acta, 71(10): 2591–2608. https://doi.org/10.1016/j.gca.2007.02.018
    Jiang, Z. S., Wang, G. D., Xiao, L. L., et al., 2011. Paleoproterozoic Metamorphic P-T-t Path and Tectonic Significance of the Luoning Metamorphic Complex at the Southern Terminal of the Trans-North China Orogen, Henan Province. Acta Petrologica Sinica, 27(12): 3701–3717 (in Chinese with English Abstract)
    Jochum, K. P., Weis, U., Stoll, B., et al., 2011. Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines. Geostandards and Geoanalytical Research, 35(4): 397–429. https://doi.org/10.1111/j.1751-908x.2011.00120.x
    Jochum, K. P., Willbold, M., Raczek, I., et al., 2005. Chemical Characterisation of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G Using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostandards and Geoanalytical Research, 29(3): 285–302. https://doi.org/10.1111/j.175 1-908x.2005.tb00901.x doi: 10.1111/j.1751-908x.2005.tb00901.x
    King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371–391. https://doi.org/10.1093/petroj/38.3.371
    Kröner, A., Wilde, S. A., Zhao, G. C., et al., 2006. Zircon Geochronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China: Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton. Precambrian Research, 146(1/2): 45–67. https://doi.org/10.1016/j.precamres.2006.01.008
    Li, L., Zhai, W. J., 2019. Geochemistry and Petrogenesis of the Ca. 2.5 Ga High-K Granitoids in the Southern North China Craton. Journal of Earth Science, 30(3): 647–665. https://doi.org/10.1007/s12583-019-0895-8
    Li, N., Chen, Y. J., McNaughton, N. J., et al., 2015. Formation and Tectonic Evolution of the Khondalite Series at the Southern Margin of the North China Craton: Geochronological Constraints from a 1.85-Ga Mo Deposit in the Xiong'ershan Area. Precambrian Research, 269: 1–17. https://doi.org/10.1016/j.precamres.2015.07.016
    Li, X. H., Long, W. G., Li, Q. L., et al., 2010. Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination of Hf-O Isotopes and U-Pb Age. Geostandards and Geoanalytical Research, 34(2): 117–134. https://doi.org/10.1111/j.175 1-908x.2010.00036.x doi: 10.1111/j.1751-908x.2010.00036.x
    Li, X. H., Tang, G. Q., Gong, B., et al., 2013. Qinghu Zircon: A Working Reference for Microbeam Analysis of U-Pb Age and Hf and O Isotopes. Chinese Science Bulletin, 58(36): 4647–4654. https://doi.org/10.1007/s11434-013-5932-x
    Liang, Q., Jing, H., Gregoire, D. C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51(3): 507–513. https://doi.org/10.1016/s0039-9140(99)00318-5
    Liang, T., Lu, R., Luo Z. H., et al., 2015. La-ICP-MS U-Pb Age of Zircons from Haopinggou Biotite Granite Porphyry in Xiong'er Mountain, Western Henan Province, and It's Geologic Implication. Geological Review, 61(4): 901–912 (in Chinese with English Abstract)
    Liu, D. Y., Wilde, S. A., Wan, Y. S., et al., 2009. Combined U-Pb, Hafnium and Oxygen Isotope Analysis of Zircons from Meta-Igneous Rocks in the Southern North China Craton Reveal Multiple Events in the Late Mesoarchean–Early Neoarchean. Chemical Geology, 261(1/2): 140–154. https://doi.org/10.1016/j.chemgeo.2008.10.041
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. https://doi.org/10.1007/s11434-010-3052-4
    Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America Abstracts with Programs, 11: 468
    Ludwig, K. R., 2003. User's Manual for Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, 4: 25–32
    Luo, Y. Q., Qin, H. Y., Wu, T., et al., 2020. Petrogenesis of the Granites in the Yandangshan Area, Southeastern China: Constraints from SHRIMP U-Pb Zircon Age and Trace Elements, and Sr-Nd-Hf Isotopic Data. Journal of Earth Science, 31(4): 693–708. https://doi.org/10.1007/s12583-020-1295-9
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
    Pankhurst, M. J., Schaefer, B. F., Turner, S. P., et al., 2013. The Source of A-Type Magmas in Two Contrasting Settings: U-Pb, Lu-Hf and Re-Os Isotopic Constraints. Chemical Geology, 351: 175–194. https://doi.org/10.1016/j.chemgeo.2013.05.010
    Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743. https://doi.org/10.1130/0091-7613(1997)0250743:gomatg>2.3.co;2 doi: 10.1130/0091-7613(1997)0250743:gomatg>2.3.co;2
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745
    Peng, P., 2010. Reconstruction and Interpretation of Giant Mafic Dyke Swarms: A Case Study of 1.78 Ga Magmatism in the North China Craton. Geological Society, London, Special Publications, 338(1): 163–178. https://doi.org/10.1144/sp338.8
    Peng, P., 2015. Precambrian Mafic Dyke Swarms in the North China Craton and Their Geological Implications. Science China Earth Sciences, 58(5): 649–675. https://doi.org/10.1007/s11430-014-5026-x
    Peng, P., Zhai, M. G., Ernst, R. E., et al., 2008. A 1.78 Ga Large Igneous Province in the North China Craton: The Xiong'er Volcanic Province and the North China Dyke Swarm. Lithos, 101(3/4): 260–280. https://doi.org/10.1016/j.lithos.2007.07.006
    Peng, P., Zhai, M. G., Zhang, H. F., et al., 2004. Geochemistry and Geological Significance of the 1.8 Ga Mafic Dyke Swarms in the North China Craton: An Example from the Juncture of Shanxi, Hebei and Inner Mongolia. Acta Petrologica Sinica, 20(3): 439–456 (in Chinese with English Abstract)
    Peng, P., Zhai, M. G., Zhang, H. F., et al., 2005. Geochronological Constraints on the Paleoproterozoic Evolution of the North China Craton: SHRIMP Zircon Ages of Different Types of Mafic Dikes. International Geology Review, 47(5): 492–508. https://doi.org/10.2747/0020-6814.47.5.492
    Qin, J. H., Liu, C., Chen, Y. C., et al., 2019. Timing of Lithospheric Extension in Northeastern China: Evidence from the Late Mesozoic Nianzishan A-Type Granitoid Complex. Journal of Earth Science, 30(4): 689–706. https://doi.org/10.1007/s12583-018-0996-9
    Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b0-08-043751-6/03016-4
    Shellnutt, J. G., Jahn, B. M., Zhou, M. F., 2011. Crustally-Derived Granites in the Panzhihua Region, SW China: Implications for Felsic Magmatism in the Emeishan Large Igneous Province. Lithos, 123(1/2/3/4): 145–157. https://doi.org/10.1016/j.lithos.2010.10.016
    Shellnutt, J. G., Zhou, M. F., 2007. Permian Peralkaline, Peraluminous and Metaluminous A-Type Granites in the Panxi District, SW China: Their Relationship to the Emeishan Mantle Plume. Chemical Geology, 243(3/4): 286–316. https://doi.org/10.1016/j.chemgeo.2007.05.022
    Shi, J. P., Yang, D. B., Huo, T. F., et al., 2017. The Geochronology and Nd-Hf Isotope Compositions of A-Type Granites on the Southern Margin of North China Craton: Constraints on the Late Paleoproterozoic Extensional Events. Acta Petrologica Sinica, 33(10): 3042–3056 (in Chinese with English Abstract)
    Skjerlie, K. P., Johnston, A. D., 1992. Vapor-Absent Melting at 10 Kbar of a Biotite- and Amphibole-Bearing Tonalitic Gneiss: Implications for the Generation of A-Type Granites. Geology, 20(3): 263. https://doi.org/10.1130/0091-7613(1992)0200263:vamako>2.3.co;2 doi: 10.1130/0091-7613(1992)0200263:vamako>2.3.co;2
    Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
    Song, B., Nutman, A. P., Liu, D. Y., et al., 1996. 3800 to 2500 Ma Crustal Evolution in the Anshan Area of Liaoning Province, Northeastern China. Precambrian Research, 78(1/2/3): 79–94. https://doi.org/10.1016/0301-9268(95)00070-4
    Streckeisen, A. L., 1967. Classification and Nomenclature of Igneous Rockes. Neues Jahrbuch für Mineralogie-Abhandlungen, 107: 144–240
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Sun, S., Cong, B. L., Li, J. L., 1981. Meso-Neoproterozoic Sedimentary Basins in Henan and Shanxi Provinces. Science Geological Sinica, 16: 314–322 (in Chinese with English Abstract)
    Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1/2/3/4): 29–44. https://doi.org/10.1016/s0024-4937(98)00024-3
    Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151–179. https://doi.org/10.1016/0024-4937(92)90029-x
    Wang, C. M., He, X. Y., Carranza, E. J. M., et al., 2019. Paleoproterozoic Volcanic Rocks in the Southern Margin of the North China Craton, Central China: Implications for the Columbia Supercontinent. Geoscience Frontiers, 10(4): 1543–1560. https://doi.org/10.1016/j.gsf.2018.10.007
    Wang, C. M., Lu, Y. J., He, X. Y., et al., 2016. The Paleoproterozoic Diorite Dykes in the Southern Margin of the North China Craton: Insight into Rift-Related Magmatism. Precambrian Research, 277: 26–46. https://doi.org/10.1016/j.precamres.2016.02.009
    Wang, G. D., Wang, H., Chen, H. X., et al., 2012. U-Pb Dating of Zircons from Metamorphic Rocks of the Taihua Metamorphic Complex, Mt. Huashan, Southern Margin of the Trans-North China Orogen. Acta Geologica Sinica, 86(9): 1541–1551 (in Chinese with English Abstract)
    Wang, G. D., Wang, H., Chen, H. X., et al., 2014. Metamorphic Evolution and Zircon U-Pb Geochronology of the MTS. Huashan Amphibolites: Insights into the Palaeoproterozoic Amalgamation of the North China Craton. Precambrian Research, 245: 100–114. https://doi.org/10.1016/j.precamres.2014.02.004
    Wang, G. D., Lu, J. S., Wang, H., et al., 2013. LA-ICP-MS U-Pb Dating of Zircons and40Ar /39Ar Dating of Amphiboles of the Taihua Metamorphic Complex, Mt. Huashan, Southern Terminal of the Palaeoprotorozoic Trans-North China Orogen. Acta Petrologica Sinica, 29(9): 3099–3114 (in Chinese with English Abstract)
    Wang, X. L., Jiang, S. Y., Dai, B. Z., 2010. Melting of Enriched Archean Subcontinental Lithospheric Mantle: Evidence from the Ca. 1 760 Ma Volcanic Rocks of the Xiong'er Group, Southern Margin of the North China Craton. Precambrian Research, 182(3): 204–216. https://doi.org/10.1016/j.precamres.2010.08.007
    Wang, X. Y., Qin, J. F., Lai, S. C., et al., 2020. Paleoproterozoic A-Type Granite from the Southwestern Margin of the North China Block: High Temperature Melting of Tonalitic Crust in Extensional Setting. International Geology Review, 62(5): 614–629. https://doi.org/10.1080/00206814.2019.1627590
    Wang, Y. J., Fan, W. M., Zhang, Y. H., et al., 2004. Geochemical, 40Ar/39Ar Geochronological and Sr-Nd Isotopic Constraints on the Origin of Paleoproterozoic Mafic Dikes from the Southern Taihang Mountains and Implications for the Ca. 1 800 Ma Event of the North China Craton. Precambrian Research, 135(1/2): 55–77. https://doi.org/10.1016/j.precamres.2004.07.005
    Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295–304. https://doi.org/10.1016/0012-821x(83)90211-x
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202
    Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1/2): 143–173. https://doi.org/10.1016/s0009-2541(02)00018-9
    Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1/2): 105–126. https://doi.org/10.1016/j.chemgeo.2006.05.003
    Xia, L. Q., Xia, Z. C., Xu, X. Y., et al., 2013. Late Paleoproterozoic Rift-Related Magmatic Rocks in the North China Craton: Geological Records of Rifting in the Columbia Supercontinent. Earth-Science Reviews, 125: 69–86. https://doi.org/10.1016/j.earscirev.2013.06.004
    Xu, H., Zhao, H., Luo, J. H., et al., 2014. Paleoproterozoic Granite and Its Tectonic Significances in Southwestern Margin of North China Plate, Baojiashan Section in Longxian County. Geological Review, 60(6): 1284–1296 (in Chinese with English Abstract)
    Xue, S., Xu, Y., Ling, M. X., et al., 2018. Geochemical Constraints on Genesis of Paleoproterozoic A-Type Granite in the South Margin of North China Craton. Lithos, 304/305/306/307: 489–500. https://doi.org/10.1016/j.lithos.2018.02.022
    Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89(1/2): 89–106. https://doi.org/10.1016/j.lithos.2005.10.002
    You, J., Luo, J. H., Cheng, J. X., et al., 2014. Paleoproterozoic Granite Porphyry in Southwestern Margin of North China Craton and Its Geological Significance. Geological Journal of China Universities, 20(3): 368–377 (in Chinese with English Abstract)
    Zhai, M. G., Hu, B., Peng, P., et al., 2014. Meso-Neoproterozoic Magmatic Events and Multi-Stage Rifting in the NCC. Earth Science Frontiers, 21(1): 100–119 (in Chinese with English Abstract)
    Zhai, M. G., Liu, W. J., 2003. Palaeoproterozoic Tectonic History of the North China Craton: A Review. Precambrian Research, 122(1/2/3/4): 183–199. https://doi.org/10.1016/s0301-9268(02)00211-5
    Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6–25. https://doi.org/10.1016/j.gr.2011.02.005
    Zhai, Y. Y., Gao, S., Zeng, Q. D., et al., 2020. Geochronology, Geochemistry and Hf Isotope of the Late Mesozoic Granitoids from the Lushi Polymetal Mineralization Area: Implication for the Destruction of Southern North China Craton. Journal of Earth Science, 31(2): 313–329. https://doi.org/10.1007/s12583-020-1277-y
    Zhang, G. W., Bai, Y. B., Sun, Y., et al., 1985. Composition and Evolution of the Archaean Crust in Central Henan, China. Precambrian Research, 27(1/2/3): 7–35. https://doi.org/10.1016/0301-9268(85)90004-x
    Zhang, Z. W., Zhu, B. Q., Chang, X. Y., 2003. The Geochemistry of the Alkali-Rich Intrusive Rocks in the East Qinling, Central China. Earth Science Frontiers, 10(4): 507–519 (in Chinese with English Abstract)
    Zhao, G. C., 2003. Major Tectonic Units of the North China Craton and Their Paleoproterozoic Assembly. Science in China Series D, 46(1): 23. https://doi.org/10.1360/03yd9003
    Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002. Review of Global 2.1–1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1/2/3/4): 125–162. https://doi.org/10.1016/S0012-8252(02)00073-9
    Zhao, G. C., He, Y. H., Sun, M., 2009. The Xiong'er Volcanic Belt at the Southern Margin of the North China Craton: Petrographic and Geochemical Evidence for Its Outboard Position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16(2): 170–181. https://doi.org/10.1016/j.gr.2009.02.004
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177–202. https://doi.org/10.1016/j.precamres.2004.10.002
    Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1/2): 45–73. https://doi.org/10.1016/S0301-9268(00)00154-6
    Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207–1240. https://doi.org/10.1016/j.gr.2012.08.016
    Zhao, T. P., Zhai, M. G., Xia, B., et al., 2004. Zircon U-Pb SHRIMP Dating for the Volcanic Rocks of the Xiong'er Group: Constraints on the Initial Formation Age of the Cover of the North China Craton. Chinese Science Bulletin, 49(23): 2495–2502. https://doi.org/10.1007/bf03183721
    Zhao, T. P., Jing, C. W., Zhai, M. G., et al., 2002a. Geochemistry and Petrogenesis of the Xiong'er Group in the Southern Regions of the North China Craton. Acta Petrologica Sinica, 18(1): 59–69 (in Chinese with English Abstract)
    Zhao, T. P., Zhou, M. F., Zhai, M. G., et al., 2002b. Paleoproterozoic Rift-Related Volcanism of the Xiong'er Group, North China Craton: Implications for the Breakup of Columbia. International Geology Review, 44(4): 336–351. https://doi.org/10.2747/0020-6814.44.4.336
    Zhao, T. P., Zhou, M. F., 2009. Geochemical Constraints on the Tectonic Setting of Paleoproterozoic A-Type Granites in the Southern Margin of the North China Craton. Journal of Asian Earth Sciences, 36(2/3): 183–195. https://doi.org/10.1016/j.jseaes.2009.05.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views(52) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return