Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 4
Aug 2021
Turn off MathJax
Article Contents
Shengli Li, Y.Zee Ma, Ernest Gomez. Importance of Modeling Heterogeneities and Correlation in Reservoir Properties in Unconventional Formations: Examples of Tight Gas Reservoirs. Journal of Earth Science, 2021, 32(4): 809-817. doi: 10.1007/s12583-021-1430-2
Citation: Shengli Li, Y.Zee Ma, Ernest Gomez. Importance of Modeling Heterogeneities and Correlation in Reservoir Properties in Unconventional Formations: Examples of Tight Gas Reservoirs. Journal of Earth Science, 2021, 32(4): 809-817. doi: 10.1007/s12583-021-1430-2

Importance of Modeling Heterogeneities and Correlation in Reservoir Properties in Unconventional Formations: Examples of Tight Gas Reservoirs

doi: 10.1007/s12583-021-1430-2
More Information
  • Corresponding author: Shengli Li, slli@cugb.edu.cn
  • Received Date: 27 Apr 2020
  • Accepted Date: 03 Feb 2021
  • Publish Date: 16 Aug 2021
  • We present lithofacies classifications for a tight gas sandstone reservoir by analyzing hierarchies of heterogeneities. We use principal component analysis (PCA) to overcome the two level of heterogeneities, which results in a better lithofacies classification than the traditional cutoff method. The classical volumetric method is used for estimating oil/gas in-place resources in the petroleum industry since its inception is not accurate because it ignores the heterogeneities of and correlation between the petrophysical properties. We present the importance and methods of accounting for the heterogeneities of and correlation between petrophysical properties for more accurate hydrocarbon volumetric estimations. We also demonstrate the impacts of modeling the heterogeneities and correlation in porosity and hydrocarbon saturation for hydrocarbon volumetric estimations with a tight sandstone gas reservoir. Furthermore, geoscientists have traditionally considered that small-scale heterogeneities only impact subsurface fluid flow, but not impact the hydrocarbon resource volumetric estimation. We show the importance of modeling small-scale heterogeneities using fine cell size in reservoir modeling of unconventional resources for accurate resource assessment.

     

  • loading
  • Alqahtani, A. A., Tutuncu, A. N., 2014. Quantification of Total Organic Carbon Content in Shale Source Rocks: An Eagle Ford Case Study Proceedings of the 2nd Unconventional Resources Technology Conference. August 25-27, 2014. Denver, Colorado, USA. https://doi.org/10.15530/urtec-2014-1921783
    Cao, R. Y., Ma, Y. Z., Gomez, E., 2014. Geostatistical Applications in Petroleum Reservoir Modeling. South African Institute of Mining and Metallurgy, 114: 625-629 http://www.scielo.org.za/scielo.php?script=sci_abstract&pid=S2225-62532014000800013&lng=pt&nrm=iso&tlng=en
    Chiles, J. P., Delfiner, P., 2012. Geostatistics: Modeling Spatial Uncertainty. John Wiley & Sons, New York. 699
    Cluff, S. G., Cluff, R. M., Hallau, D. G., et al., 2004. Petrophysics of the Lance and Upper Mesaverde Reservoirs at Pinedale Field, Sublette County, Wyoming, USA. AAPG Memoir, 107: 351-416. https://doi.org/10.1306/13511895m1073635
    Cressie, N., 1993. Statistics for Spatial Data. John Wiley & Sons, New York. 900
    Delfiner, P., 2007. Three Statistical Pitfalls of Phi-K Transforms. SPE Reservoir Evaluation & Engineering, 10(6): 609-617. https://doi.org/10.2118/102093-pa
    Ehsan, M., Gu, H. M., Akhtar, M. M., et al., 2018. Identification of Hydrocarbon Potential of Talhar Shale: Member of Lower Goru Formation Using Well Logs Derived Parameters, Southern Lower Indus Basin, Pakistan. Journal of Earth Science, 29(3): 587-593. https://doi.org/10.1007/s12583-016-0910-2
    Fitch, P. J. R., Lovell, M. A., Davies, S. J., et al., 2015. An Integrated and Quantitative Approach to Petrophysical Heterogeneity. Marine and Petroleum Geology, 63: 82-96 doi: 10.1016/j.marpetgeo.2015.02.014
    Fylling, A., 2002. Quantification of Petrophysical Uncertainty and Its Effect on In-Place Volume Estimates: Numerous Challenges and Some SolutionsAll Days. September 29-October 2, 2002. San Antonio, Texas. https://doi.org/10.2118/77637-ms
    Gotway, C. A., Young, L. J., 2002. Combining Incompatible Spatial Data. Journal of the American Statistical Association, 97(458): 632-648. https://doi.org/10.1198/016214502760047140
    Holditch, S. A., 2006. Tight Gas Sands. Journal of Petroleum Technology, 58(6): 86-93. https://doi.org/10.2118/103356-jpt
    Isaaks, E. H., Srivastava, R. M., 1989. An Introduction to Applied Geostatistics. Oxford University Press, Oxford
    Jennings, J. W. Jr., 1999. How Much Core-Sample Variance should a Well-Log Model Reproduce?. SPE Reservoir Evaluation & Engineering, 2(5): 442-450. https://doi.org/10.2118/57477-pa
    Kennedy, M., 2015. Practical Petrophysics. Elsevier, Amsterdam
    Lake, L. W., Jensen, J. L., 1991. A Review of Heterogeneity Measures Used in Reservoir Characterization. In Situ, 15(4): 409-439 http://www.researchgate.net/publication/279604031_Review_of_heterogeneity_measures_used_in_reservoir_characterization
    Li, J. Q., Zhang, P. F., Lu, S. F., et al., 2019. Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales: An Investigation by BIB-SEM and X-Ray CT Methods. Journal of Earth Science, 30(4): 823-833. https://doi.org/10.1007/s12583-018-0835-z
    Li, S. L., Gao, X. J., 2019. A New Strategy of Crosswell Correlation for Channel Sandstone Reservoirs—An Example from Daqing Oilfield, China. Interpretation, 7(2): T409-T421. https://doi.org/10.1190/int-2018-0074.1
    Li, S. L., Zhang, Y., Ma, Y. Z., et al., 2018. A Comparative Study of Reservoir Modeling Techniques and Their Impact on Predicted Performance of Fluvial-Dominated Deltaic Reservoirs: Discussion. AAPG Bulletin, 102(8): 1659-1663. https://doi.org/10.1306/0108181613516519
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/0817111106
    Lucia, J. F., 2007. Carbonate Reservoir Characterization: 2nd Edition. Springer, Berlin
    Ma, Y. Z., 2010. Error Types in Reservoir Characterization and Management. Journal of Petroleum Science and Engineering, 72(3/4): 290-301. https://doi.org/10.1016/j.petrol.2010.03.030
    Ma, Y. Z., 2011. Lithofacies Clustering Using Principal Component Analysis and Neural Network: Applications to Wireline Logs. Mathematical Geosciences, 43(4): 401-419. https://doi.org/10.1007/s11004-011-9335-8
    Ma, Y. Z., 2018. An Accurate Parametric Method for Assessing Hydrocarbon Volumetrics: Revisiting the Volumetric Equation. SPE Journal, 23(5): 1566-1579. https://doi.org/10.2118/189986-pa
    Ma, Y. Z., 2019. Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling. Springer International Publishing, Cham. 640. https://doi.org/10.1007/978-3-030-17860-4
    Ma, Y. Z., 2020. Three-Dimensional Modeling of Mineral/Elemental Compositions for Shale Reservoirs. SPE Journal, 25(4): 2067-2078. https://doi.org/10.2118/201118-pa
    Ma, Y. Z., Gomez, E., 2019. Sampling Biases and Mitigations in Modeling Shale Reservoirs. Journal of Natural Gas Science and Engineering, 71: 102968. https://doi.org/10.1016/j.jngse.2019.102968
    Ma, Y. Z., Gomez, E., 2015. Uses and Abuses in Applying Neural Networks for Predictions in Hydrocarbon Resource Evaluation. Journal of Petroleum Science and Engineering, 133: 66-75. https://doi.org/10.1016/j.petrol.2015.05.006
    Ma, Y. Z., Holditch, S. A., 2016. Preface: Unconventional Oil and Gas Resources Handbook. Elsevier, Amsterdam. xi-xiv. https://doi.org/10.1016/b978-0-12-802238-2.05001-x
    Ma, Y. Z., Moore W. R., Gomez, E., et al., 2016. Tight Gas Sandstone Reservoirs, Part 1: Overview and Lithofacies. Unconventional Oil and Gas Resources Handbook, Science Direct. 405-427 http://www.sciencedirect.com/science/article/pii/B9780128022382000146
    Matheron, G., 1989. Estimating and Choosing—An Essay on Probability in Practice. Springer-Verlag, Berlin
    Moore, W. R., Ma, Y. Z., Urdea, J., et al., 2011. Uncertainty Analysis in Well Log and Petrophysical Interpretations. In: Ma, Y. Z., LaPointe, P., eds., Uncertainty Analysis and Reservoir Modeling. AAPG Memoir, 96: 17-28
    Moore, W. R., Ma, Y. Z., Pirie, I., et al., 2016. Tight Gas Sandstone Reservoirs, Part 2: Petrophysical Analysis and Reservoir Modeling. In: Ma, Y. Z., Holditch, S., eds., Unconventional Resource Handbook: Evaluation and Development. Elsevier, Amsterdam. 429-449
    Murtha, J., Ross, J., 2009. Uncertainty and the Volumetric Equation. Journal of Petroleum Technology, 61(9): 20-22. https://doi.org/10.2118/0909-0020-jpt
    Pearl, J., 2000. Causality: Models, Reasoning and Inference. Cambridge University Press, Cambridge. 384
    Prensky, S. E., 1984. Use of Gamma-Ray Log for Locating Cretaceous-Tertiary Unconformity, Pinedale Area, Northern Green River Basin, Wyoming: Abstract. AAPG Bulletin, 68(7): 946-946. https://doi.org/10.1306/ad4615c0-16f7-11d7-8645000102c1865d
    Robinson, W. S., 1950. Ecological Correlations and the Behavior of Individuals. American Sociological Review, 15(3): 351. https://doi.org/10.2307/2087176
    Saraji, S., Goual, L., Piri, M., et al., 2013. Wettability of Supercritical Carbon Dioxide/Water/Quartz Systems: Simultaneous Measurement of Contact Angle and Interfacial Tension at Reservoir Conditions. Langmuir, 29(23): 6856-6866 doi: 10.1021/la3050863
    Slatt, R. M., 2006. Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers. In: Cubitt, J., ed., Handbook of Petroleum Exploration and Production. Elsevier, Amsterdam. https://doi.org/10.1016/s1567-8032(06)x8035-7
    Tiab, D., Donaldson, E. C., 2003. Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties: 2nd Edition. Gulf Professional Pub., Oxford
    Wang, G. C., Carr, T. R., 2012. Marcellus Shale Lithofacies Prediction by Multiclass Neural Network Classification in the Appalachian Basin. Mathematical Geosciences, 44(8): 975-1004. https://doi.org/10.1007/s11004-012-9421-6
    Wu, Z. R., He, S., Han, Y. J., et al., 2020. Effect of Organic Matter Type and Maturity on Organic Matter Pore Formation of Transitional Facies Shales: A Case Study on Upper Permian Longtan and Dalong Shales in Middle Yangtze Region, China. Journal of Earth Science, 31(2): 368-384. https://doi.org/10.1007/s12583-019-1237-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views(309) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return