Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 2
Apr 2022
Turn off MathJax
Article Contents
V. N. Golubev, I. V. Chernyshev, B. T. Kochkin, N. N. Tarasov, G. V. Ochirova, A. V. Chugaev. Uranium Isotope Variations (234U/238U and 238U/235U) and Behavior of U-Pb Isotope System in the Vershinnoe Sandstone-Type Uranium Deposit, Vitim Uranium Ore District, Russia. Journal of Earth Science, 2022, 33(2): 317-324. doi: 10.1007/s12583-021-1436-9
Citation: V. N. Golubev, I. V. Chernyshev, B. T. Kochkin, N. N. Tarasov, G. V. Ochirova, A. V. Chugaev. Uranium Isotope Variations (234U/238U and 238U/235U) and Behavior of U-Pb Isotope System in the Vershinnoe Sandstone-Type Uranium Deposit, Vitim Uranium Ore District, Russia. Journal of Earth Science, 2022, 33(2): 317-324. doi: 10.1007/s12583-021-1436-9

Uranium Isotope Variations (234U/238U and 238U/235U) and Behavior of U-Pb Isotope System in the Vershinnoe Sandstone-Type Uranium Deposit, Vitim Uranium Ore District, Russia

doi: 10.1007/s12583-021-1436-9
More Information
  • Corresponding author: V. N. Golubev, golub238@gmail.com
  • Received Date: 30 Aug 2020
  • Accepted Date: 12 Feb 2021
  • Publish Date: 30 Apr 2022
  • The U-Pb isotope system and uranium isotope composition (235U/238U and 234U/238U) were studied in a number of samples from the vertical section of the uranium ore body at the Vershinnoe sandstone-type deposit, Vitim uranium ore district, Russia. These parameters were determined to broadly vary. Deviations of the 234U/238U ratio from the equilibrium value indicate that the uranium ore was not completely conserved during the postore stage, and uranium was determined to continue migrating at the deposit. Comparison of the U-Pb isotope age value and 234U/238U isotope ratio provides an insight into the migrate direction of uranium in the ore body. The broad variations (137.377–137.772) in the 238U/235U ratio over the vertical section of the ore body can be explained by the different settings of the samples relative to the ore deposition front and changes in the redox conditions when this front shifted. The fact that the δ238U and K234/238 values are correlated indicates that the transfer of the 234U isotope into the aqueous phase may have been coupled with isotope fractionation in the 238U-235U system during the postformation uranium migration within the orebody.

     

  • loading
  • Andersen, M. B., Stirling, C. H., Weyer, S., 2017. Uranium Isotope Fractionation. Reviews in Mineralogy and Geochemistry, 82(1): 799–850. https://doi.org/10.2138/rmg.2017.82.19
    Basu, A., Sanford, R. A., Johnson, T. M., et al., 2014. Uranium Isotopic Fractionation Factors during U(VI) Reduction by Bacterial Isolates. Geochimica et Cosmochimica Acta, 136: 100–113. https://doi.org/10.1016/j.gca.2014.02.041
    Basu, A., Brown, S. T., Christensen, J. N., et al., 2015. Isotopic and Geochemical Tracers for U(VI) Reduction and U Mobility at an in situ Recovery U Mine. Environmental Science & Technology, 49(10): 5939–5947. https://doi.org/10.1021/acs.est.5b00701
    Bopp, C. J. IV, Lundstrom, C. C., Johnson, T. M., et al., 2009. Variations in 238U/235U in Uranium Ore Deposits: Isotopic Signatures of the U Reduction Process? Geology, 37(7): 611–614. https://doi.org/10.1130/g25550a.1
    Bopp, C. J. IV, Lundstrom, C. C., Johnson, T. M., et al., 2010. Uranium 238U/235U Isotope Ratios as Indicators of Reduction: Results from an in situ Biostimulation Experiment at Rifle, Colorado, USA. Environmental Science & Technology, 44(15): 5927–5933. https://doi.org/10.1021/es100643v
    Cheng, H., Edwards, R. L., Shen, C. C., et al., 2013. Improvements in 230Th Dating, 230Th and 234U Half-Life Values, and U-Th Isotopic Measurements by Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Earth and Planetary Science Letters, 371/372: 82–91. https://doi.org/10.1016/j.epsl.2013.04.006
    Cherdyntsev, V. V., 1971. Uranium-234. Israel Program for Scientific Translations, Jerusalem. 338
    Chernyshev, I. V., Golubev, V. N., Chugaev, A. V., et al., 2014a. 238U/235U Isotope Ratio Variations in Minerals from Hydrothermal Uranium Deposits. Geochemistry International, 52(12): 1013–1029. https://doi.org/10.1134/s0016702914120027
    Chernyshev, I. V., Dubinina, E. O., Golubev, V. N., 2014b. Fractionation Factor of 238U and 235U Isotopes in the Process of Hydrothermal Pitchblende Formation: A Numerical Estimate. Geology of Ore Deposits, 56(5): 315–321. https://doi.org/10.1134/s1075701514050031
    Chernyshev, I. V., Golubev, V. N., Chugaev, A. V., et al., 2019. Behavior of the 238U, 235U, and 234U Isotopes at Weathering of Volcanic Rocks with U Mineralization: A Case Study at the Tulukuevskoe Deposit, Eastern Transbaikalia. Petrology, 27(4): 407–424. https://doi.org/10.1134/s0869591119040027
    Doynikova, O. A., Tarasov, N. N., Mokhov, A. V., 2014. A New Phosphatic Type of Uranium Deposits in Russia. Doklady Earth Sciences, 457(2): 910–914. https://doi.org/10.1134/s1028334x14080030
    Golubev, V. N., Chernyshev, I. V., Chugaev, A. V., et al., 2013. U-Pb Systems and U Isotopic Composition of the Sandstone-Hosted Paleovalley Dybryn Uranium Deposit, Vitim Uranium District, Russia. Geology of Ore Deposits, 55(6): 399–410. https://doi.org/10.1134/s1075701513060044
    Golubev, V. N., Dubinina, E. O., Chernyshev, I. V., et al., 2016. Behavior of Isotope (18O/16O, 234U/238U) Systems during the Formation of Uranium Deposits of the "Sandstone" Type. Doklady Earth Sciences, 466(1): 28–31. https://doi.org/10.1134/S1028334x16010049
    Hiess, J., Condon, D. J., McLean, N., et al., 2012. 238U/235U Systematics in Terrestrial Uranium-Bearing Minerals. Science, 335(6076): 1610–1614. https://doi.org/10.1126/science.1215507
    Jemison, N. E., Bizjack, M. T., Johnson, T. M., et al., 2020. Influence of Physical and Chemical Hydrology on Bioremediation of a U-Contaminated Aquifer Informed by Reactive Transport Modeling Incorporating 238U/235U Ratios. Geochimica et Cosmochimica Acta, 269: 303–328. https://doi.org/10.1016/j.gca.2019.10.031
    Kochkin, B. T., Tarasov, N. N., Velichkin, V. I., et al., 2014. Iron Redistribution during Postore Stage at Uranium Deposits of the Khiagda Ore Field, Vitim District. Geology of Ore Deposits, 56(2): 113–127. https://doi.org/10.1134/s1075701514010048
    Kochkin, B. T., Tarasov, N. N., Andreeva, O. V., et al., 2017a. Polygenetic and Polychronic Uranium Mineralization at Deposits of the Khiagda Ore Field, Buryatia. Geology of Ore Deposits, 59(2): 141–155. https://doi.org/10.1134/s1075701517020015
    Kochkin, B. T., Solodov, I. N., Ganina, N. I., et al., 2017b. Geochemical Features of the Ore-Bearing Medium in Uranium Deposits in the Khiagda Ore Field. Geology of Ore Deposits, 59(5): 341–353. https://doi.org/10.1134/s1075701517050026
    Mandzhieva, G. V., Sadasyuk, A. S., Chernyshev, I. V., et al., 2018. High-Precision Determination of the 238U/235U Isotope Ratio in Rocks by Multicollector Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Chemistry, 73(14): 1334–1342. https://doi.org/10.1134/s106193481814006x
    Mashkovtsev, G. A., Konstantinov, A. K., Miguta, A. K., et al., 2010. Uran Rossiiskikh Nedr (Uranium in Russian Subsurface), VIMS, Moscow. 850 (in Russian)
    Murphy, M. J., Stirling, C. H., Kaltenbach, A., et al., 2014. Fractionation of 238U/235U by Reduction during Low Temperature Uranium Mineralisation Processes. Earth and Planetary Science Letters, 388: 306–317. https://doi.org/10.1016/j.epsl.2013.11.034
    Placzek, C. J., Heikoop, J. M., House, B., et al., 2016. Uranium Isotope Composition of Waters from South Texas Uranium Ore Deposits. Chemical Geology, 437: 44–55.https://doi.org/10.1016/j.chemgeo.20 16.05.008 doi: 10.1016/j.chemgeo.2016.05.008
    Richter, S., Eykens, R., Kühn, H., et al., 2010. New Average Values for the n(238U)/n(235U) Isotope Ratios of Natural Uranium Standards. International Journal of Mass Spectrometry, 295(1/2): 94–97. https://doi.org/10.1016/j.ijms.2010.06.004
    Rosholt, J. N., Shields, W. R., Garner, E. L., 1963. Isotopic Fractionation of Uranium in Sandstone. Science, 139(3551): 224–226. https://doi.org/10.1126/science.139.3551.224
    Schauble, E. A., 2007. Role of Nuclear Volume in Driving Equilibrium Stable Isotope Fractionation of Mercury, Thallium, and Other very Heavy Elements. Geochimica et Cosmochimica Acta, 71(9): 2170–2189. https://doi.org/10.1016/j.gca.2007.02.004
    Schauble, E. A., Meheut, M., Hill, P. S., 2009. Combining Metal Stable Isotope Fractionation Theory with Experiments. Elements, 5(6): 369–374. https://doi.org/10.2113/gselements.5.6.369
    Stacey, J. S., Kramers, J. D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26(2): 207–221.https://doi.org/10.1016/0012-821x(75)900 88-6 doi: 10.1016/0012-821x(75)90088-6
    Stirling, C. H., Andersen, M. B., Potter, E. K., et al., 2007. Low-Temperature Isotopic Fractionation of Uranium. Earth and Planetary Science Letters, 264(1/2): 208–225.https://doi.org/10.1016/j.epsl.200 7.09.019 doi: 10.1016/j.epsl.2007.09.019
    Tarasov, N. N., Kochkin, B. T., Velichkin, V. I., et al., 2018. Deposits of the Hiagda Uranium Ore Field, Buryatia: Formation Conditions and Ore Control Factors. Geology of Ore Deposits, 60(4): 347–354. https://doi.org/10.1134/s1075701518040050
    Thurber, D. L., 1962. Anomalous U234U238 in Nature. Journal of Geophysical Research Atmospheres, 67(11): 4518–4520. https://doi.org/10.1029/jz067i011p04518
    Uvarova, Y. A., Kyser, T. K., Geagea, M. L., et al., 2014. Variations in the Uranium Isotopic Compositions of Uranium Ores from Different Types of Uranium Deposits. Geochimica et Cosmochimica Acta, 146: 1–17. https://doi.org/10.1016/j.gca.2014.09.034
    Vaks, A., Gutareva, O. S., Breitenbach, S. F., et al., 2013. Speleothems Reveal 500 000-Year History of Siberian Permafrost. Science, 340(6129): 183–186. https://doi.org/10.1126/science.1228729
    Weyer, S., Anbar, A. D., Gerdes, A., et al., 2008. Natural Fractionation of 238U/235U. Geochimica et Cosmochimica Acta, 72(2): 345–359. https://doi.org/10.1016/j.gca.2007.11.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views(403) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return