Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 4
Aug 2021
Turn off MathJax
Article Contents
Yunzhao Zhang, Lianbo Zeng, Qun Luo, Rukai Zhu, Wenya Lyu, Dongdong Liu, Quanqi Dai, Shouxu Pan. Influence of Natural Fractures on Tight Oil Migration and Production: A Case Study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin, NW China. Journal of Earth Science, 2021, 32(4): 927-945. doi: 10.1007/s12583-021-1442-y
Citation: Yunzhao Zhang, Lianbo Zeng, Qun Luo, Rukai Zhu, Wenya Lyu, Dongdong Liu, Quanqi Dai, Shouxu Pan. Influence of Natural Fractures on Tight Oil Migration and Production: A Case Study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin, NW China. Journal of Earth Science, 2021, 32(4): 927-945. doi: 10.1007/s12583-021-1442-y

Influence of Natural Fractures on Tight Oil Migration and Production: A Case Study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin, NW China

doi: 10.1007/s12583-021-1442-y
More Information
  • Natural fractures, as the main flow channels and important storage spaces, have significant effects on the migration, distribution, and accumulation of tight oil. According to outcrop, core, formation micro image (FMI), cast-thin-section, and scanning electron microscopy data from the tight reservoir within the Permian Lucaogou Formation of the Junggar Basin, tectonic fractures are prevalent in this formation mainly on micro to large scale. There are two types of fractures worth noticing: diagenetic fractures and overpressure-related fractures, primarily at micro to medium scale. The diagenetic fractures consist of bedding fractures, stylolites, intragranular fractures, grain-boundary fractures, and diagenetic shrinkage fractures. Through FMI interpretation and Monte Carlo method evaluation, the macro-fractures could be considered as migration channels, and the micro-fractures as larger pore throats that function as storage spaces. The bedding fractures formed earlier than all tectonic fractures, while the overpressure-related fractures formed in the Middle and Late Jurassic. The bedding fractures and stylolites function as the primary channels for horizontal migration of tight oil. The tectonic fractures can provide vertical migration channels and reservoir spaces for tight oil, and readjust the tight oil distribution. The overpressure-related fractures are fully filled with calcite, and hence, have little effect on hydrocarbon migration and storage capacity. The data on tight oil production shows that the density and aperture of fractures jointly determine the productivity of a tight reservoir.

     

  • loading
  • Al-Aasm, I. S., Coniglio, M., Desrochers, A., 1995. Formation of Complex Fibrous Calcite Veins in Upper Triassic Strata of Wrangellia Terrain, British Columbia, Canada. Sedimentary Geology, 100(1/2/3/4): 83-95. https://doi.org/10.1016/0037-0738(95)00104-2
    Ameen, M. S., Hailwood, E. A., 2008. A New Technology for the Characterization of Microfractured Reservoirs (Test Case: Unayzah Reservoir, Wudayhi Field, Saudi Arabia). AAPG Bulletin, 92(1): 31-52. https://doi.org/10.1306/08200706090
    Anders, M. H., Laubach, S. E., Scholz, C. H., 2014. Microfractures: A Review. Journal of Structural Geology, 69: 377-394. https://doi.org/10.1016/j.jsg.2014.05.011
    Bai, H., Pang, X. Q., Kuang, L. C., et al., 2017. Hydrocarbon Expulsion Potential of Source Rocks and Its Influence on the Distribution of Lacustrine Tight Oil Reservoir, Middle Permian Lucaogou Formation, Jimsar Sag, Junggar Basin, Northwest China. Journal of Petroleum Science and Engineering, 149: 740-755. https://doi.org/10.1016/j.petrol.2016.09.053
    Becker, S. P., Eichhubl, P., Laubach, S. E., et al., 2010. A 48 M. y. History of Fracture Opening, Temperature, and Fluid Pressure: Cretaceous Travis Peak Formation, East Texas Basin. Geological Society of America Bulletin, 122(7/8): 1081-1093. https://doi.org/10.1130/b30067.1
    Bisdom, K., Bertotti, G., Nick, H. M., 2016. The Impact of in-situ Stress and Outcrop-Based Fracture Geometry on Hydraulic Aperture and Upscaled Permeability in Fractured Reservoirs. Tectonophysics, 690: 63-75. https://doi.org/10.1016/j.tecto.2016.04.006
    Bruna, P. O., Lavenu, A. P. C., Matonti, C., et al., 2019. Are Stylolites Fluid-Flow Efficient Features?. Journal of Structural Geology, 125: 270-277. https://doi.org/10.1016/j.jsg.2018.05.018
    Caja, M. A., Permanyer, A., Marfil, R., et al., 2006. Fluid Flow Record from Fracture-Fill Calcite in the Eocene Limestones from the South-Pyrenean Basin (NE Spain) and Its Relationship to Oil Shows. Journal of Geochemical Exploration, 89(1/2/3): 27-32. https://doi.org/10.1016/j.gexplo.2005.11.009
    Cao, Z., Liu, G. D., Xiang, B. L., et al., 2017. Geochemical Characteristics of Crude Oil from a Tight Oil Reservoir in the Lucaogou Formation, Jimusar Sag, Junggar Basin. AAPG Bulletin, 101(1): 39-72. https://doi.org/10.1306/05241614182
    Evans, M. A., Battles, D. A., 1999. Fluid Inclusion and Stable Isotope Analyses of Veins from the Central Appalachian Valley and Ridge Province: Implications for Regional Synorogenic Hydrologic Structure and Fluid Migration. Geological Society of America Bulletin, 111(12): 1841-1860. https://doi.org/10.1130/0016-7606(1999)1111841:fiasia>2.3.co;2 doi: 10.1130/0016-7606(1999)1111841:fiasia>2.3.co;2
    Fall, A., Eichhubl, P., Cumella, S. P., et al., 2012. Testing the Basin-Centered Gas Accumulation Model Using Fluid Inclusion Observations: Southern Piceance Basin, Colorado. AAPG Bulletin, 96(12): 2297-2318. https://doi.org/10.1306/05171211149
    Fang, S. H., Jia, C. Z., Guo, Z. J., et al., 2006. New View on the Permian Evolution of the Junggar Basin and Its Implications for Tectonic Evolution. Earth Science Frontiers, 13(3): 108-121 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200603014.htm
    Fang, S. H., Song, Y., Xu, H. M., 2007. Relationship between Tectonic Evolution and Petroleum System Formation—Taking the Jimsar Sag of Eastern Junggar Basin as an Example. Petroleum Geology & Experiment, 29(2): 149-153, 161 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200702009.htm
    Ghosh, S., Galvis-Portilla, H. A., Klockow, C. M., et al., 2018. An Application of Outcrop Analogues to Understanding the Origin and Abundance of Natural Fractures in the Woodford Shale. Journal of Petroleum Science and Engineering, 164: 623-639. https://doi.org/10.1016/j.petrol.2017.11.073
    Giletti, B. J., 1986. Diffusion Effects on Oxygen Isotope Temperatures of Slowly Cooled Igneous and Metamorphic Rocks. Earth and Planetary Science Letters, 77(2): 218-228. https://doi.org/10.1016/0012-821x(86)90162-7
    Gong, L., Gao, M. Z., Zeng, L. B., et al., 2017. Controlling Factors on Fracture Development in the Tight Sandstone Reservoirs: A Case Study of Jurassic-Neogene in the Kuqa Foreland Basin. Natural Gas Geoscience, 28(2): 199-208. https://doi.org/10.11764/j.issn.1672-1926.2016.12.003(in Chinese with English Abstract)
    Gong, L., Zeng, L. B., Du, Y., et al., 2015. Influences of Structural Diagenesis on Fracture Effectiveness: A Case Study of the Cretaceous Tight Sandstone Reservoirs of Kuqa Foreland Basin. Journal of China University of Mining & Technology, 44(3): 514-519. https://doi.org/10.13247/j.cnki.jcumt.000263(in Chinese with English Abstract)
    Gross, M. R., Eyal, Y., 2007. Throughgoing Fractures in Layered Carbonate Rocks. Geological Society of America Bulletin, 119(11/12): 1387-1404. https://doi.org/10.1130/0016-7606(2007)119[1387:tfilcr]2.0.co;2
    Guerriero, V., Mazzoli, S., Iannace, A., et al., 2013. A Permeability Model for Naturally Fractured Carbonate Reservoirs. Marine and Petroleum Geology, 40: 115-134. https://doi.org/10.1016/j.marpetgeo.2012.11.002
    Guo, Q. L., Wang, S. J., Chen, X. M., 2019. Assessment on Tight Oil Resources in Major Basins in China. Journal of Asian Earth Sciences, 178: 52-63. https://doi.org/10.1016/j.jseaes.2018.04.039
    Han, Y. J., Horsfield, B., Wirth, R., et al., 2017. Oil Retention and Porosity Evolution in Organic-Rich Shales. AAPG Bulletin, 101(6): 807-827. https://doi.org/10.1306/09221616069
    Hennings, P., 2009. AAPG-SPE-SEG Hedberg Research Conference on "the Geologic Occurrence and Hydraulic Significance of Fractures in Reservoirs". AAPG Bulletin, 93(11): 1407-1412. https://doi.org/10.1306/intro931109
    Hennings, P. H., Olson, J. E., Thompson, L. B., 2000. Combining Outcrop Data and Three-Dimensional Structural Models to Characterize Fractured Reservoirs: An Example from Wyoming. AAPG Bulletin, 84(6): 830-849. https://doi.org/10.1306/a967340a-1738-11d7-8645000102c1865d
    Howard, J. H., Nolen-Hoeksema, R. C., 1990. Description of Natural Fracture Systems for Quantitative Use in Petroleum Geology. AAPG Bulletin, 74(2): 151-162. https://doi.org/10.1306/0c9b2281-1710-11d7-8645000102c1865d
    Jia, C. Z., Zou, C. N., Li, J. J., et al., 2012. Assessment Criteria, Main Types, Basic Features and Resource Prospects of the Tight Oil in China. Acta Petrolei Sinica, 33(3): 343-350. https://doi.org/10.1016/s2096-2495(17)30026-1(in Chinese with English Abstract)
    Jiang, Z. X., Li, F., Yang, H. J., et al., 2015. Development Characteristics of Fractures in Jurassic Tight Reservoir in Dibei Area of Kuqa Depression and Its Reservoir-Controlling Mode. Acta Petrolei Sinica, 36(S2): 102-111. https://doi.org/10.7623/Syxb2015s2009(in Chinese with English Abstract)
    Jiao, Y. Q., Wu, L. Q., He, M. C., et al., 2007. Occurrence, Thermal Evolution and Primary Migration Processes Derived from Studies of Organic Matter in the Lucaogou Source Rock at the Southern Margin of the Junggar Basin, NW China. Science in China Series D: Earth Sciences, 50(2): 114-123. https://doi.org/10.1007/s11430-007-6027-9
    Jiao, Y. Q., Yan, J. X., Li, S. T., et al., 2005. Architectural Units and Heterogeneity of Channel Reservoirs in the Karamay Formation, Outcrop Area of Karamay Oil Field, Junggar Basin, Northwest China. AAPG Bulletin, 89(4): 529-545. https://doi.org/10.1306/10040400955
    Ju, W., Sun, W. F., 2016. Tectonic Fractures in the Lower Cretaceous Xiagou Formation of Qingxi Oilfield, Jiuxi Basin, NW China Part One: Characteristics and Controlling Factors. Journal of Petroleum Science and Engineering, 146: 617-625. https://doi.org/10.1016/j.petrol.2016.07.042
    Ju, W., Wang, J. L., Fang, H. H., et al., 2019. Paleotectonic Stress Field Modeling and Prediction of Natural Fractures in the Lower Silurian Longmaxi Shale Reservoirs, Nanchuan Region, South China. Marine and Petroleum Geology, 100: 20-30. https://doi.org/10.1016/j.marpetgeo.2018.10.052
    Ju, W., Wu, C. F., Wang, K., et al., 2017. Prediction of Tectonic Fractures in Low Permeability Sandstone Reservoirs: A Case Study of the Es3m Reservoir in the Block Shishen 100 and Adjacent Regions, Dongying Depression. Journal of Petroleum Science and Engineering, 156: 884-895. https://doi.org/10.1016/j.petrol.2017.06.068
    Kang, Y. Z., Wang, Z., Kang, Z., 2011. Study on Oil Control of Structural System in Junggar-Tuha Basin. Geological Press, Beijing. 127-132 (in Chinese)
    Khoshbakht, F., Azizzadeh, M., Memarian, H., et al., 2012. Comparison of Electrical Image Log with Core in a Fractured Carbonate Reservoir. Journal of Petroleum Science and Engineering, 86/87: 289-296. https://doi.org/10.1016/j.petrol.2012.03.007
    Kuang, L. C., Hu, W. X., Wang, X. L., et al., 2013. Research of the Tight Oil Reservoir in the Lucaogou Formation in Jimusar Sag: Analysis of Lithology and Porosity Characteristics. Geological Journal of China Universities, 19(3): 529-535. https://doi.org/10.16108/j.issn1006-7493.2013.03.003(in Chinese with English Abstract)
    Kuang, L. C., Tang, Y., Lei, D. W., et al., 2012. Formation Conditions and Exploration Potential of Tight Oil in the Permian Saline Lacustrine Dolomitic Rock, Junggar Basin, NW China. Petroleum Exploration and Development, 39(6): 700-711. https://doi.org/10.1016/s1876-3804(12)60095-0
    Lai, J., Wang, G. W., Fan, Z. Y., et al., 2017. Three-Dimensional Quantitative Fracture Analysis of Tight Gas Sandstones Using Industrial Computed Tomography. Scientific Reports, 7(1): 1825. https://doi.org/10.1038/s41598-017-01996-7
    Lai, J., Wang, G. W., Wang, S., et al., 2018. A Review on the Applications of Image Logs in Structural Analysis and Sedimentary Characterization. Marine and Petroleum Geology, 95: 139-166. https://doi.org/10.1016/j.marpetgeo.2018.04.020
    Lander, R. H., Laubach, S. E., 2015. Insights into Rates of Fracture Growth and Sealing from a Model for Quartz Cementation in Fractured Sandstones. Geological Society of America Bulletin, 127(3/4): 516-538. https://doi.org/10.1130/b31092.1
    Laubach, S. E., 2003. Practical Approaches to Identifying Sealed and Open Fractures. AAPG Bulletin, 87(4): 561-579. https://doi.org/10.1306/11060201106
    Laubach, S. E., 1989. Paleostress Directions from the Preferred Orientation of Closed Microfractures (Fluid-Inclusion Planes) in Sandstone, East Texas Basin, USA. Journal of Structural Geology, 11(5): 603-611. https://doi.org/10.1016/0191-8141(89)90091-6
    Laubach, S. E., 1988. Subsurface Fractures and Their Relationship to Stress History in East Texas Basin Sandstone. Tectonophysics, 156(1/2): 37-49. https://doi.org/10.1016/0040-1951(88)90281-8
    Laubach, S. E., Eichhubl, P., Hilgers, C., et al., 2010. Structural Diagenesis. Journal of Structural Geology, 32(12): 1866-1872. https://doi.org/10.1016/j.jsg.2010.10.001
    Laubach, S. E., Lander, R. H., Criscenti, L. J., et al., 2019. The Role of Chemistry in Fracture Pattern Development and Opportunities to Advance Interpretations of Geological Materials. Reviews of Geophysics, 57(3): 1065-1111. https://doi.org/10.1029/2019rg000671
    Laubach, S. E., Olson, J. E., Gross, M. R., 2009. Mechanical and Fracture Stratigraphy. AAPG Bulletin, 93(11): 1413-1426. https://doi.org/10.1306/07270909094
    Laubach, S. E., Olson, J. E., Gale, J. F. W., 2004. Are Open Fractures Necessarily Aligned with Maximum Horizontal Stress?. Earth and Planetary Science Letters, 222(1): 191-195. https://doi.org/10.1016/j.epsl.2004.02.019
    Leythaeuser, D., Borromeo, O., Mosca, F., et al., 1995. Pressure Solution in Carbonate Source Rocks and Its Control on Petroleum Generation and Migration. Marine and Petroleum Geology, 12(7): 717-733. https://doi.org/10.1016/0264-8172(95)93597-w
    Li, M. C., Li, J., 2010. "Dynamic Trap": A Main Action of Hydrocarbon Charging to Form Accumulations in Low Permeability-Tight Reservoir. Acta Petrolei Sinica, 31(5): 718-722 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-SYXB201005005.htm
    Li, P. L., Feng, J. H., Lu, Y. C., et al., 2010. Tectonic Sedimentation and Accumulation in the Junggar Basin. Geological Press, Beijing. 237-240 (in Chinese)
    Lian, H., Zha, M., Gao, C. H., et al., 2016. Abnormal High Pressure and Tight Oil Enrichment of Lucaogou Formation in Jimusaer Sag. Xinjiang Petroleum Geology, 37(2): 163-168 (in Chinese with English Abstract) http://xjsydz.paperopen.com/OA/pdfdow.aspx?Sid=2016English03
    Liu, C., Liu, K. Y., Wang, X. Q., et al., 2019. Chemo-Sedimentary Facies Analysis of Fine-Grained Sediment Formations: An Example from the Lucaogou Fm in the Jimusaer Sag, Junggar Basin, NW China. Marine and Petroleum Geology, 110: 388-402. https://doi.org/10.1016/j.marpetgeo.2019.06.043
    Liu, D. D., Yang, D. X., Zhang, Z. Y., et al., 2019. Fracture Identification for Tight Reservoirs by Conventional and Imaging Logging: A Case Study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin. Lithologic Reservoirs, 31(3): 76-85 (in Chinese with English Abstract)
    Liu, D. D., Zhang, C., Luo, Q., et al., 2017. Development Characteristics and Controlling Factors of Natural Fractures in Permian Lucaogou Formation Tight Reservoir in Jimsar Sag, Junggar Basin. China Petroleum Exploration, 22(4): 36-47 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY201704004.htm
    Liu, J. S., Ding, W. L., Yang, H. M., et al., 2018. Quantitative Prediction of Fractures Using the Finite Element Method: A Case Study of the Lower Silurian Longmaxi Formation in Northern Guizhou, South China. Journal of Asian Earth Sciences, 154: 397-418. https://doi.org/10.1016/j.jseaes.2017.12.038
    Luo, X. R., Wang, Z. M., Zhang, L. Q., et al., 2007. Overpressure Generation and Evolution in a Compressional Tectonic Setting, the Southern Margin of Junggar Basin, Northwestern China. AAPG Bulletin, 91(8): 1123-1139. https://doi.org/10.1306/02260706035
    Lyu, W. Y., Zeng, L. B., Zhang, B. J., et al., 2017. Influence of Natural Fractures on Gas Accumulation in the Upper Triassic Tight Gas Sandstones in the Northwestern Sichuan Basin, China. Marine and Petroleum Geology, 83: 60-72. https://doi.org/10.1016/j.marpetgeo.2017.03.004
    Lyu, W. Y., Zeng, L. B., Zhou, S. B., et al., 2019. Natural Fractures in Tight-Oil Sandstones: A Case Study of the Upper Triassic Yanchang Formation in the Southwestern Ordos Basin, China. AAPG Bulletin, 103(10): 2343-2367. https://doi.org/10.1306/0130191608617115
    Mahmoud, M., Hamza, A., Hussein, I. A., et al., 2020. Carbon Dioxide EGR and Sequestration in Mature and Immature Shale: Adsorption Study. Journal of Petroleum Science and Engineering, 188: 106923. https://doi.org/10.1016/j.petrol.2020.106923
    McGlade, C. E., 2012. A Review of the Uncertainties in Estimates of Global Oil Resources. Energy, 47(1): 262-270. https://doi.org/10.1016/j.energy.2012.07.048
    Nelson, P. H., 2009. Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales. AAPG Bulletin, 93(3): 329-340. https://doi.org/10.1306/10240808059
    Olson, J. E., Laubach, S. E., Eichhubl, P., 2010. Estimating Natural Fracture Producibility in Tight Gas Sandstones: Coupling Diagenesis with Geomechanical Modeling. The Leading Edge, 29(12): 1494-1499. https://doi.org/10.1190/1.3525366
    Olson, J. E., Laubach, S. E., Lander, R. H., 2009. Natural Fracture Characterization in Tight Gas Sandstones: Integrating Mechanics and Diagenesis. AAPG Bulletin, 93(11): 1535-1549. https://doi.org/10.1306/08110909100
    Ozkan, A., Cumella, S. P., Milliken, K. L., et al., 2011. Prediction of Lithofacies and Reservoir Quality Using Well Logs, Late Cretaceous Williams Fork Formation, Mamm Creek Field, Piceance Basin, Colorado. AAPG Bulletin, 95(10): 1699-1723. https://doi.org/10.1306/01191109143
    Pang, H., Ding, X. G., Pang, X. Q., et al., 2019. Lower Limits of Petrophysical Parameters Allowing Tight Oil Accumulation in the Lucaogou Formation, Jimusaer Depression, Junggar Basin, Western China. Marine and Petroleum Geology, 101: 428-439. https://doi.org/10.1016/j.marpetgeo.2018.12.021
    Pang, Z. L., Zou, C. N., Tao, S. Z., et al., 2012. Formation, Distribution and Resource Evaluation of Tight Oil in China. Engineering Sciences, 14(7): 60-67 (in Chinese with English Abstract)
    Perez, R. J., Boles, J. R., 2004. Mineralization, Fluid Flow, and Sealing Properties Associated with an Active Thrust Fault: San Joaquin Basin, California. AAPG Bulletin, 88(9): 1295-1314. https://doi.org/10.1306/03170403028
    Prioul, R., Donald, A., Koepsell, R., et al., 2007. Forward Modeling of Fracture-Induced Sonic Anisotropy Using a Combination of Borehole Image and Sonic Logs. Geophysics, 72(4): E135-E147. https://doi.org/10.1190/1.2734546
    Prioul, R., Jocker, J., 2009. Fracture Characterization at Multiple Scales Using Borehole Images, Sonic Logs, and Walkaround Vertical Seismic Profile. AAPG Bulletin, 93(11): 1503-1516. https://doi.org/10.1306/08250909019
    Qiu, Z., Shi, Z. S., Dong, D. Z., et al., 2016a. Geological Characteristics of Source Rock and Reservoir of Tight Oil and Its Accumulation Mechanism: A Case Study of Permian Lucaogou Formation in Jimusar Sag, Junggar Basin. Petroleum Exploration and Development, 43(6): 1013-1024. https://doi.org/10.1016/s1876-3804(16)30118-5
    Qiu, Z., Wu, X. Z., Tang, Y., et al., 2016b. Resource Assessment of Tight Oil from the Permian Lucaogou Formation in Jimusar Sag, Junggar Basin, China. Natural Gas Geoscience, 27(9): 1688-1698 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201609015.htm
    Qiu, Z., Zou, C. N., Dong, D. Z., et al., 2016c. Petroleum System Assessment of Conventional-Unconventional Oil in the Jimusar Sag, Junggar Basin, Northwest China. Journal of Unconventional Oil and Gas Resources, 16: 53-61. https://doi.org/10.1016/j.juogr.2016.09.005(in Chinese with English Abstract)
    Santos, R. F. V. C., Miranda, T. S., Barbosa, J. A., et al., 2015. Characterization of Natural Fracture Systems: Analysis of Uncertainty Effects in Linear Scanline Results. AAPG Bulletin, 99(12): 2203-2219. https://doi.org/10.1306/05211514104
    Sava, D., Mavko, G., 2007. Rock Physics-Based Integration of Geologic and Geophysical Data for Fracture Characterization. The Leading Edge, 26(9): 1140-1146. https://doi.org/10.1190/1.2780784
    Su, Y., Zha, M., Ding, X. J., et al., 2018. Pore Type and Pore Size Distribution of Tight Reservoirs in the Permian Lucaogou Formation of the Jimsar Sag, Junggar Basin, NW China. Marine and Petroleum Geology, 89: 761-774. https://doi.org/10.1016/j.marpetgeo.2017.11.014
    Tang, Y. Q., Wang, R., Li, Z. H., et al., 2019. Experimental Study on Spontaneous Imbibition of CO2-Rich Brine in Tight Oil Reservoirs. Energy & Fuels, 33(8): 7604-7613. https://doi.org/10.1021/acs.energyfuels.9b01621
    Wang, K., Liu, H., Luo, J., et al., 2017. A Comprehensive Model Coupling Embedded Discrete Fractures, Multiple Interacting Continua, and Geomechanics in Shale Gas Reservoirs with Multiscale Fractures. Energy & Fuels, 31(8): 7758-7776. https://doi.org/10.1021/acs.energyfuels.7b00394
    Wang, X. F., Yang, Z. J., Yates, J. R., et al., 2015. Monte Carlo Simulations of Mesoscale Fracture Modelling of Concrete with Random Aggregates and Pores. Construction and Building Materials, 75: 35-45. https://doi.org/10.1016/j.conbuildmat.2014.09.069
    Wei, Y. J., Anand, L., 2008. On Micro-Cracking, Inelastic Dilatancy, and the Brittle-Ductile Transition in Compact Rocks: A Micro-Mechanical Study. International Journal of Solids and Structures, 45(10): 2785-2798. https://doi.org/10.1016/j.ijsolstr.2007.11.028
    Wu, H. G., Hu, W. X., Cao, J., et al., 2016. A Unique Lacustrine Mixed Dolomitic-Clastic Sequence for Tight Oil Reservoir within the Middle Permian Lucaogou Formation of the Junggar Basin, NW China: Reservoir Characteristics and Origin. Marine and Petroleum Geology, 76: 115-132. https://doi.org/10.1016/j.marpetgeo.2016.05.007
    Wu, H. Q., Pollard, D. D., 2002. Imaging 3-D Fracture Networks around Boreholes. AAPG Bulletin, 86(4): 593-604. https://doi.org/10.1306/61eedb52-173e-11d7-8645000102c1865d
    Wu, L. Y., Pang, X. Q., Zhou, L. M., et al., 2015. The Quality Evaluation and Hydrocarbon Generation and Expulsion Characteristics of Permian Lucaogou Formation Source Rocks in Jimusar Sag, Junggar Basin. Acta Geologica Sinica (English Edition), 89(S1): 283-286. https://doi.org/10.1111/1755-6724.12304_29
    Xi, K. L., Cao, Y. C., Jahren, J., et al., 2015a. Diagenesis and Reservoir Quality of the Lower Cretaceous Quantou Formation Tight Sandstones in the Southern Songliao Basin, China. Sedimentary Geology, 330: 90-107. https://doi.org/10.1016/j.sedgeo.2015.10.007
    Xi, K. L., Cao, Y. C., Zhu, R. K., et al., 2015b. Rock Types and Characteristics of Tight Oil Reservoir in Permian Lucaogou Formation, Jimsar Sag. Acta Pharmacologica Sinica, 36(12): 1495-1507 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201512005.htm
    Yang, Y. Q., Qiu, L. W., Cao, Y. C., et al., 2017. Reservoir Quality and Diagenesis of the Permian Lucaogou Formation Tight Carbonates in Jimsar Sag, Junggar Basin, West China. Journal of Earth Science, 28(6): 1032-1046. https://doi.org/10.1007/s12583-016-0931-6
    Yang, Z., Hou, L. H., Tao, S. Z., et al., 2015. Formation Conditions and "Sweet Spot" Evaluation of Tight Oil and Shale Oil. Petroleum Exploration and Development, 42(5): 555-565 http://qikan.cqvip.com/Qikan/Article/Detail?id=666165969
    Yuan, G. H., Gluyas, J., Cao, Y. C., et al., 2015. Diagenesis and Reservoir Quality Evolution of the Eocene Sandstones in the Northern Dongying Sag, Bohai Bay Basin, East China. Marine and Petroleum Geology, 62: 77-89. https://doi.org/10.1016/j.marpetgeo.2015.01.006
    Zeng, L. B., 2010. Microfracturing in the Upper Triassic Sichuan Basin Tight-Gas Sandstones: Tectonic, Overpressure, and Diagenetic Origins. AAPG Bulletin, 94(12): 1811-1825. https://doi.org/10.1306/06301009191
    Zeng, L. B., 2008. Formation and Distribution of Fractures in Low-Permeability Sandstone Reservoirs. Science Press House, Beijing. 1-169 (in Chinese)
    Zeng, L. B., Gao, C. Y., Qi, J. F., et al., 2008a. The Distribution Rule and Seepage Effect of the Fractures in the Ultra-Low Permeability Sandstone Reservoir in East Gansu Province, Ordos Basin. Science in China Series D: Earth Sciences, 51(2): 44-52. https://doi.org/10.1007/s11430-008-6015-8
    Zeng, L. B., Qi, J. F., Wang, C. G., et al., 2008b. The Influence of Tectonic Stress on Fracture Formation and Fluid Flow. Earth Science Frontiers, 15(3): 292-298 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200803029.htm
    Zeng, L. B., Jiang, J. W., Yang, Y. L., 2010a. Fractures in the Low Porosity and Ultra-Low Permeability Glutenite Reservoirs: A Case Study of the Late Eocene Hetaoyuan Formation in the Anpeng Oilfield, Nanxiang Basin, China. Marine and Petroleum Geology, 27(7): 1642-1650. https://doi.org/10.1016/j.marpetgeo.2010.03.009
    Zeng, L. B., Ke, S. Z., Liu, Y., 2010b. Fracture Study Methods for Low Permeability Oil and Gas Reservoir. Petroleum Industry Press, Beijing. 1-187 (in Chinese)
    Zeng, L. B., Li, X. Y., 2009. Fractures in Sandstone Reservoirs with Ultra-Low Permeability: A Case Study of the Upper Triassic Yanchang Formation in the Ordos Basin, China. AAPG Bulletin, 93(4): 461-477. https://doi.org/10.1306/09240808047
    Zeng, L. B., Li, Z. X., Shi, C. E., et al., 2007. Characteristics and Origin of Fractures in the Extra Low-Permeability Sandstone Reservoirs of the Upper Triassic Yanchang Formation in the Ordos Basin. Acta Geologica Sinica, 81(2): 174-180 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200702005.htm
    Zeng, L. B., Su, H., Tang, X. M., et al., 2013. Fractured Tight Sandstone Oil and Gas Reservoirs: A New Play Type in the Dongpu Depression, Bohai Bay Basin, China. AAPG Bulletin, 97(3): 363-377. https://doi.org/10.1306/09121212057
    Zeng, L. B., Tang, X. M., Wang, T. C., et al., 2012. The Influence of Fracture Cements in Tight Paleogene Saline Lacustrine Carbonate Reservoirs, Western Qaidam Basin, Northwest China. AAPG Bulletin, 96(11): 2003-2017. https://doi.org/10.1306/04181211090
    Zha, M., Su, Y., Gao, C. H., et al., 2017. Tight Reservoir Space Characteristics and Controlling Factors: An Example from Permian Lucaogou Formation in Jimsar Sag, Junggar Basin, Northwest China. Journal of China University of Mining and Technology, 46(1): 91-101. https://doi.org/10.13247/j.cnki.jcumt.000553(in Chinese with English Abstract)
    Zhang, C., Zhu, D. Y., Luo, Q., et al., 2017. Major Factors Controlling Fracture Development in the Middle Permian Lucaogou Formation Tight Oil Reservoir, Junggar Basin, NW China. Journal of Asian Earth Sciences, 146: 279-295. https://doi.org/10.1016/j.jseaes.2017.04.032
    Zhang, J. L., He, S., Wang, Y. Q., et al., 2019. Main Mechanism for Generating Overpressure in the Paleogene Source Rock Series of the Chezhen Depression, Bohai Bay Basin, China. Journal of Earth Science, 30(4): 775-787. https://doi.org/10.1007/s12583-017-0959-6
    Zhang, Y. Z., Zeng, L. B., Luo, Q., et al., 2020. Effects of Diagenesis on Natural Fractures in Tight Oil Reservoirs: A Case Study of the Permian Lucaogou Formation in Jimusar Sag, Junggar Basin, NW China. Geological Journal, 55(9): 6562-6579. https://doi.org/10.1002/gj.3822
    Zhang, Y. Z., Zeng, L. B., Luo, Q., et al., 2018. Research on the Types and Genetic Mechanisms of Tight Reservoir in the Lucaogou Formation in Jimusar Sag, Junggar Basin. Natural Gas Geoscience, 29(2): 211-225 (in Chinese with English Abstract) http://www.researchgate.net/publication/326801916_Research_on_the_types_and_genetic_mechanisms_of_tight_reservoir_in_the_Lucaogou_Formation_in_Jimusar_Sag_Junggar_Basin
    Zhao, J. M., Chen, S. Z., Deng, G., et al., 2019. Basement Structure and Properties of the Western Junggar Basin, China. Journal of Earth Science, 30(2): 223-235. https://doi.org/10.1007/s12583-018-1207-4
    Zhao, P. Q., Wang, Z. L., Sun, Z. C., et al., 2017. Investigation on the Pore Structure and Multifractal Characteristics of Tight Oil Reservoirs Using NMR Measurements: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin. Marine and Petroleum Geology, 86: 1067-1081. https://doi.org/10.1016/j.marpetgeo.2017.07.011
    Zhou, W. D., Xie, S. Y., Bao, Z. Y., et al., 2019. Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. Journal of Earth Science, 30(5): 879-892. https://doi.org/10.1007/s12583-019-1013-7
    Zhu, R. K., Zou, C. N., Mao, Z. G., et al., 2019. Characteristics and Distribution of Continental Tight Oil in China. Journal of Asian Earth Sciences, 178: 37-51. https://doi.org/10.1016/j.jseaes.2018.07.020
    Zou, C. N., Guo, Q., Yang, Z., et al., 2019. Resource Potential and Core Area Prediction of Lacustrine Tight Oil: The Triassic Yanchang Formation in Ordos Basin, China. AAPG Bulletin, 103(6): 1493-1523. https://doi.org/10.1306/11211816511
    Zou, C. N., Zhu, R. K., Wu, S. T., et al., 2012. Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations: Taking Tight Oil and Tight Gas in China as an Instance. Acta Petrolei Sinica, 33(2): 173-187 (in Chinese with English Abstract) doi: 10.1038/aps.2011.203
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views(309) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return