Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 6
Dec 2023
Turn off MathJax
Article Contents
Fangpeng Du, Furong Tan, Shiming Liu, Xiaochen Zhao, Yingtao Chen, Junwei Qiao. First Discovery of Late Triassic Tuffs in the South Qilian Basin: Geochemical Characteristics, Zircon LA-ICP-MS U-Pb Ages and Potential Source Regions. Journal of Earth Science, 2023, 34(6): 1692-1703. doi: 10.1007/s12583-021-1446-7
Citation: Fangpeng Du, Furong Tan, Shiming Liu, Xiaochen Zhao, Yingtao Chen, Junwei Qiao. First Discovery of Late Triassic Tuffs in the South Qilian Basin: Geochemical Characteristics, Zircon LA-ICP-MS U-Pb Ages and Potential Source Regions. Journal of Earth Science, 2023, 34(6): 1692-1703. doi: 10.1007/s12583-021-1446-7

First Discovery of Late Triassic Tuffs in the South Qilian Basin: Geochemical Characteristics, Zircon LA-ICP-MS U-Pb Ages and Potential Source Regions

doi: 10.1007/s12583-021-1446-7
More Information
  • Corresponding author: Furong Tan, tanfurong1308@163.com
  • Received Date: 11 Dec 2020
  • Accepted Date: 01 Mar 2021
  • Available Online: 08 Dec 2023
  • Issue Publish Date: 30 Dec 2023
  • This investigation reports the first discovery of more than 70 tuff intervals in the Upper Triassic, South Qilian Basin. Petrographic and geochemical analyses were carried out on ten tuff samples and zircon U-Pb dating were on three. Thin section and X-ray diffraction (XRD) results indicate that the tuffs were composed of crystal shards and altered glass shards; crystal shards include plagioclase and quartz. Most of the tuffs had been transformed into illite/smectite mixed-layers (I/S). In addition, calcite, pyrite, dolomite and siderite were also identified in some of the tuff samples. Analysis of major elements suggests that the tuffs are peraluminous high-K calcalkaline series. Trace elements indicate that the tuffs are enriched in high field strength elements (HFSE), including Th, U, Ta, Zr and Hf. Geochemical characteristics suggest that the tuffs originated from comendite pantellerite and rhyolite from within plate setting. Zircon U-Pb dating (236.0 ± 1.7, 231.4 ± 1.6, and 223.1 ± 3.9 Ma) indicate that the tuffs were erupted in the Late Triassic. Comparative chronology and geochemical analyses suggest that the West Qinling belt and the East Kunlun belt are the potential source regions of these tuffs, and they originated from the within plate magma during a post-collisional period.

     

  • Electronic Supplementary Materials: Supplementary materials (ESM Tables S1–S2) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1446-7.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Astini, R. A., Collo, G., Martina, F., 2007. Ordovician K-Bentonites in the Upper-Plate Active Margin of Western Gondwana, (Famatina Ranges): Stratigraphic and Palaeogeographic Significance. Gondwana Research, 11(3): 311–325. https://doi.org/10.1016/j.gr.2006.05.005
    Chen, S. C., Wang, Y. T., Yu, J. J., et al., 2020. Petrogenesis of Triassic Granitoids in the Fengxian-Taibai Ore Cluster, Western Qinling Orogen, Central China: Implications for Tectonic Evolution and Polymetallic Mineralization. Ore Geology Reviews, 123: 103577. https://doi.org/10.1016/j.oregeorev.2020.103577
    Dawson, W. C., 2000. Shale Microfacies: Eagle Ford Group (Cenomanian-Turonian) North-Central Texas Outcrops and Subsurface Equivalents. AAPG Bulletin, 84(10): 607–621. https://doi.org/10.1306/8626c005-173b-11d7-8645000102c1865d
    Ding, S., Huang, H., Niu, Y. L., et al., 2011. Geochemistry, Geochronology and Petrogenesis of East Kunlun High Nb-Ta Rhyolites. Acta Petrologica Sinica, 27(12): 3603–3614. https://doi.org/10.1080/00288306.2011.590212 (in Chinese with English Abstract)
    Dang, B., Zhao, H., Lin, G. C., et al., 2013. Petrogenesis and Tectonic Significance of Carboniferous Volcanic Rocks in Northern Alxa and Its Neighboring Areas, Inner Mongolia, China. Earth Science, 38(5): 963–974. https://doi.org/10.3799/dqkx.2013.094 (in Chinese with English Abstract)
    Dong, Y. P., Yang, Z., Liu, X. M., et al., 2016. Mesozoic Intracontinental Orogeny in the Qinling Mountains, Central China. Gondwana Research, 30: 144–158. https://doi.org/10.1016/j.gr.2015.05.004
    Ellis, B. S., Schmitz, M. D., Hill, M., 2019. Reconstructing a Snake River Plain 'Super-Eruption' via Compositional Fingerprinting and High-Precision U/Pb Zircon Geochronology. Contributions to Mineralogy and Petrology, 174(12): 1–16. https://doi.org/10.1007/s00410-019-1641-z
    Feng, K., Li, R. B., Pei, X. Z., et al., 2022. Zircon U-Pb Chronology, Geochemistry and Geological Significance of Late Triassic Intermediate-Acid Volcanic Rocks in Boluositai Area, East Kunlun Orogenic Belt. Earth Science, 47(4): 1194–1216. https://doi.org/10.3799/dqkx.2021.116 (in Chinese with English Abstract)
    Fu, J. H., Zhou, L. F., 1998. Carboniferous-Jurassic Stratigraphic Provinces of the Southern Qilian Basin and Their Petro-Geological Features. Northwest Geoscience, 19: 47–54 (in Chinese with English Abstract)
    Fu, X. G., Wang, J., Tan, F. W., et al., 2010. The Late Triassic Rift-Related Volcanic Rocks from Eastern Qiangtang, Northern Tibet (China): Age and Tectonic Implications. Gondwana Research, 17(1): 135–144. https://doi.org/10.1016/j.gr.2009.04.010
    Gaibor, J., Hochuli, J. P. A., Winkler, W., et al., 2008. Hydrocarbon Source Potential of the Santiago Formation, Oriente Basin, SE of Ecuador. Journal of South American Earth Sciences, 25(2): 145–156. https://doi.org/10.1016/j.jsames.2007.07.002
    Guo, A. L., Zhang, G. W., Qiang, J., et al., 2009. Indosinian Zongwulong Orogenic Belt on the Northeastern Margin of the Qinghai-Tibet Plateau. Acta Petrologica Sinica, 25(1): 1–12 (in Chinese with English Abstract)
    Grevenitz, P., Carr, P., Hutton, A., 2003. Origin, Alteration and Geochemical Correlation of Late Permian Airfall Tuffs in Coal Measures, Sydney Basin, Australia. International Journal of Coal Geology, 55(1): 27–46. https://doi.org/10.1016/s0166-5162(03)00064-8
    Hu, Y., Niu, Y. L., Li, J. Y., et al., 2016. Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos, 245: 205–222. https://doi.org/10.1016/j.lithos.2015.05.004
    Huang, X. F., Mo, X. X., Yu, X. H., et al., 2013. Zircon U-Pb Chronology, Geochemistry of the Late Triassic Acid Volcanic Rocks in Tanchang Area, West Qinling and Their Geological Significance. Acta Petrologica Sinica, 29(11): 3968–3980 (in Chinese with English Abstract)
    Huff, W. D., Bergström, S. M., Kolata, D. R., 1992. Gigantic Ordovician Volcanic Ash Fall in North America and Europe: Biological, Tectono-magmatic, and Event-Stratigraphic Significance. Geology, 20(10): 875–878. https://doi.org/10.1130/0091-7613(1992)0200875:govafi>2.3.co;2 doi: 10.1130/0091-7613(1992)0200875:govafi>2.3.co;2
    Irvine, T. N., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055
    Jin, C. S., Liu, Q. S., Liang, W. T., et al., 2018. Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil Basin and Its Tectonic Implications for India-Eurasia Collision and Tibetan Plateau Deformation. Earth and Planetary Science Letters, 486: 41–53. https://doi.org/10.1016/j.epsl.2018.01.010
    Kong, J. J., Niu, Y. L., Hu, Y., et al., 2020. Petrogenesis of the Triassic Granitoids from the East Kunlun Orogenic Belt, NW China: Implica-tions for Continental Crust Growth from Syn-Collisional to Post-Collisional Setting. Lithos, 364/365: 105513. https://doi.org/10.1016/j.lithos.2020.105513
    Koschek, G., 1993. Origin and Significance of the SEM Cathodo-luminescence from Zircon. Journal of Microscopy, 171(3): 223–232. https://doi.org/10.1111/j.1365-2818.1993.tb03379.x
    Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745–750. https://doi.org/10.1093/petrology/27.3.745
    Li, Z. C., Zhang, X. K., Zeng, J. J., et al., 2019. The Characteristics and Geological Significance of the Adakite Rocks of the Upper Triassic Stata Huari Formation Volcanics in West Qinling. Mineral Exploration, 10(6): 1361–1368 (in Chinese with English Abstract)
    Lin, I. I., Hu, C. M., Li, Y. H., et al., 2011. Fertilization Potential of Volcanic Dust in the Low-Nutrient Low-Chlorophyll Western North Pacific Subtropical Gyre: Satellite Evidence and Laboratory Study. Global Biogeochemical Cycles, 25(1): GB1006. https://doi.org/10.1029/2009gb003758
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082
    Liu, B., Ma, C. Q., Huang, J., et al., 2016. Petrogenetic Mechanism and Tectonic Significance of Triassic Yushu Volcanic Rocks in the Northern Part of the North Qiangtang Terrane. Acta Petrologica et Mineralogica, 35: 1–15 (in Chinese with English Abstract)
    Liu, Y., Tan, J., Wei, J. H., et al., 2019. Sources and Petrogenesis of Late Triassic Zhiduo Volcanics in the Northeast Tibet: Implications for Tectonic Evolution of the Western Jinsha Paleo-Tethys Ocean. Lithos, 336/337: 169–182. https://doi.org/10.1016/j.lithos.2019.04.005
    MacDonald, R., Bagiński, B., Belkin, H. E., et al., 2019. The Gold Flat Tuff, Nevada: Insights into the Evolution of Peralkaline Silicic Magmas. Lithos, 328/329: 1–13. https://doi.org/10.1016/j.lithos.2019.01.017
    Mahar, M. A., Goodell, P. C., Ramírez, A., et al., 2019. Timing and Origin of Silicic Volcanism in Northwestern Mexico: Insights from Zircon U-Pb Geochronology, Hf Isotopes and Geochemistry of Rhyolite Ignimbrites from Palmarejo and Guazapares in Southwest Chihuahua. Lithos, 324/325: 246–264. https://doi.org/10.1016/j.lithos.2018.11.010
    Mai, Y. J., Zhu, L. D., Yang, W. G., et al., 2021. Zircon U-Pb and Hf Isotopic Composition of Permian Felsic Tuffs in Southeastern Margin of Lhasa, Tibet. Earth Science, 46(11): 3880–3891. https://doi.org/10.3799/dqkx.2020.397 (in Chinese with English Abstract)
    Mao, G. Z., Liu, C. Y., Liu, B. Q., et al., 2012. Effects of Uranium (Type Ⅱ) on Evolution of Hydrocarbon Generation of Source Rocks. Acta Geologica Sinica, 86(11): 1833–1840 (in Chinese with English Abstract)
    Mao, N., Liu, G. M., Li, L. S., et al., 2022. Methane Fluxes and Their Relationships with Methane-Related Microbes in Permafrost Regions of the Qilian Mountains. Earth Science, 47(2): 556–567. https://doi.org/10.3799/dqkx.2021.037 (in Chinese with English Abstract)
    Min, K., Renne, P. R., Huff, W. D., 2001. 40Ar/39Ar Dating of Ordovician K-Bentonites in Laurentia and Baltoscandia. Earth and Planetary Science Letters, 185(1/2): 121–134. https://doi.org/10.1016/s0012-821x(00)00365-4
    Pan, G. T., Xiao, Q. H., Lu, S. N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1–28 (in Chinese with English Abstract)
    Parrish, C. B., 2013. Insights into the Appalachian Basin Middle Devonian Depositional System from U-Pb Zircon Geochronology of Volcanic Ashes in the Marcellus Shale and Onondaga Limestone: [Dissertation]. West Virginia University, Morgantown. https://doi.org/10.33915/etd.3616
    Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesits. Wiley, Chichester. 525–548
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956
    Peng, H., Wang, J. Q., Liu, C. Y., et al., 2019. Thermochronological Constraints on the Meso-Cenozoic Tectonic Evolution of the Haiyuan-Liupanshan Region, Northeastern Tibetan Plateau. Journal of Asian Earth Sciences, 183: 103966. https://doi.org/10.1016/j.jseaes. 2019.103966 doi: 10.1016/j.jseaes.2019.103966
    Peng, H., Wang, J. Q., Liu, C. Y., et al., 2023. Mesozoic Tectonothermal Evolution of the Southern Central Asian Orogenic Belt: Evidence from Apatite Fission-Track Thermochronology in Shalazha Mountain, Inner Mongolia. Journal of Earth Science, 34(1): 37–53. https://doi.org/10.1007/s12583-020-1053-z
    Pupin, J. P., 1980. Zircon and Granite Petrology. Contributions to Mineralogy and Petrology, 73(3): 207–220. https://doi.org/10.1007/bf00381441
    Qiu, X. W., Liu, C. Y., Mao, G. Z., et al., 2014. Late Triassic Tuff Intervals in the Ordos Basin, Central China: Their Depositional, Petrographic, Geochemical Characteristics and Regional Implications. Journal of Asian Earth Sciences, 80: 148–160. https://doi.org/10.1016/j.jseaes.2013.11.004
    Spears, D. A., Rice, C. M., 1973. An Upper Carboniferous Tonstein of Volcanic Origin. Sedimentology, 20(2): 281–294. https://doi.org/10.1111/j.1365-3091.1973.tb02050.x
    Su, W. B., He, L. Q., Wang, Y. B., et al., 2003. K-Bentonite Beds and High-Resolution Integrated Stratigraphy of the Uppermost Ordovician Wufeng and the Lowest Silurian Longmaxi Formations in South China. Science in China Series D: Earth Sciences, 46(11): 1121–1133. https://doi.org/10.1360/01yd0225
    Sun, C. R., 1997. Lithostratigraphy in Qinhai Province. China University of Geosciences Press, Wuhan. 339 (in Chinese)
    Tan, F. R., Liu, S. M., Cui, W. X., et al., 2017. Origin of Gas Hydrate in the Juhugeng Mining Area of Muli Coalfield. Acta Geologica Sinica, 91(5): 1158–1167 (in Chinese with English Abstract)
    Wang, B. Q., Zhou, M. F., Chen, W. T., et al., 2013. Petrogenesis and Tectonic Implications of the Triassic Volcanic Rocks in the Northern Yidun Terrane, Eastern Tibet. Lithos, 175/176: 285–301. https://doi.org/10.1016/j.lithos.2013.05.013
    Wang, J., Wang, Z. J., Chen, W. X., et al., 2007. New Evidences for the Age Assignment of the Nadi Kangri Formation in the North Qiangtang Basin, Northern Tibet, China. Geological Bulletin of China, 26(4): 404–409 (in Chinese with English Abstract)
    Wang, Q., Wyman, D. A., Xu, J. F., et al., 2008. Triassic Nb-Enriched Basalts, Magnesian Andesites, and Adakites of the Qiangtang Terrane (Central Tibet): Evidence for Metasomatism by Slab-Derived Melts in the Mantle Wedge. Contributions to Mineralogy and Petrology, 155(4): 473–490. https://doi.org/10.1007/s00410-007-0253-1
    Wang, W. Q., Liu, C. Y., Liu, W. H., et al., 2018. Factors Influencing Hydrogen Yield in Water Radiolysis and Implications for Hydrocarbon Generation: A Review. Arabian Journal of Geoscience, 11(18): 542. https://doi.org/10.1007/s12517-018-3903-x
    Wang, W., Xiong, F. H., Ma, C. Q., et al., 2021. Petrogenesis of Triassic Suolagou Sanukitoid-Like Diorite in East Kunlun Orogen and Its Implications for Paleo-Tethyan Orogeny. Earth Science, 46(8): 2887–2902. https://doi.org/10.3799/dqkx.2020.270 (in Chinese with English Abstract)
    Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325–343. https://doi.org/10.1016/0009-2541(77)90057-2
    Xie, Q. F., Zhou, L. F., Ma, G. F., et al., 2011. Organic Geochemistry of Triassic Source Rocks in the Southern Qilian Basin. Acta Scientiarum Naturalium Universitatis Pekinensis, 47(6): 1034–1040 (in Chinese with English Abstract)
    Yao, H. F., Wang, J., Tan, X. F., et al., 2019. Sedimentary Characteristics of Permian-Triassic in Yangkang Area, South Qilian Basin. Petroleum Geology & Experiment, 41(5): 699–716 (in Chinese with English Abstract)
    Yang, W. T., Wang, M., Zheng, D. S., et al., 2018. Late Triassic Sedimentary Record from the Nanzhao Basin and Implications for the Orogeny in the Qinling Orogenic Belt, Central China. Journal of Asian Earth Sciences, 166: 120–135. https://doi.org/10.1016/j.jseaes.2018.07.038
    Yang, S. C., Hu, W. X., Wang, X. L., et al., 2019. Duration, Evolution, and Implications of Volcanic Activity across the Ordovician-Silurian Transition in the Lower Yangtze Region, South China. Earth and Planetary Science Letters, 518: 13–25. https://doi.org/10.1016/j.epsl.2019.04.020
    Yang, T. N., Hou, Z. Q., Wang, Y., et al., 2012. Late Paleozoic to Early Mesozoic Tectonic Evolution of Northeast Tibet: Evidence from the Triassic Composite Western Jinsha-Garzê-Litang Suture. Tectonics, 31(4): TC4004. https://doi.org/10.1029/2011tc003044
    Yang, Z. Y., 1983. Triassic in South Qilian. Geological Publishing House, Beijing. 1–224 (in Chinese)
    Yin, Y. K., Gao, Y. F., Wang, P. J., et al., 2019. Discovery of Triassic Volcanic-Sedimentary Strata in the Basement of Songliao Basin. Science Bulletin, 64(10): 644–646. https://doi.org/10.1016/j.scib.2019.03.020
    Yuan, H. L., Wu, F. Y., Gao, S., et al., 2003. Determination of U-Pb Age and Rare Earth Element Concentrations of Zircons from Cenozoic Intrusions in Northeastern China by Laser Ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411–2421. https://doi.org/10.1360/03wd0139
    Zhao, S. Q., Tan, J., Wei, J. H., et al., 2015. Late Triassic Batang Group Arc Volcanic Rocks in the Northeastern Margin of Qiangtang Terrane, Northern Tibet: Partial Melting of Juvenile Crust and Implications for Paleo-Tethys Ocean Subduction. International Journal of Earth Sciences, 104(2): 369–387. https://doi.org/10.1007/s00531-014-1080-z
    Zhao, Y., Zheng, J. P., Xiong, Q., et al., 2018. Destruction of the North China Craton Triggered by the Triassic Yangtze Continental Subduction/Collision: A Review. Journal of Asian Earth Sciences, 164: 72–82. https://doi.org/10.1016/j.jseaes.2018.05.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(289) PDF downloads(147) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return