Bankole, S. A., Buckman, J., Stow, D., et al., 2019. Automated Image Analysis of Mud and Mudrock Microstructure and Characteristics of Hemipelagic Sediments: IODP Expedition 339. Journal of Earth Science, 30(2): 407-421. https://doi.org/10.1007/s12583-019-1210-4. |
Behar, F., Beaumont, V., de B Penteado, H. L., 2001. Rock-Eval 6 Technology: Performances and Developments. Oil & Gas Science and Technology, 56(2): 111-134. https://doi.org/10.2516/ogst:2001013 |
Bhowmick, P. K., Misra, R., 2009. Phanerozoic Petroliferous Basins of India. Glimpses of Geoscience Research in India, New Delhi. 253-268 |
Burnaman, M. D., Xia, W. W., Shelton, J., 2009. Shale Gas Play Screening and Evaluation Criteria. China Pet. Explor. , 14(3): 51-64 |
Carvajal-Ortiz, H., Gentzis, T., 2015. Critical Considerations when Assessing Hydrocarbon Plays Using Rock-Eval Pyrolysis and Organic Petrology Data: Data Quality Revisited. International Journal of Coal Geology, 152: 113-122. https://doi.org/10.1016/j.coal.2015.06.001. |
Chatterjee, G. C., Ghosh, P. K., 1970. Tectonic Framework of the Peninsular Gondwana of India. Geol. Surv. India Record, 98(2): 1-15 |
Chen, Z. H., Jiang, C. Q., 2020. An Integrated Mass Balance Approach for Assessing Hydrocarbon Resources in a Liquid-Rich Shale Resource Play: An Example from Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin. Journal of Earth Science, 31(6): 1259-1272. https://doi.org/10.1007/s12583-020-1088-1. |
Chen, Z. H., Jiang, C. Q., Lavoie, D., et al., 2016. Model-Assisted Rock-Eval Data Interpretation for Source Rock Evaluation: Examples from Producing and Potential Shale Gas Resource Plays. International Journal of Coal Geology, 165: 290-302. https://doi.org/10.1016/j.coal.2016.08.026 |
Chen, Z. H., Liu, X. J., Guo, Q. L., et al., 2017a. Inversion of Source Rock Hydrocarbon Generation Kinetics from Rock-Eval Data. Fuel, 194: 91-101. https://doi.org/10.1016/j.fuel.2016.12.052 |
Chen, Z. H., Liu, X. J., Jiang, C. Q., 2017b. Quick Evaluation of Source Rock Kerogen Kinetics Using Hydrocarbon Pyrograms from Regular Rock-Eval Analysis. Energy & Fuels, 31(2): 1832-1841. https://doi.org/10.1021/acs.energyfuels.6b01569 |
Chen, Z., Jiang, C., Chen, J., 2015. Comparison of Source Rock Kerogen Kinetics Using a Data-Driven Model and Based on Rock-Eval Pyrolysis Data. International Conference and Exhibition, Melbourne, 13-16 September 2015 |
Espitalié, J., Bordenave, M. L., 1993. Rock-Eval Pyrolysis. In: Bordenave, M. L., ed., Applied Petroleum Geochemistry. Editions Technip, Paris. 237-261 |
Espitalié, J., Deroo, G., Marquis, F., 1985. La Pyrolyse Rock-Eval et Ses Applications. Première Partie. Revue de l'Institut Français du Pétrole, 40(5): 563-579. https://doi.org/10.2516/ogst:1985035 |
Espitalié, J., Laporte, J. L., Madec, M., et al., 1977. Méthode Rapide de Caractérisation des Roches Mètres, de Leur Potentiel Pétrolier et de Leur Degré D'évolution. Revue de l'Institut Français du Pétrole, 32(1): 23-42. https://doi.org/10.2516/ogst:1977002 |
Fox, C. S., 1930. The Jharia Coalfield. Mem. Geol. Surv. India, 56: 253-255 |
Gao, Z. Y., Fan, Y. P., Xuan, Q. X., et al., 2020. A Review of Shale Pore Structure Evolution Characteristics with Increasing Thermal Maturities. Advances in Geo-Energy Research, 4(3): 247-259. https://doi.org/10.46690/ager.2020.03.03 |
Hazra, B., Singh, D. P., Chakraborty, P., et al., 2021. Using Rock-Eval S4Tpeak as Thermal Maturity Proxy for Shales. Marine and Petroleum Geology, 127: 104977. https://doi.org/10.1016/j.marpetgeo.2021.104977 |
Hazra, B., Wood, D. A., Mani, D., et al., 2019a. Source-Rock Evaluation Using the Rock-Eval Technique. In: Evaluation of Shale Source Rocks and Reservoirs. Petroleum Engineering. Springer, Switzerland. https://doi.org/10.1007/978-3-030-13042-8_3 |
Hazra, B., Dutta, S., Kumar, S., 2017. TOC Calculation of Organic Matter Rich Sediments Using Rock-Eval Pyrolysis: Critical Consideration and Insights. International Journal of Coal Geology, 169: 106-115. https://doi.org/10.1016/j.coal.2016.11.012 |
Hazra, B., Karacan, C. Ö., Tiwari, D. M., et al., 2019. Insights from Rock-Eval Analysis on the Influence of Sample Weight on Hydrocarbon Generation from Lower Permian Organic Matter Rich Rocks, West Bokaro Basin, India. Marine and Petroleum Geology, 106: 160-170. https://doi.org/10.1016/j.marpetgeo.2019.05.006 |
Hazra, B., Sarkar, P., Chakraborty, P., et al., 2020. Coal Combustion Analysis Using Rock-Eval: Importance of S4-T Peak. Arabian Journal of Geosciences, 13(12): 1-10. https://doi.org/10.1007/s12517-020-05476-7 |
Hazra, B., Wood, D. A., Singh, P. K., et al., 2020. Source Rock Properties and Pore Structural Framework of the Gas-Prone Lower Permian Shales in the Jharia Basin, India. Arabian Journal of Geosciences, 13(13): 1-18. https://doi.org/10.1007/s12517-020-05515-3 |
Inan, S., Yalçin, M. N., Mann, U., 1998. Expulsion of Oil from Petroleum Source Rocks: Inferences from Pyrolysis of Samples of Unconventional Grain Size. Organic Geochemistry, 29(1/2/3): 45-61. https://doi.org/10.1016/s0146-6380(98)00091-6 |
Jarvie, D. M., 2012a. Shale Resource Systems for Oil and Gas: Part 1—Shale-Gas Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs—Giant Resources for the 21st Century. AAPG Memoir, 97: 69-87 |
Jarvie, D. M., 2012b. Shale Resource Systems for Oil and Gas: Part 2—Shale-Oil Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs—Giant Resources for the 21st Century. AAPG Memoir, 97: 89-119 |
Lafargue, E., Marquis, F., Pillot, D., 1998. Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies. Revue de l'Institut Français du Pétrole, 53(4): 421-437. https://doi.org/10.2516/ogst:1998036 |
Liao, L. L., Wang, Y. P., Chen, C. S., et al., 2018. Kinetic Study of Marine and Lacustrine Shale Grains Using Rock-Eval Pyrolysis: Implications to Hydrocarbon Generation, Retention and Expulsion. Marine and Petroleum Geology, 89: 164-173. https://doi.org/10.1016/j.marpetgeo.2017.01.009 |
Liu, K. Q., Zakharova, N., Gentzis, T., et al., 2020. Microstructure Characterization of a Biogenic Shale Gas Formation—Insights from the Antrim Shale, Michigan Basin. Journal of Earth Science, 31(6): 1229-1240. https://doi.org/10.1007/s12583-020-1344-4 |
Liu, Y. M., Ye, J. R., Cao, Q., et al., 2020. Hydrocarbon Generation, Migration, and Accumulation in the Eocene Niubao Formation in the Lunpola Basin, Tibet, China: Insights from Basin Modeling and Fluid Inclusion Analysis. Journal of Earth Science, 31(1): 195-206. https://doi.org/10.1007/s12583-019-1211-3 |
Mathews, R. P., Chetia, R., Agrawal, S., et al., 2020. Early Palaeogene Climate Variability Based on N-Alkane and Stable Carbon Isotopic Composition Evidenced from the Barsingsar Lignite-Bearing Sequence of Rajasthan. Journal of the Geological Society of India, 95(3): 255-262. https://doi.org/10.1007/s12594-020-1423-2 |
Padhy, P. K., Das, S. K., 2013. Shale Oil and Gas Plays: Indian Sedimentary Basins. Geohorizons, 18(1): 20-25 |
Pashin, J. C., 2008. Coal as a Petroleum Source Rock and Reservoir Rock. In: Applied Coal Petrology, Elsevier, New York |
Peters, K. E., 1986. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bulletin, 70: 318-329. https://doi.org/10.1306/94885688-1704-11d7-8645000102c1865d |
Peters, K. E., Cassa, M. R., 1994. Applied Source Rock Geochemistry. In: Magoon, L. B., Dow, W. G., eds., The Petroleum System—From Source to Trap, AAPG Memoir, 60: 93-120 |
Peters, K. E., Walters, C. C., Mankiewicz, P. J., 2006. Evaluation of Kinetic Uncertainty in Numerical Models of Petroleum Generation. AAPG Bulletin, 90(3): 387-403. https://doi.org/10.1306/10140505122 |
Raja Rao, C. S., 1983. Coal resources of Madhya Pradesh and Jammu & Kashmir. Bull. Geol. Surv. India Series A, No. 45, Coalfields of India III. 1-204 |
Romero-Sarmiento, M. F., Pillot, D., Letort, G., et al., 2016. New Rock-Eval Method for Characterization of Unconventional Shale Resource Systems. Oil & Gas Science and Technology-Revue d'IFP Energies Nouvelles, 71(3): 37. https://doi.org/10.2516/ogst/2015007 |
Schenk, H. J., Horsfield, B., 1998. Using Natural Maturation Series to Evaluate the Utility of Parallel Reaction Kinetics Models: An Investigation of Toarcian Shales and Carboniferous Coals, Germany. Organic Geochemistry, 29(1/2/3): 137-154. https://doi.org/10.1016/S0146-6380(98)00139-9 |
Singh, D. P., Singh, V., Singh, P. K., et al., 2021a. Source Rock Properties and Pore Structural Features of Distinct Thermally Mature Permian Shales from South Rewa and Jharia Basins, India. Arabian Journal of Geosciences, 14(10): 1-16. https://doi.org/10.1007/s12517-021-07278-x |
Singh, D. P., Hazra, B., Wood, D. A., et al., 2021b. Hydrocarbon Generation and Kinetics: A Case Study of Permian Shales, India. Journal of Asian Earth Sciences, 222: 104960. https://doi.org/10.1016/j.jseaes.2021.104960 |
Singh, A. K., Sharma, M., Singh, M. P., 2008. Genesis of Natural Cokes: Some Indian Examples. International Journal of Coal Geology, 75(1): 40-48. https://doi.org/10.1016/j.coal.2008.01.002 |
Singh, A. K., Sharma, M., Singh, M. P., 2013. SEM and Reflected Light Petrography: A Case Study on Natural Cokes from Seam XIV, Jharia Coalfield, India. Fuel, 112: 502-512. https://doi.org/10.1016/j.fuel.2013.02.063 |
Singh, P. K., Rajak, P. K., Singh, M. P., et al., 2015. Environmental Geochemistry of Selected Elements in Lignite from Barsingsar and Gurha Mines of Rajasthan, Western India. Journal of the Geological Society of India, 86(1): 23-32. https://doi.org/10.1007/s12594-015-0277-5 |
Singh, P. K., Rajak, P. K., Singh, V. K., et al., 2016. Studies on Thermal Maturity and Hydrocarbon Potential of Lignites of Bikaner-Nagaur Basin, Rajasthan. Energy Exploration & Exploitation, 34(1): 140-157. https://doi.org/10.1177/0144598715623679 |
Sinha-Roy, S., Malhotra, G., Mohanti, M., 1998. Geology of Rajasthan. Geological Society of India, Bangalore. 278 |
Stoneley, R., Selley, R., 1996. A Review of the Petroleum Prospects of the South Rewa, Satpura and Hasdeo-Mahanadi Gondwana Basins and Deccan Syneclise. Unpub. ONGC Report, 1-65 |
Tissot, B. P., Welte, D. H., 1978. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Springer-Verlag, Berlin, Heidelberg, New York |
Varma, A. K., Hazra, B., Mendhe, V. A., et al., 2015. Assessment of Organic Richness and Hydrocarbon Generation Potential of Raniganj Basin Shales, West Bengal, India. Marine and Petroleum Geology, 59: 480-490. https://doi.org/10.1016/j.marpetgeo.2014.10.003 |
Wood, D. A., 1988. Relationships between Thermal Maturity Indices of Arrhenius and Lopatin Methods: Implications for Petroleum Exploration. American Association of Petroleum Geologists Bulletin, 72: 115-135 |
Wood, D. A., 2019. Establishing Credible Reaction-Kinetics Distributions to Fit and Explain Multi-Heating Rate S2 Pyrolysis Peaks of Kerogens and Shales. Advances in Geo-Energy Research, 3(1): 1-28. https://doi.org/10.26804/ager.2019.01.01 |
Wood, D. A., Hazra, B., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation: A Review-Part 2: Geochemistry, Thermal Maturity, Isotopes and Biomarkers. Journal of Earth Science, 28(5): 758-778. https://doi.org/10.1007/s12583-017-0733-9 |
Wu, Z. R., He, S., Han, Y. J., et al., 2020. Effect of Organic Matter Type and Maturity on Organic Matter Pore Formation of Transitional Facies Shales: A Case Study on Upper Permian Longtan and Dalong Shales in Middle Yangtze Region, China. Journal of Earth Science, 31(2): 368-384. https://doi.org/10.1007/s12583-019-1237-6 |