Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 2
Apr 2022
Turn off MathJax
Article Contents
Deependra Pratap Singh, David A. Wood, Vivek Singh, Bodhisatwa Hazra, Pradeep K. Singh. Impact of Particle Crush-Size and Weight on Rock-Eval S2, S4, and Kinetics of Shales. Journal of Earth Science, 2022, 33(2): 513-524. doi: 10.1007/s12583-021-1452-9
Citation: Deependra Pratap Singh, David A. Wood, Vivek Singh, Bodhisatwa Hazra, Pradeep K. Singh. Impact of Particle Crush-Size and Weight on Rock-Eval S2, S4, and Kinetics of Shales. Journal of Earth Science, 2022, 33(2): 513-524. doi: 10.1007/s12583-021-1452-9

Impact of Particle Crush-Size and Weight on Rock-Eval S2, S4, and Kinetics of Shales

doi: 10.1007/s12583-021-1452-9
More Information
  • Corresponding author: Bodhisatwa Hazra, bodhisatwa.hazra@gmail.com
  • Received Date: 13 Jan 2021
  • Accepted Date: 12 Mar 2021
  • Publish Date: 30 Apr 2022
  • The Rock-Eval technique in the last few decades has found extensive application for source rock analysis. The impact of shale particle crush-size and sample weight on key Rock-Eval measurements, viz. the S2 curve (heavier hydrocarbons released during the non-isothermal pyrolysis-stage) and the S4 curve (CO2 released from oxidation of organic matter during the oxidation-stage) are investigated in this study. For high and low total organic carbon (TOC) samples of different thermal maturity levels, it is apparent that particle crush-size has a strong influence on the results obtained from Rock-Eval analysis, with the effect being stronger in high-TOC samples. In comparison to the coarser-splits, S2 and pyrolyzable carbon (PC) were found to be higher for the finer crush sizes in all the shales studied. The S4CO2 oxidation curve shapes of Permian shales show contrasting signatures in comparison to the Paleocene-aged lignitic shale, both from Indian basins. A reduced TOC was observed with rising sample weight for a mature Permian shale from the Jharia basin, while the other shales sampled showed no significant reduction. The results indicate that the S4CO2 curve and the S4Tpeak, are strongly dependent on the type of organic-matter present and its level of thermal maturity. Sample weight and particle size both influence the S2-curve shapes at different heating rates. With increasing sample weights, an increase in S2-curve magnitude was observed for the shales of diverse maturities. These differences in the S2 curve shape lead to substantially different kinetic distributions being fitted to these curves. These findings are considered to have significant implications for the accuracy of reaction kinetics obtained from pyrolysis experiments using different sample characteristics.

     

  • loading
  • Bankole, S. A., Buckman, J., Stow, D., et al., 2019. Automated Image Analysis of Mud and Mudrock Microstructure and Characteristics of Hemipelagic Sediments: IODP Expedition 339. Journal of Earth Science, 30(2): 407-421. https://doi.org/10.1007/s12583-019-1210-4.
    Behar, F., Beaumont, V., de B Penteado, H. L., 2001. Rock-Eval 6 Technology: Performances and Developments. Oil & Gas Science and Technology, 56(2): 111-134. https://doi.org/10.2516/ogst:2001013
    Bhowmick, P. K., Misra, R., 2009. Phanerozoic Petroliferous Basins of India. Glimpses of Geoscience Research in India, New Delhi. 253-268
    Burnaman, M. D., Xia, W. W., Shelton, J., 2009. Shale Gas Play Screening and Evaluation Criteria. China Pet. Explor. , 14(3): 51-64
    Carvajal-Ortiz, H., Gentzis, T., 2015. Critical Considerations when Assessing Hydrocarbon Plays Using Rock-Eval Pyrolysis and Organic Petrology Data: Data Quality Revisited. International Journal of Coal Geology, 152: 113-122. https://doi.org/10.1016/j.coal.2015.06.001.
    Chatterjee, G. C., Ghosh, P. K., 1970. Tectonic Framework of the Peninsular Gondwana of India. Geol. Surv. India Record, 98(2): 1-15
    Chen, Z. H., Jiang, C. Q., 2020. An Integrated Mass Balance Approach for Assessing Hydrocarbon Resources in a Liquid-Rich Shale Resource Play: An Example from Upper Devonian Duvernay Formation, Western Canada Sedimentary Basin. Journal of Earth Science, 31(6): 1259-1272. https://doi.org/10.1007/s12583-020-1088-1.
    Chen, Z. H., Jiang, C. Q., Lavoie, D., et al., 2016. Model-Assisted Rock-Eval Data Interpretation for Source Rock Evaluation: Examples from Producing and Potential Shale Gas Resource Plays. International Journal of Coal Geology, 165: 290-302. https://doi.org/10.1016/j.coal.2016.08.026
    Chen, Z. H., Liu, X. J., Guo, Q. L., et al., 2017a. Inversion of Source Rock Hydrocarbon Generation Kinetics from Rock-Eval Data. Fuel, 194: 91-101. https://doi.org/10.1016/j.fuel.2016.12.052
    Chen, Z. H., Liu, X. J., Jiang, C. Q., 2017b. Quick Evaluation of Source Rock Kerogen Kinetics Using Hydrocarbon Pyrograms from Regular Rock-Eval Analysis. Energy & Fuels, 31(2): 1832-1841. https://doi.org/10.1021/acs.energyfuels.6b01569
    Chen, Z., Jiang, C., Chen, J., 2015. Comparison of Source Rock Kerogen Kinetics Using a Data-Driven Model and Based on Rock-Eval Pyrolysis Data. International Conference and Exhibition, Melbourne, 13-16 September 2015
    Espitalié, J., Bordenave, M. L., 1993. Rock-Eval Pyrolysis. In: Bordenave, M. L., ed., Applied Petroleum Geochemistry. Editions Technip, Paris. 237-261
    Espitalié, J., Deroo, G., Marquis, F., 1985. La Pyrolyse Rock-Eval et Ses Applications. Première Partie. Revue de l'Institut Français du Pétrole, 40(5): 563-579. https://doi.org/10.2516/ogst:1985035
    Espitalié, J., Laporte, J. L., Madec, M., et al., 1977. Méthode Rapide de Caractérisation des Roches Mètres, de Leur Potentiel Pétrolier et de Leur Degré D'évolution. Revue de l'Institut Français du Pétrole, 32(1): 23-42. https://doi.org/10.2516/ogst:1977002
    Fox, C. S., 1930. The Jharia Coalfield. Mem. Geol. Surv. India, 56: 253-255
    Gao, Z. Y., Fan, Y. P., Xuan, Q. X., et al., 2020. A Review of Shale Pore Structure Evolution Characteristics with Increasing Thermal Maturities. Advances in Geo-Energy Research, 4(3): 247-259. https://doi.org/10.46690/ager.2020.03.03
    Hazra, B., Singh, D. P., Chakraborty, P., et al., 2021. Using Rock-Eval S4Tpeak as Thermal Maturity Proxy for Shales. Marine and Petroleum Geology, 127: 104977. https://doi.org/10.1016/j.marpetgeo.2021.104977
    Hazra, B., Wood, D. A., Mani, D., et al., 2019a. Source-Rock Evaluation Using the Rock-Eval Technique. In: Evaluation of Shale Source Rocks and Reservoirs. Petroleum Engineering. Springer, Switzerland. https://doi.org/10.1007/978-3-030-13042-8_3
    Hazra, B., Dutta, S., Kumar, S., 2017. TOC Calculation of Organic Matter Rich Sediments Using Rock-Eval Pyrolysis: Critical Consideration and Insights. International Journal of Coal Geology, 169: 106-115. https://doi.org/10.1016/j.coal.2016.11.012
    Hazra, B., Karacan, C. Ö., Tiwari, D. M., et al., 2019. Insights from Rock-Eval Analysis on the Influence of Sample Weight on Hydrocarbon Generation from Lower Permian Organic Matter Rich Rocks, West Bokaro Basin, India. Marine and Petroleum Geology, 106: 160-170. https://doi.org/10.1016/j.marpetgeo.2019.05.006
    Hazra, B., Sarkar, P., Chakraborty, P., et al., 2020. Coal Combustion Analysis Using Rock-Eval: Importance of S4-T Peak. Arabian Journal of Geosciences, 13(12): 1-10. https://doi.org/10.1007/s12517-020-05476-7
    Hazra, B., Wood, D. A., Singh, P. K., et al., 2020. Source Rock Properties and Pore Structural Framework of the Gas-Prone Lower Permian Shales in the Jharia Basin, India. Arabian Journal of Geosciences, 13(13): 1-18. https://doi.org/10.1007/s12517-020-05515-3
    Inan, S., Yalçin, M. N., Mann, U., 1998. Expulsion of Oil from Petroleum Source Rocks: Inferences from Pyrolysis of Samples of Unconventional Grain Size. Organic Geochemistry, 29(1/2/3): 45-61. https://doi.org/10.1016/s0146-6380(98)00091-6
    Jarvie, D. M., 2012a. Shale Resource Systems for Oil and Gas: Part 1—Shale-Gas Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs—Giant Resources for the 21st Century. AAPG Memoir, 97: 69-87
    Jarvie, D. M., 2012b. Shale Resource Systems for Oil and Gas: Part 2—Shale-Oil Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs—Giant Resources for the 21st Century. AAPG Memoir, 97: 89-119
    Lafargue, E., Marquis, F., Pillot, D., 1998. Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies. Revue de l'Institut Français du Pétrole, 53(4): 421-437. https://doi.org/10.2516/ogst:1998036
    Liao, L. L., Wang, Y. P., Chen, C. S., et al., 2018. Kinetic Study of Marine and Lacustrine Shale Grains Using Rock-Eval Pyrolysis: Implications to Hydrocarbon Generation, Retention and Expulsion. Marine and Petroleum Geology, 89: 164-173. https://doi.org/10.1016/j.marpetgeo.2017.01.009
    Liu, K. Q., Zakharova, N., Gentzis, T., et al., 2020. Microstructure Characterization of a Biogenic Shale Gas Formation—Insights from the Antrim Shale, Michigan Basin. Journal of Earth Science, 31(6): 1229-1240. https://doi.org/10.1007/s12583-020-1344-4
    Liu, Y. M., Ye, J. R., Cao, Q., et al., 2020. Hydrocarbon Generation, Migration, and Accumulation in the Eocene Niubao Formation in the Lunpola Basin, Tibet, China: Insights from Basin Modeling and Fluid Inclusion Analysis. Journal of Earth Science, 31(1): 195-206. https://doi.org/10.1007/s12583-019-1211-3
    Mathews, R. P., Chetia, R., Agrawal, S., et al., 2020. Early Palaeogene Climate Variability Based on N-Alkane and Stable Carbon Isotopic Composition Evidenced from the Barsingsar Lignite-Bearing Sequence of Rajasthan. Journal of the Geological Society of India, 95(3): 255-262. https://doi.org/10.1007/s12594-020-1423-2
    Padhy, P. K., Das, S. K., 2013. Shale Oil and Gas Plays: Indian Sedimentary Basins. Geohorizons, 18(1): 20-25
    Pashin, J. C., 2008. Coal as a Petroleum Source Rock and Reservoir Rock. In: Applied Coal Petrology, Elsevier, New York
    Peters, K. E., 1986. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bulletin, 70: 318-329. https://doi.org/10.1306/94885688-1704-11d7-8645000102c1865d
    Peters, K. E., Cassa, M. R., 1994. Applied Source Rock Geochemistry. In: Magoon, L. B., Dow, W. G., eds., The Petroleum System—From Source to Trap, AAPG Memoir, 60: 93-120
    Peters, K. E., Walters, C. C., Mankiewicz, P. J., 2006. Evaluation of Kinetic Uncertainty in Numerical Models of Petroleum Generation. AAPG Bulletin, 90(3): 387-403. https://doi.org/10.1306/10140505122
    Raja Rao, C. S., 1983. Coal resources of Madhya Pradesh and Jammu & Kashmir. Bull. Geol. Surv. India Series A, No. 45, Coalfields of India III. 1-204
    Romero-Sarmiento, M. F., Pillot, D., Letort, G., et al., 2016. New Rock-Eval Method for Characterization of Unconventional Shale Resource Systems. Oil & Gas Science and Technology-Revue d'IFP Energies Nouvelles, 71(3): 37. https://doi.org/10.2516/ogst/2015007
    Schenk, H. J., Horsfield, B., 1998. Using Natural Maturation Series to Evaluate the Utility of Parallel Reaction Kinetics Models: An Investigation of Toarcian Shales and Carboniferous Coals, Germany. Organic Geochemistry, 29(1/2/3): 137-154. https://doi.org/10.1016/S0146-6380(98)00139-9
    Singh, D. P., Singh, V., Singh, P. K., et al., 2021a. Source Rock Properties and Pore Structural Features of Distinct Thermally Mature Permian Shales from South Rewa and Jharia Basins, India. Arabian Journal of Geosciences, 14(10): 1-16. https://doi.org/10.1007/s12517-021-07278-x
    Singh, D. P., Hazra, B., Wood, D. A., et al., 2021b. Hydrocarbon Generation and Kinetics: A Case Study of Permian Shales, India. Journal of Asian Earth Sciences, 222: 104960. https://doi.org/10.1016/j.jseaes.2021.104960
    Singh, A. K., Sharma, M., Singh, M. P., 2008. Genesis of Natural Cokes: Some Indian Examples. International Journal of Coal Geology, 75(1): 40-48. https://doi.org/10.1016/j.coal.2008.01.002
    Singh, A. K., Sharma, M., Singh, M. P., 2013. SEM and Reflected Light Petrography: A Case Study on Natural Cokes from Seam XIV, Jharia Coalfield, India. Fuel, 112: 502-512. https://doi.org/10.1016/j.fuel.2013.02.063
    Singh, P. K., Rajak, P. K., Singh, M. P., et al., 2015. Environmental Geochemistry of Selected Elements in Lignite from Barsingsar and Gurha Mines of Rajasthan, Western India. Journal of the Geological Society of India, 86(1): 23-32. https://doi.org/10.1007/s12594-015-0277-5
    Singh, P. K., Rajak, P. K., Singh, V. K., et al., 2016. Studies on Thermal Maturity and Hydrocarbon Potential of Lignites of Bikaner-Nagaur Basin, Rajasthan. Energy Exploration & Exploitation, 34(1): 140-157. https://doi.org/10.1177/0144598715623679
    Sinha-Roy, S., Malhotra, G., Mohanti, M., 1998. Geology of Rajasthan. Geological Society of India, Bangalore. 278
    Stoneley, R., Selley, R., 1996. A Review of the Petroleum Prospects of the South Rewa, Satpura and Hasdeo-Mahanadi Gondwana Basins and Deccan Syneclise. Unpub. ONGC Report, 1-65
    Tissot, B. P., Welte, D. H., 1978. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Springer-Verlag, Berlin, Heidelberg, New York
    Varma, A. K., Hazra, B., Mendhe, V. A., et al., 2015. Assessment of Organic Richness and Hydrocarbon Generation Potential of Raniganj Basin Shales, West Bengal, India. Marine and Petroleum Geology, 59: 480-490. https://doi.org/10.1016/j.marpetgeo.2014.10.003
    Wood, D. A., 1988. Relationships between Thermal Maturity Indices of Arrhenius and Lopatin Methods: Implications for Petroleum Exploration. American Association of Petroleum Geologists Bulletin, 72: 115-135
    Wood, D. A., 2019. Establishing Credible Reaction-Kinetics Distributions to Fit and Explain Multi-Heating Rate S2 Pyrolysis Peaks of Kerogens and Shales. Advances in Geo-Energy Research, 3(1): 1-28. https://doi.org/10.26804/ager.2019.01.01
    Wood, D. A., Hazra, B., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation: A Review-Part 2: Geochemistry, Thermal Maturity, Isotopes and Biomarkers. Journal of Earth Science, 28(5): 758-778. https://doi.org/10.1007/s12583-017-0733-9
    Wu, Z. R., He, S., Han, Y. J., et al., 2020. Effect of Organic Matter Type and Maturity on Organic Matter Pore Formation of Transitional Facies Shales: A Case Study on Upper Permian Longtan and Dalong Shales in Middle Yangtze Region, China. Journal of Earth Science, 31(2): 368-384. https://doi.org/10.1007/s12583-019-1237-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views(256) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return