Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 2
Apr 2024
Turn off MathJax
Article Contents
Jinhong Xu, Zhengwei Zhang, Chengquan Wu, Taiyi Luo, Weiguang Zhu, Xiyao Li, Ziru Jin, Pengcheng Hu. Early Ordovician–Middle Silurian Subduction-Closure of the Proto-Tethys Ocean: Evidence from the Qiaerlong Pluton at the Northwestern Margin of the West Kunlun Orogenic Belt, NW China. Journal of Earth Science, 2024, 35(2): 430-448. doi: 10.1007/s12583-021-1453-8
Citation: Jinhong Xu, Zhengwei Zhang, Chengquan Wu, Taiyi Luo, Weiguang Zhu, Xiyao Li, Ziru Jin, Pengcheng Hu. Early Ordovician–Middle Silurian Subduction-Closure of the Proto-Tethys Ocean: Evidence from the Qiaerlong Pluton at the Northwestern Margin of the West Kunlun Orogenic Belt, NW China. Journal of Earth Science, 2024, 35(2): 430-448. doi: 10.1007/s12583-021-1453-8

Early Ordovician–Middle Silurian Subduction-Closure of the Proto-Tethys Ocean: Evidence from the Qiaerlong Pluton at the Northwestern Margin of the West Kunlun Orogenic Belt, NW China

doi: 10.1007/s12583-021-1453-8
More Information
  • Early Paleozoic magmatism in the West Kunlun Orogenic Belt (WKOB) preserves important information about the tectonic evolution of the Proto-Tethys Ocean. This paper reports whole-rock compositions, zircon and apatite U-Pb dating, and zircon Hf isotopes for the Qiaerlong Pluton (QEL) at the northwestern margin of WKOB, with the aim of elucidating the petrogenesis of the pluton and shedding insights into the subduction-collision process of this oceanic slab. The QEL is mainly composed of Ordovician quartz monzodiorite (479 ± 3 Ma), quartz monzonite (467–472 Ma), and syenogranite (463 ± 4 Ma), and is intruded by Middle Silurian peraluminous granite (429 ± 20 Ma) and diabase (421 ± 4 Ma). Zircon εHf(t) values reveal that quartz monzodiorites (+2.1 to +9.9) and quartz monzonites (+0.6 to +6.8) were derived from a mixed source of juvenile crust and older lower crust, and syenogranites (-5.6 to +4.5) and peraluminous granites (-2.9 to +2.0) were generated from a mixed source of lower crust and upper crust; diabases had zircon εHf(t) values ranging from -0.3 to +4.1, and contained 463 ± 5 Ma captured zircon and 1 048 ± 39 Ma inherited zircon, indicating they originated from enriched lithospheric mantle and were contaminated by crustal materials. The Ordovician granitoids are enriched in LILEs and light rare-earth elements, and depleted in HFSEs with negative Nb, Ta, P, and Ti anomalies, suggesting that they formed in a subduction environment. Middle Silurian peraluminous granites have the characteristics of leucogranites with high SiO2 contents (74.92 wt.%–75.88 wt.%) and distinctly negative Eu anomalies (δEu = 0.03–0.14), indicating that they belong to highly fractionated granite and were formed in a post-collision extension setting. Comparative analysis of these results with other Early Paleozoic magmas reveals that the Proto-Tethys ocean closed before the Middle Silurian and its southward subduction resulted in the formation of QEL.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1, S2, S3; Appendix A) are available in the online version of this article at https://doi.org/10.1007/s12583-021-1453-8.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(3): 231–234. https://doi.org/10.1130/g37475.1
    Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605–626. https://doi.org/10.1016/s0024-4937(98)00085-1
    Brenan, J. M., Shaw, H. F., Ryerson, F. J., 1995. Experimental Evidence for the Origin of Lead Enrichment in Convergent-Margin Magmas. Nature, 378(6552): 54–56. https://doi.org/10.1038/378054a0
    Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 8: 173–174
    Chen, Y. W., Bi, X. W., Hu, R. Z., et al., 2012. Element Geochemistry, Mineralogy, Geochronology and Zircon Hf Isotope of the Luxi and Xiazhuang Granites in Guangdong Province, China: Implications for U Mineralization. Lithos, 150: 119–134. https://doi.org/10.1016/j.lithos.2012.06.025
    Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4): 173–196. https://doi.org/10.1016/j.earscirev.2004.05.001
    Class, C., Goldstein, S. L., 1997. Plume-Lithosphere Interactions in the Ocean Basins: Constraints from the Source Mineralogy. Earth and Planetary Science Letters, 150(3/4): 245–260. https://doi.org/10.1016/s0012-821x(97)00089-7
    Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200. https://doi.org/10.1007/bf00374895
    Corfu, F., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469–500. https://doi.org/10.2113/0530469
    Cui, J. T., Wang, J. C., Bian, X. W., et al., 2007a. Zircon SHRIMP U-Pb Dating of the Dongbake Gneissic Tonalite in Northern Kangxiwar, West Kunlun. Geological Bulletin of China, 26(6): 726–729 (in Chinese with English Abstract)
    Cui, J. T., Wang, J. C., Bian, X. W., et al., 2007b. Zircon SHRIMP U-Pb Dating of Early Paleozoic Granite in the Menggubao-Pushou Area on the Northern Side of Kangxiwar, West Kunlun. Geological Bulletin of China, 26(6): 710–719 (in Chinese with English Abstract)
    DePaolo, D. J., Daley, E. E., 2000. Neodymium Isotopes in Basalts of the Southwest Basin and Range and Lithospheric Thinning during Continental Extension. Chemical Geology, 169(1/2): 157–185. https://doi.org/10.1016/s0009-2541(00)00261-8
    Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417(6891): 837–840. https://doi.org/10.1038/nature00799
    Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237–269. https://doi.org/10.1016/S0024-4937(02)00082-8
    Hawkesworth, C. J., Turner, S. P., McDermott, F., et al., 1997. U-Th Isotopes in Arc Magmas: Implications for Element Transfer from the Subducted Crust. Science, 276(5312): 551–555. https://doi.org/10.1126/science.276.5312.551
    Henan Institute of Geological Survey, 2005. Geological Survey Report for 1 : 250 000 of Yingjisha County (in Chinese)
    Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid‐State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
    Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
    Hu, J., Wang, H., Huang, C. Y., et al., 2016. Geological Characteristics and Age of the Dahongliutan Fe-Ore Deposit in the Western Kunlun Orogenic Belt, Xinjiang, Northwestern China. Journal of Asian Earth Sciences, 116: 1–25. https://doi.org/10.1016/j.jseaes.2015.08.014
    Hu, J., Wang, H., Mu, S. L., et al., 2017. Geochemistry and Hf Isotopic Compositions of Early Paleozoic Granites in Nanpingxueshan from the Tianshuihai Terrane, West Kunlun: Crust-Mantle Magmatism. Acta Geologica Sinica, 91(6): 1192–1207 (in Chinese with English Abstract) doi: 10.3969/j.issn.0001-5717.2017.06.003
    Hu, X. Y., Guo, R. Q., Nuerkanati·Madayipu, et al., 2017b. Zircon U-Pb Dating, Petrology, Geochemistry of the Buya Pluton and Its MMEs in the Southern Margin of Tarim, Xinjiang. Rock and Mineral Analysis, 36(5): 538–550 (in Chinese with English Abstract)
    Hu, X. Y., 2018. Petrogenesis and Tectonic Significance of Granitic Pluton and MMEs in the Eastern Segment of the Tiekelike, NW China: [Dissertation]. Xinjiang University, Urumchi (in Chinese with English Abstract)
    Ji, W. H., Li, R. S., Chen, S. J., et al., 2011. The Discovery of Palaeoproterozoic Volcanic Rocks in the Bulunkuoler Group from the Tianshuihai Massif in Xinjiang of Northwest China and Its Geological Significance. Science China Earth Sciences, 54(1): 61–72. https://doi.org/10.1007/s11430-010-4043-7
    Ji, W. H., Chen, S. J., Li, R. S., et al., 2018. The Origin of Carboniferous-Permian Magmatic Rocks in Oytag Area, West Kunlun: Back-Arc Basin? Acta Petrologica Sinica, 34(8): 2393–2409 (in Chinese with English Abstract)
    Jia, R. Y., Jiang, Y. H., Liu, Z., et al., 2013. Petrogenesis and Tectonic Implications of Early Silurian High-K Calc-Alkaline Granites and Their Potassic Microgranular Enclaves, Western Kunlun Orogen, NW Tibetan Plateau. International Geology Review, 55(8): 958–975. https://doi.org/10.1080/00206814.2012.755766
    Jiang, Y. H., Jiang, S. Y., Ling, H. F., et al., 2002. Petrology and Geochemistry of Shoshonitic Plutons from the Western Kunlun Orogenic Belt, Xinjiang, Northwestern China: Implications for Granitoid Geneses. Lithos, 63(3/4): 165–187. https://doi.org/10.1016/S0024-4937(02)00140-8
    Jiang, Y. H., Liao, S. Y., Yang, W. Z., et al., 2008. An Island Arc Origin of Plagiogranites at Oytag, Western Kunlun Orogen, Northwest China: SHRIMP Zircon U-Pb Chronology, Elemental and Sr-Nd-Hf Isotopic Geochemistry and Paleozoic Tectonic Implications. Lithos, 106(3/4): 323–335. https://doi.org/10.1016/j.lithos.2008.08.004
    Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980–983. https://doi.org/10.1126/science.1136154
    King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371–391. https://doi.org/10.1093/petroj/38.3.371
    Li, T. F., Zhang, J. X., 2014. Zircon LA-ICP-MS U-Pb Ages of Websterite and Basalt in Kudi Ophiolite and the Implication, West Kunlun. Acta Petrologica Sinica, 30(8): 2393–2401 (in Chinese with English Abstract)
    Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1/2): 186–204. https://doi.org/10.1016/j.lithos.2006.09.018
    Li, Y. C., Xiao, W. J., Tian, Z. H., 2019. Early Palaeozoic Accretionary Tectonics of West Kunlun Orogen: Insights from Datong Granitoids, Mafic-Ultramafic Complexes, and Silurian–Devonian Sandstones, Xinjiang, NW China. Geological Journal, 54(3): 1505–1517. https://doi.org/10.1002/gj.3246
    Liang, Q., Jing, H., Gregoire, D. C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51(3): 507–513. https://doi.org/10.1016/s0039-9140(99)00318-5
    Liao, S. Y., Jiang, Y. H., Jiang, S. Y., et al., 2010. Subducting Sediment-Derived Arc Granitoids: Evidence from the Datong Pluton and Its Quenched Enclaves in the Western Kunlun Orogen, Northwest China. Mineralogy and Petrology, 100(1/2): 55–74. https://doi.org/10.1007/s00710-010-0122-x
    Linnen, R. L., Keppler, H., 1997. Columbite Solubility in Granitic Melts: Consequences for the Enrichment and Fractionation of Nb and Ta in the Earth's Crust. Contributions to Mineralogy and Petrology, 128(2/3): 213–227. https://doi.org/10.1007/s004100050304
    Linnen, R. L., Keppler, H., 2002. Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes. Geochimica et Cosmochimica Acta, 66(18): 3293–3301. https://doi.org/10.1016/s0016-7037(02)00924-9
    Liu, X. Q., Zhang, C. L., Ye, X. T., et al., 2019. Cambrian Mafic and Granitic Intrusions in the Mazar-Tianshuihai Terrane, West Kunlun Orogenic Belt: Constraints on the Subduction Orientation of the Proto-Tethys Ocean. Lithos, 350/351: 105226. https://doi.org/10.1016/j.lithos.2019.105226
    Liu, X., Zhu, Z. X., Guo, R. Q., et al., 2016. LA-ICP-MS Zircon U-Pb Dating and Its Geological Significance for Late Paleozoic Diabase from the West Part of Tiekelike Area, South Tarim. Geological Sciences, 3: 794–805 (in Chinese with English Abstract)
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. https://doi.org/10.1007/s11434-010-3052-4
    Liu, Z., Jiang, Y. H., Jia, R. Y., et al., 2014. Origin of Middle Cambrian and Late Silurian Potassic Granitoids from the Western Kunlun Orogen, Northwest China: A Magmatic Response to the Proto-Tethys Evolution. Mineralogy and Petrology, 108(1): 91–110. https://doi.org/10.1007/s00710-013-0288-0
    Ludwig, K. R., 2003. User's Manual for Isoplot 3.00——A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, 4: 25–32
    Luo, Y. Q., Qin, H. Y., Wu, T., et al., 2020. Petrogenesis of the Granites in the Yandangshan Area, Southeastern China: Constraints from SHRIMP U-Pb Zircon Age and Trace Elements, and Sr-Nd-Hf Isotopic Data. Journal of Earth Science, 31(4): 693–708. https://doi.org/10.1007/s12583-020-1295-9
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
    Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1/2): 1–24. https://doi.org/10.1016/j.lithos.2004.04.048
    McCulloch, M. T., Gamble, J. A., 1991. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism. Earth and Planetary Science Letters, 102(3/4): 358–374. https://doi.org/10.1016/0012-821x(91)90029-h
    Metcalfe, I., Henderson, C. M., Wakita, K., 2017. Lower Permian Conodonts from Palaeo-Tethys Ocean Plate Stratigraphy in the Chiang Mai-Chiang Rai Suture Zone, Northern Thailand. Gondwana Research, 44: 54–66. https://doi.org/10.1016/j.gr.2016.12.003
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
    Münker, C., Pfänder, J. A., Weyer, S., et al., 2003. Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics. Science, 301(5629): 84–87. https://doi.org/10.1126/science.1084662
    Pan, Y. S., 2000. Geological Evolution of the Karakorum and Kunlun Mountains. Science Press, Beijing (in Chinese with English Abstract)
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/bf00384745
    Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325–394. https://doi.org/10.1016/s0009-2541(97)00150-2
    Qin, J. H., Liu, C., Chen, Y. C., et al., 2019. Timing of Lithospheric Extension in Northeastern China: Evidence from the Late Mesozoic Nianzishan A-Type Granitoid Complex. Journal of Earth Science, 30(4): 689–706. https://doi.org/10.1007/s12583-018-0996-9
    Robinson, A. C., Yin, A., Manning, C. E., et al., 2004. Tectonic Evolution of the Northeastern Pamir: Constraints from the Northern Portion of the Cenozoic Kongur Shan Extensional System, Western China. Geological Society of America Bulletin, 116(7): 953. https://doi.org/10.1130/b25375.1
    Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. Cathodoluminescence in Geosciences. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-662-04086-7_15
    Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, Elsevier, Amsterdam. https://doi.org/10.1016/b0-08-043751-6/03016-4
    Saunders, A. D., Storey, M., Kent, R. W., et al., 1992. Consequences of Plume-Lithosphere Interactions. Geological Society, London, Special Publications, 68(1): 41–60. https://doi.org/10.1144/gsl.sp.1992.068.01.04
    Sisson, T. W., Grove, T. L., Coleman, D. S., 1996. Hornblende Gabbro Sill Complex at Onion Valley, California, and a Mixing Origin for the Sierra Nevada Batholith. Contributions to Mineralogy and Petrology, 126(1/2): 81–108. https://doi.org/10.1007/s004100050237
    Stepanov, A., Mavrogenes, J., Meffre, S., et al., 2014. The Key Role of Mica during Igneous Concentration of Tantalum. Contributions to Mineralogy and Petrology, 167(6): 1–8. https://doi.org/10.1007/s00 410-014-1009-3 doi: 10.1007/s00410-014-1009-3
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tang, H. F., Zhao, Z. Q., Huang, R. S., et al., 1998. Primary Hf Isotopic Study on Zircons from the A-Type Granites in Eastern Jinggar of Xinjiang, Northwest China. Acta Mineralogica Sinica, 28: 335–342 (in Chinese with English Abstract)
    Tang, Y. W., Cui, K., Zheng, Z., et al., 2020. LA-ICP-MS U-Pb Geochronology of Wolframite by Combining NIST Series and Common Lead-Bearing MTM as the Primary Reference Material: Implications for Metallogenesis of South China. Gondwana Research, 83: 217–231. https://doi.org/10.1016/j.gr.2020.02.006
    Tatsumi, Y., Hamilton, D. L., Nesbitt, R. W., 1986. Chemical Characteristics of Fluid Phase Released from a Subducted Lithosphere and Origin of Arc Magmas: Evidence from High-Pressure Experiments and Natural Rocks. Journal of Volcanology and Geothermal Research, 29(1/2/3/4): 293–309. https://doi.org/10.1016/0377-0273(86)90049-1
    Tiepolo, M., Bottazzi, P., Foley, S. F., et al., 2001. Fractionation of Nb and Ta from Zr and Hf at Mantle Depths: The Role of Titanian Pargasite and Kaersutite. Journal of Petrology, 42(1): 221–232. https://doi.org/10.1093/petrology/42.1.221
    Wang, J., Hattori, K., Liu, J. G., et al., 2017. Shoshonitic- and Adakitic Magmatism of the Early Paleozoic Age in the Western Kunlun Orogenic Belt, NW China: Implications for the Early Evolution of the Northwestern Tibetan Plateau. Lithos, 286/287: 345–362. https://doi.org/10.1016/j.lithos.2017.06.013
    Wang, J. C., Cui, J. T., Luo, Q. Z., et al., 2006. The Discovery and Tectonic Significance of a Small Branch Ocean Basin in Monggubao-Pushouyuan, Tethyan Ocean of Northern Kangxiwa, West Kunlun Mountain. Geology of Shaanxi, 24(2): 41–49 (in Chinese with English Abstract)
    Wang, J. C., Han, F. L., Cui, J. T., et al., 2003. Geochemical Characteristics of Early Paleozoic Granites in the Pulu Area, Yutian, Xinjiang and Its Tectonic Significance. Regional Geology of China, 22(3): 170–181 (in Chinese with English Abstract) doi: 10.3969/j.issn.1671-2552.2003.03.005
    Wang, J. P., 2008. Geological Features and Tectonic Significance of Melange Zone in the Taxkorgan Area, West Kunlun. Geological Bulletin of China, 27(12): 2057–2066 (in Chinese with English Abstract)
    Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 206/207: 147–163. https://doi.org/10.1016/j.lithos.2014.07.026
    Wang, Y. Y., Xiao, Y. L., 2018. Fluid-Controlled Element Transport and Mineralization in Subduction Zones. Solid Earth Sciences, 3(4): 87–104. https://doi.org/10.1016/j.sesci.2018.06.003
    Wang, Z. H., 2004. Tectonic Evolution of the Western Kunlun Orogenic Belt, Western China. Journal of Asian Earth Sciences, 24(2): 153–161. https://doi.org/10.1016/j.jseaes.2003.10.007
    Wang, Z. H., Sun, S., Li, J. L., et al., 2002. Petrogenesis of Tholeiite Associations in Kudi Ophiolite (Western Kunlun Mountains, Northwestern China): Implications for the Evolution of Back-Arc Basins. Contributions to Mineralogy and Petrology, 143(4): 471–483. https://doi.org/10.1007/s00410-002-0358-5
    Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295–304. https://doi.org/10.1016/0012-821x(83)90211-x
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202
    Williams, I. S., Buick, I. S., Cartwright, I., 1996. An Extended Episode of Early Mesoproterozoic Metamorphic Fluid Flow in the Reynolds Range, Central Australia. Journal of Metamorphic Geology, 14(1): 29–47. https://doi.org/10.1111/j.1525-1314.1996.00029.x
    Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003. Highly Fractionated Ⅰ-Type Granites in NE China (Ⅰ): Geochronology and Petrogenesis. Lithos, 66(3/4): 241–273. https://doi.org/10.1016/s0024-4937(02)00222-0
    Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China (Earth Sciences), 60(7): 1201–1219 (in Chinese with English Abstract) doi: 10.1007/s11430-016-5139-1
    Wu, F. Y., Liu, Z. C., Liu, X. C., et al., 2015. Himalayan Leucogranite: Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1): 1–36 (in Chinese with English Abstract)
    Wu, F. Y., Wan, B., Zhao, L., et al., 2020. Tethyan Geodynamics. Acta Petrologica Sinica, 36(6): 1627–1674 (in Chinese with English Abstract)
    Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554–1569. https://doi.org/10.1007/bf03184122
    Xiao, W. J., Hou, Q. L., Li, J. L., et al., 2000. Tectonic Facies and the Archipelago-Accretion Process of the West Kunlun, China. Science in China Series D: Earth Sciences, 43(1): 134–143. https://doi.org/10.1007/bf02911939
    Xiao, W. J., Windley, B. F., Chen, H. L., et al., 2002. Carboniferous-Triassic Subduction and Accretion in the Western Kunlun, China: Implications for the Collisional and Accretionary Tectonics of the Northern Tibetan Plateau. Geology, 30(4): 295. https://doi.org/10.1130/0091-7613(2002)0300295:ctsaai>2.0.co;2 doi: 10.1130/0091-7613(2002)0300295:ctsaai>2.0.co;2
    Xiao, W. J., Windley, B. F., Liu, D. Y., et al., 2005. Accretionary Tectonics of the Western Kunlun Orogen, China: A Paleozoic–Early Mesozoic, Long-Lived Active Continental Margin with Implications for the Growth of Southern Eurasia. The Journal of Geology, 113(6): 687–705. https://doi.org/10.1086/449326
    Yang, J. H., Sun, J. F., Zhang, J. H., et al., 2012. Petrogenesis of Late Triassic Intrusive Rocks in the Northern Liaodong Peninsula Related to Decratonization of the North China Craton: Zircon U-Pb Age and Hf-O Isotope Evidence. Lithos, 153: 108–128. https://doi.org/10.1016/j.lithos.2012.06.023
    Ye, H. M., Li, X. H., Li, Z. X., et al., 2008. Age and Origin of High Ba-Sr Appinite-Granites at the Northwestern Margin of the Tibet Plateau: Implications for Early Paleozoic Tectonic Evolution of the Western Kunlun Orogenic Belt. Gondwana Research, 13(1): 126–138. https://doi.org/10.1016/j.gr.2007.08.005
    Yin, J., Xiao, W., Sun, M., et al., 2020. Petrogenesis of Early Cambrian Granitoids in the Western Kunlun Orogenic Belt, Northwest Tibet: Insight into Early Stage Subduction of the Proto-Tethys Ocean. GSA Bulletin, in press. https://doi.org/10.1130/b35408.1
    Yin, R., Wang, R. C., Zhang, A. C., et al., 2013. Extreme Fractionation from Zircon to Hafnon in the Koktokay No. 1 Granitic Pegmatite, Altai, Northwestern China. American Mineralogist, 98(10): 1714–1724. https://doi.org/10.2138/am.2013.4494
    Yuan, C., Sun, M., Zhou, M. F., et al., 2002. Tectonic Evolution of the West Kunlun: Geochronologic and Geochemical Constraints from Kudi Granitoids. International Geology Review, 44(7): 653–669. https://doi.org/10.2747/0020-6814.44.7.653
    Yuan, C., Sun, M., Zhou, M. F., et al., 2003. Absence of Archean Basement in the South Kunlun Block: Nd-Sr-O Isotopic Evidence from Granitoids. Island Arc, 12(1): 13–21. https://doi.org/10.1046/j.1440-1738.2003.00376.x
    Yuan, C., Sun, M., Zhou, M. F., et al., 2005. Geochemistry and Petrogenesis of the Yishak Volcanic Sequence, Kudi Ophiolite, West Kunlun (NW China): Implications for the Magmatic Evolution in a Subduction Zone Environment. Contributions to Mineralogy and Petrology, 150(2): 195–211. https://doi.org/10.1007/s00410-005-0012-0
    Zhai, Y. Y., Gao, S., Zeng, Q. D., et al., 2020. Geochronology, Geochemistry and Hf Isotope of the Late Mesozoic Granitoids from the Lushi Polymetal Mineralization Area: Implication for the Destruction of Southern North China Craton. Journal of Earth Science, 31(2): 313–329. https://doi.org/10.1007/s12583-020-1277-y
    Zhang, C. L., Li, Z. X., Li, X. H., et al., 2007a. An Early Paleoproterozoic High-K Intrusive Complex in Southwestern Tarim Block, NW China: Age, Geochemistry, and Tectonic Implications. Gondwana Research, 12(1/2): 101–112. https://doi.org/10.1016/j.gr.2006.10.006
    Zhang, C. L., Ye, X. T., Zou, H. B., et al., 2016a. Neoproterozoic Sedimentary Basin Evolution in Southwestern Tarim, NW China: New Evidence from Field Observations, Detrital Zircon U-Pb Ages and Hf Isotope Compositions. Precambrian Research, 280: 31–45. https://doi.org/10.1016/j.precamres.2016.04.011
    Zhang, C. L., Yu, H. F., Ye, H. M., et al., 2006. Aoyitake Plagiogranite in Western Tarim Block, NW China: Age, Geochemistry, Petrogenesis and Its Tectonic Implications. Science in China Series D: Earth Sciences, 49(11): 1121–1134. https://doi.org/10.1007/s11430-006-1121-y
    Zhang, C. L., Zou, H. B., Ye, X. T., et al., 2018a. A Newly Identified Precambrian Terrane at the Pamir Plateau: The Archean Basement and Neoproterozoic Granitic Intrusions. Precambrian Research, 304: 73–87. https://doi.org/10.1016/j.precamres.2017.11.006
    Zhang, C. L., Zou, H. B., Ye, X. T., et al., 2018b. Tectonic Evolution of the NE Section of the Pamir Plateau: New Evidence from Field Observations and Zircon U-Pb Geochronology. Tectonophysics, 723: 27–40. https://doi.org/10.1016/j.tecto.2017.11.036
    Zhang, C. L., Zou, H. B., Ye, X. T., et al., 2018c. Timing of Subduction Initiation in the Proto-Tethys Ocean: Evidence from the Cambrian Gabbros from the NE Pamir Plateau. Lithos, 314/315: 40–51. https://doi.org/10.1016/j.lithos.2018.05.021
    Zhang, C. L., Zou, H. B., Ye, X. T., et al., 2019b. Tectonic Evolution of the West Kunlun Orogenic Belt along the Northern Margin of the Tibetan Plateau: Implications for the Assembly of the Tarim Terrane to Gondwana. Geoscience Frontiers, 10(3): 973–988. https://doi.org/10.1016/j.gsf.2018.05.006
    Zhang, C. L., Ma, H. D., Zhu, B. Y., et al., 2019a. Tectonic Evolution of the Western Kunlun—Karakorum Orogenic Belt and Its Coupling with the Mineralization Effect. Geological Review, 65(5): 1077–1102 (in Chinese with English Abstract)
    Zhang, H. S., He, S. P., Ji, W. H., et al., 2016b. Implications of Late Cambrian Granite in Tianshuihai Massif for the Evolution of Proto-Tethy Ocean: Evidences from Zircon Geochronology and Geochemistry. Acta Geologica Sinica, 90(10): 2582–2602 (in Chinese with English Abstract)
    Zhang, Q. C., Liu, Y., Huang, H., et al., 2016c. Petrogenesis and Tectonic Implications of the High-K Alamas Calc-Alkaline Granitoids at the Northwestern Margin of the Tibetan Plateau: Geochemical and Sr-Nd-Hf-O Isotope Constraints. Journal of Asian Earth Sciences, 127: 137–151. https://doi.org/10.1016/j.jseaes.2016.05.026
    Zhang, Q. C., Wu, Z. H., Chen, X. H., et al., 2019a. Proto-Tethys Oceanic Slab Break-Off: Insights from Early Paleozoic Magmatic Diversity in the West Kunlun Orogen, NW Tibetan Plateau. Lithos, 346/347: 105147. https://doi.org/10.1016/j.lithos.2019.07.014
    Zhang, Q. C., Wu, Z. H., Li, S., et al., 2019b. Ordovician Granitoids and Silurian Mafic Dikes in the Western Kunlun Orogen, Northwest China: Implications for Evolution of the Proto-Tethys. Acta Geologica Sinica-English Edition, 93(1): 30–49. https://doi.org/10.1111/1755-6724.13760
    Zhang, Z. W., Shen, N. P., Peng, J. T., et al., 2014. Syndeposition and Epigenetic Modification of the Strata-Bound Pb-Zn-Cu Deposits Associated with Carbonate Rocks in Western Kunlun, Xinjiang, China. Ore Geology Reviews, 62: 227–244. https://doi.org/10.1016/j.oregeorev.2014.04.001
    Zhang, Z. W., Cui, J. T., Wang, J. C., et al., 2007b. Zircon SHRIMP U-Pb Dating of Early Paleozoic Amphibolite and Granodiorite in Korliang, Northwestern Kangxiwar, West Kunlun. Geological Bulletin of China, 26(6): 720–725 (in Chinese with English Abstract)
    Zhang, Z. W., Wu, C. Q., Zhu, W. G., et al., 2019c. The Late Palaeozoic Back-arc Basin and metallogenesis in West Kunlun. The Ninth National Symposium on Mineralization Theory and Prospecting Methods, 444–445 (in Chinese)
    Zhu, J. E., Li, Q. G., Chen, X., et al., 2018. Geochemistry and Petrogenesis of the Early Palaeozoic Appinite-Granite Complex in the Western Kunlun Orogenic Belt, NW China: Implications for Palaeozoic Tectonic Evolution. Geological Magazine, 155(8): 1641–1666. https://doi.org/10.1017/s0016756817000450
    Zhu, J., Li, Q. G., Wang, Z. Q., et al., 2016. Magmatism and Tectonic Implications of Early Cambrian Granitoid Plutons in Tianshuihai Terrane of the Western Kunlun Orogenic Belt, Northwest China. Northwestern Geology, 49(4): 1–18 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views(122) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return