Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 2
Apr 2022
Turn off MathJax
Article Contents
Adedoyin Adeyilola, Stephan Nordeng, Qinhong Hu. Porosity and Pore Networks in Tight Dolostone––Mudstone Reservoirs: Insights from the Devonian Three Forks Formation, Williston Basin, USA. Journal of Earth Science, 2022, 33(2): 462-481. doi: 10.1007/s12583-021-1458-3
Citation: Adedoyin Adeyilola, Stephan Nordeng, Qinhong Hu. Porosity and Pore Networks in Tight Dolostone––Mudstone Reservoirs: Insights from the Devonian Three Forks Formation, Williston Basin, USA. Journal of Earth Science, 2022, 33(2): 462-481. doi: 10.1007/s12583-021-1458-3

Porosity and Pore Networks in Tight Dolostone––Mudstone Reservoirs: Insights from the Devonian Three Forks Formation, Williston Basin, USA

doi: 10.1007/s12583-021-1458-3
More Information
  • Corresponding author: Adedoyin Adeyilola, adeyi1a@cmich.edu
  • Received Date: 08 Nov 2020
  • Accepted Date: 18 Mar 2021
  • Publish Date: 30 Apr 2022
  • This study was performed to evaluate pore systems of reservoir lithofacies within the Devonian Three Forks Formation in the Williston Basin through micro-scale pore characterization. These lithofacies are from the Upper Three Forks section, which is a prominent drilling target within the Bakken-Three Forks Petroleum System. Samples from the Formation were examined by (1) physical core description, (2) petrographic thin section microscopy, (3) x-ray diffractometry (XRD) minerals analysis, (4) scanning electron microscopy (SEM), and (5) porosity measurements from helium porosimetry, nuclear magnetic resonance (NMR), gas adsorption and mercury intrusion porosimetry (MIP). These were done to provide better understanding of the local variations in pore structures and how such structures impact reservoir quality within the Three Forks Formation. Seven reservoir lithofacies were identified and described, including laminated lithofacies, massive dolostone, mottled dolostone, massive mudstone, mottled mudstone, mudstone conglomerates, and brecciated mudstone. Samples show a diverse variation in mineralogical composition, pore types, porosity, and pore-size distribution. Six types of pores were identified: interparticle, intercrystalline, intracrystalline, vuggy, microfractures, and mudstone microporosity. Dolostone-rich lithofacies have abundant dolomite and less siliciclastic minerals such as quartz, feldspar, and clays. They also have relatively low porosity and generally larger pore size. A general positive trend exists between porosity with clay minerals and feldspar, in contrast to a negative trend with dolomite, and no clear relationship with quartz content. Results from the gas adsorption analysis, NMR and MIP pore-size distribution confirm an abundance of macropores (> 50 nm in diameters) in dolostone dominated lithofacies while other lithofacies generally have abundant mesopores (2–50 nm).

     

  • loading
  • Adeyilola, A., Nordeng, S., Onwumelu, C., et al., 2020. Geochemical, Petrographic and Petrophysical Characterization of the Lower Bakken Shale, Divide County, North Dakota. International Journal of Coal Geology, 224(2): 103477. https://doi.org/10.1016/j.coal.2020.103477
    Akai, T., Wood, J. M., 2018. Application of Pore Throat Size Distribution Data to Petrophysical Characterization of Montney Tight-Gas Siltstones. Bulletin of Canadian Petroleum Geology, 66(2): 425–435
    Baah, D., 2015. Nano-Petrophysics of the Three Forks Formation in Williston Basin, North Dakota: [Dissertation]. University of Texas, Arlington
    Basan, P. B., Lowden, B. D., Whattler, P. R., et al., 1997. Pore-Size Data in Petrophysics: A Perspective on the Measurement of Pore Geometry. Geological Society, London, Special Publications, 122(1): 47–67. https://doi.org/10.1144/gsl.sp.1997.122.01.05
    Bazzell, A., 2014. Origin of Brecciated Intervals and Petrophysical Analyses, the Three Forks Formation, Williston Basin, North Dakota, USA: [Dissertation]. Colorado School of Mines, Golden. 140
    Bernard, S., Wirth, R., Schreiber, A., et al., 2012. Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin). International Journal of Coal Geology, 103(20): 3–11. https://doi.org/10.1016/j.coal.2012.04.010
    Berwick, B., 2008. Depositional Environment, Mineralogy, and Sequence Stratigraphy of the Late Devonian Sanish Member (Upper Three Forks Formation), Williston Basin, North Dakota: [Dissertation]. Colorado School of Mines, Golden
    Bjørlykke, K., Jahren, J., 2012. Open or Closed Geochemical Systems during Diagenesis in Sedimentary Basins: Constraints on Mass Transfer during Diagenesis and the Prediction of Porosity in Sandstone and Carbonate Reservoirs. AAPG Bulletin, 96(12): 2193–2214. https://doi.org/10.1306/04301211139
    Bottjer, R. J., Sterling, R., Grau, A., et al., 2011. Stratigraphic Relationships and Reservoir Quality at the Three Forks-Bakken Unconformity, Williston Basin, North Dakota. In: Robinson, J. W., LeFever, J. A., Gaswirth, S. B., eds. The Bakken-Three Forks Petroleum System in the Williston Basin. Rocky Mountain Association of Geologists, Denver
    Carvajal-Ortiz, H., Gentzis, T., Xie, H., 2019. High-frequency (20 MHz) NMR and Modified Rock-Eval Pyrolysis Methods as an Integrated Approach to Examine Producibility in Kerogen-Rich Source-Reservoirs. In: Unconventional Resources Technology Conference, Denver, Colorado, 22–24 July 2019 (1861-1877). Unconventional Resources Technology Conference (URTeC); Society of Exploration Geophysicists
    Chalmers, G. R. L., Bustin, R. M., 2007b. The Organic Matter Distribution and Methane Capacity of the Lower Cretaceous Strata of Northeastern British Columbia, Canada. International Journal of Coal Geology, 70(1/2/3): 223–239. https://doi.org/10.1016/j.coal.2006.05.001
    Chalmers, G. R. L., Marc Bustin, R., 2007a. On the Effects of Petrographic Composition on Coalbed Methane Sorption. International Journal of Coal Geology, 69(4): 288–304. https://doi.org/10.1016/j.coal.2006.06.002
    Chalmers, G. R. L., Ross, D. J. K., Bustin, R. M., 2012b. Geological Controls on Matrix Permeability of Devonian Gas Shales in the Horn River and Liard Basins, Northeastern British Columbia, Canada. International Journal of Coal Geology, 103(6): 120–131. https://doi.org/10.1016/j.coal.2012.05.006
    Chalmers, G. R., Bustin, R. M., Power, I. M., 2012a. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6): 1099–1119. https://doi.org/10.1306/10171111052
    Choquette, P. W., Cox, A., Meyers, W. J., 1992. Characteristics, Sistribution and Origin of Porosity in Shelf Solostones; Burlington-Keokuk Formation (Mississippian), US Mid-Continent. Journal of Sedimentary Research, 62(2): 167–189
    Choquette, P. W., Pray, L. C., 1970. Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. AAPG Bulletin, 54: 207–250. https://doi.org/10.1306/5d25c98b-16c1-11d7-8645000102c1865d
    Christopher, J. E., 1961. Transitional Devonian-Mississippian Formations of Southern Saskatchewan. Saskatchewan Department of Mineral Resources, Saskatoon
    Clark, A. J., 2009. Determination of Recovery Factor in the Bakken Formation, Mountrail County, ND. SPE Annual Technical Conference and Exhibition, New Orleans, October 4–7, 2009. https://doi.org/10.2118/133719-stu
    Clarkson, C. R., Haghshenas, B., Ghanizadeh, A., et al., 2016. Nanopores to Megafractures: Current Challenges and Methods for Shale Gas Reservoir and Hydraulic Fracture Characterization. Journal of Natural Gas Science and Engineering, 31: 612–657. https://doi.org/10.1016/j.jngse.2016.01.041
    Clarkson, C. R., Solano, N., Bustin, R. M., et al., 2013. Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion. Fuel, 103: 606–616. https://doi.org/10.1016/j.fuel.2012.06.119
    Coates, G. R., Xiao, L. Z., Prammer, M. G., 1999. NMR Logging Principles and Applications, Halliburton Energy Services Publication. Colorado School of Mines, Golden
    Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26–31. https://doi.org/10.1016/j.coal.2012.08.004
    Dechongkit, P., Prasad, M., 2011. Recovery Factor and Reserves Estimation in the Bakken Petroleum System (Analysis of the Antelope, Sanish and Parshall Fields). Presented at the SPE Canadian Unconventional Resources Conference, Calgary. https://doi.org/10.2118/149471-ms
    Deng, H. C., Hu, X. F., Li, H. A., et al., 2016. Improved Pore-Structure Characterization in Shale Formations with FESEM Technique. Journal of Natural Gas Science and Engineering, 35(1): 309–319. https://doi.org/10.1016/j.jngse.2016.08.063
    Dow, W. G., 1974. Application of Oil Correlation and Source-Rock Data to Exploration in Williston Basin: Abstract. AAPG Bulletin, 58: 1253–1262. https://doi.org/10.1306/819a3f00-16c5-11d7-8645000102c1865d
    Du, Y., Fan, T. L., Machel, H. G., et al., 2018. Genesis of Upper Cambrian-Lower Ordovician Dolomites in the Tahe Oilfield, Tarim Basin, NW China: Several Limitations from Petrology, Geochemistry, and Fluid Inclusions. Marine and Petroleum Geology, 91(2): 43–70. https://doi.org/10.1016/j.marpetgeo.2017.12.023
    Dumonceaux, G. M., 1984. Stratigraphy and Depositional Environments of the Three Forks Formation (Upper Devonian), Williston Basin, North Dakota: [Dissertation]. University of North Dakota, Fargo
    Dunn, K. J., Bergman, D. J., LaTorraca, G. A., 2002. Nuclear Magnetic Resonance: Petrophysical and Llogging Applications, Handbook of Geophysical Exploration. Pergamon, New York
    Franklin, A., Sarg, J. F., 2017. Sedimentology and Ichnofacies, Uppermost Three Forks Formation (Fammenian), Williston Basin, North Dakota and Montana—A Storm Dominated Intrashelf Basin. The Sedimentary Record, 15(2): 4–12. https://doi.org/10.2110/sedred.2017.2.4
    Gantyno, A. A., 2011. Sequence Stratigraphy and Microfacies Analysis of the Late Devonian Three Forks Formation, Williston Basin, North Dakota and Montana, U. S. A. : [Dissertation]. Colorado School of Mines, Golden, Colorado
    Gao, F. L., Song, Y., Li, Z., et al., 2018. Lithofacies and Reservoir Characteristics of the Lower Cretaceous Continental Shahezi Shale in the Changling Fault Depression of Songliao Basin, NE China. Marine and Petroleum Geology, 98(4): 401–421. https://doi.org/10.1016/j.marpetgeo.2018.08.035
    Gao, H., Li, H. Z., 2015. Determination of Movable Fluid Percentage and Movable Fluid Porosity in Ultra-Low Permeability Sandstone Using Nuclear Magnetic Resonance (NMR) Technique. Journal of Petroleum Science and Engineering, 133(3): 258–267. https://doi.org/10.1016/j.petrol.2015.06.017
    Gao, Z. Y., Hu, Q. H., 2013. Estimating Permeability Using Median Pore-Throat Radius Obtained from Mercury Intrusion Porosimetry. Journal of Geophysics and Engineering, 10(2): 025014. https://doi.org/10.1088/1742-2132/10/2/025014
    Garcia-Fresca, B., Pinkston, D., Loucks, R. G., et al., 2018. The Three Forks Playa Lake Depositional Model: Implications for Characterization and Development of an Unconventional Carbonate Play. AAPG Bulletin, 102(8): 1455–1488. https://doi.org/10.1306/12081716510
    Gharechelou, S., Daraei, M., Amini, A., 2016. Pore Types Distribution and their Reservoir Properties in the Sequence Stratigraphic Framework: A Case Study from the Oligo-Miocene Asmari Formation, SW Iran. Arabian Journal of Geosciences, 9(3): 194. https://doi.org/10.1007/s12517-015-2141-8
    Chalmers, G., Bustin, R. M., Power, I. M., 2009. A Pore by any Other Name would be as Small: the Importance of Meso- and Microporosity in Shale Gas Capacity. AAPG Datapages, Search and Discovery Article 90090. AAPG Annual Convention and Exhibition, Denver, Colorado, June 7–10, 2009 URL. http://www.searchanddiscovery.com/abstracts/html/2009/annual/abstracts/chalmers.html (last accessed on 16/02/2014)
    Droege, L. A., 2014. Sedimentology, Facies Architecture, and Diagenesis of the Middle Three Forks Formation—North Dakota, USA: [Dissertation], Colorado State University, Fort Collins
    Gherabati, S. A., Hamlin, H. S., Smye, K. M., et al., 2019. Evaluating Hydrocarbon-in-Place and Recovery Factor in a Hybrid Petroleum System: Case of Bakken and Three Forks in North Dakota. Interpretation, 7(3): T607–T624 doi: 10.1190/INT-2018-0213.1
    Handy, L. L., 1960. Determination of Effective Capillary Pressures for Porous Media from Imbibition Data. Transactions of the AIME, 219(1): 75–80. https://doi.org/10.2118/1361-g
    Hinai, A. A., Rezaee, R., Esteban, L., et al., 2014. Comparisons of Pore Size Distribution: A Case from the Western Australian Gas Shale Formations. Journal of Unconventional Oil and Gas Resources, 8: 1–13. https://doi.org/10.1016/j.juogr.2014.06.002
    Hu, J. G., Tang, S. H., Zhang, S. H., 2016. Investigation of Pore Structure and Fractal Characteristics of the Lower Silurian Longmaxi Shales in Western Hunan and Hubei Provinces in China. Journal of Natural Gas Science and Engineering, 28(1): 522–535. https://doi.org/10.1016/j.jngse.2015.12.024
    Hu, Q. H., Zhang, Y. X., Meng, X. H., et al., 2017. Characterization of Micro-Nano Pore Networks in Shale Oil Reservoirs of Paleogene Shahejie Formation in Dongying Sag of Bohai Bay Basin, East China. Petroleum Exploration and Development, 44(5): 720–730. https://doi.org/10.1016/s1876-3804(17)30083-6
    Hu, Q. H., 2018. Quantifying Effective Porosity of Oil and Gas Reservoirs. In: 2018 International Conference and Exhibition, Cape Town, November 4–7. https://doi.org/10.1306/70376hu2018
    Islam, M. A., 2009. Diagenesis and Reservoir Quality of Bhuban Sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh. Journal of Asian Earth Sciences, 35(1): 89–100. https://doi.org/10.1016/j.jseaes.2009.01.006
    James, N. P., Jones, B., 2015. Origin of Carbonate Sedimentary Rocks. John Wiley and Sons, Chichester
    Jiang, F., Chen, D., Chen, J., et al., 2016a. Fractal Analysis of Shale Pore Structure of Continental Gas Shale Reservoir in the Ordos Basin, NW China. Energy & Fuels, 30(6): 4676–4689. https://doi.org/10.1021/acs.energyfuels.6b00574
    Jiang, F., Chen, D., Wang, Z., et al., 2016b. Pore Characteristic Analysis of a Lacustrine Shale: A Case Study in the Ordos Basin, NW China. Marine and Petroleum Geology, 73: 554–571. https://doi.org/10.1016/j.marpetgeo.2016.03.026
    Kenyon, W. E., 1992. Nuclear Magnetic Resonance as a Petrophysical Measurement. Nuclear Geophysics, 6(2): 153–171
    Kenyon, W. E., 1997. Petrophysical Principles of Applications of NMR Logging. The Log Analyst, 38(02): SPWLA-1997-v38n2a4
    Klaver, J., Desbois, G., Littke, R., et al., 2016. BIB-SEM Pore Characterization of Mature and Post Mature Posidonia Shale Samples from the Hils Area, Germany. International Journal of Coal Geology, 158: 78–89. https://doi.org/10.1016/j.coal.2016.03.003
    Kleinberg, R. L., 1996. Utility of NMR T2 Distributions, Connection with Capillary Pressure, Clay Effect, and Determination of the Surface Relaxivity Parameter Ρ2. Magnetic Resonance Imaging, 14(7/8): 761–767. https://doi.org/10.1016/s0730-725x(96)00161-0
    Kleinberg, R. L., Farooqui, S. A., Horsfield, M. A., 1993. T1/T2 Ratio and Frequency Dependence of NMR Relaxation in Porous Sedimentary Rocks. Journal of Colloid and Interface Science, 158(1): 195–198. https://doi.org/10.1006/jcis.1993.1247
    Ko, L. T., Loucks, R. G., Milliken, K. L., et al., 2017a. Controls on Pore Types and Pore-Size Distribution in the Upper Triassic Yanchang Formation, Ordos Basin, China: Implications for Pore-Evolution Models of Lacustrine Mudrocks. Interpretation, 5(2): SF127–SF148. https://doi.org/10.1190/int-2016-0115.1
    Ko, L. T., Loucks, R. G., Ruppel, S. C., et al., 2017b. Origin and Characterization of Eagle Ford Pore Networks in the South Texas Upper Cretaceous Shelf. AAPG Bulletin, 101(3): 387–418. https://doi.org/10.1306/08051616035
    Kuila, U., Prasad, M., 2013. Specific Surface Area and Pore-Size Distribution in Clays and Shales. Geophysical Prospecting, 61(2): 341–362. https://doi.org/10.1111/1365-2478.12028
    Kulke, H., 1995. Nigeria. In: Kulke, H., ed., Regional Petroleum Geology of the World. Part Ⅱ: Africa, America, Australia and Antarctica. Gebrüder Borntraeger, Berlin
    Lai, J., Wang, S., Zhang, C. S., et al., 2020. Spectrum of Pore Types and Networks in the Deep Cambrian to Lower Ordovician Dolostones in Tarim Basin, China. Marine and Petroleum Geology, 112(1): 104081. https://doi.org/10.1016/j.marpetgeo.2019.104081
    Lang, D. J., Shang, G. H., Lü, C. Y., et al., 2009. Experiment and Application of NMR in Carbonate Reservoir Analysis: An Example from Tahe Oilfield. Oil and Gas Geology, 30(3): 363–369 (In Chinese with English Abstract)
    Lawal, L. O., Adebayo, A. R., Mahmoud, M., et al., 2020. A Novel NMR Surface Relaxivity Measurements on Rock Cuttings for Conventional and Unconventional Reservoirs. International Journal of Coal Geology, 231: 103605. https://doi.org/10.1016/j.coal.2020.103605
    LeFever, J. A., Nordeng, S. H., 2008. Three Forks Formation. North Dakota. Geological Survey Newsletter, 35(2): 4–5
    LeFever, J. A., Martiniuk, C. D., Dancsok, E. F., et al., 1991. Petroleum Potential of the Middle Member, Bakken Formation, Williston Basin. Sixth International Williston Basin Symposium. AAPG Datapages, Inc. Tulsa
    LeFever, J. A., LeFever, R. D., Nordeng, S. H., 2013. Role of Nomenclature in Pay Zone Definitions—Three Forks Formation, North Dakota. North Dakota Geological Survey Geologic Investigations, Bismarck
    Lewis, R., Singer, P., Jiang, T., et al., 2013. NMR T2 Distributions in the Eagle Ford Shale: Reflections on Pore Size. In: SPE Unconventional Resources Conference-USA. Woodlands, April 10–12, 2013
    Li, Q., Jiang, Z. X., Hu, W. X., et al., 2016. Origin of Dolomites in the Lower Cambrian Xiaoerbulak Formation in the Tarim Basin, NW China: Implications for Porosity Development. Journal of Asian Earth Sciences, 115: 557–570. https://doi.org/10.1016/j.jseaes.2015.10.022
    Lønøy, A., 2006. Making Sense of Carbonate Pore Systems. AAPG Bulletin, 90(9): 1381–1405. https://doi.org/10.1306/03130605104
    Loucks, R. G., Handford, C. R., 1992. Origin and Recognition of Fractures, Breccias, and Sediment Fills in Paleocave-Reservoir Networks. In: Candelaria, M. P., Reed, C. L., eds., Paleokarst, Karst Related Diagenesis and Reservoir Development: Examples from Ordovician-Devonian Age Strata of West Texas and the Mid-Continent. Permian Basin Section-SEPM Publ 92-33, Midland
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848–861. https://doi.org/10.2110/jsr.2009.092
    Loucks, R. G., Reed, R. M., 2014. Scanning-Electron-Microscope Petrographic Evidence for Distinguishing Organic-Matter Pores Associated with Depositional Organic Matter versus Migrated Organic Matter in Mudrock. Gulf Coast Assoc. Geol. Soc. J., 3: 51–60
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. J. Sediment. Res., 79: 848–861 doi: 10.2110/jsr.2009.092
    Loucks, R. G., Ruppel, S. C., Wang, X., et al., 2017. Pore Types, Pore-Network Analysis, and Pore Quantification of the Lacustrine Shale-Hydrocarbon System in the Late Triassic Yanchang Formation in the Southeastern Ordos Basin, China. Interpretation, 5(2): SF63–SF79 doi: 10.1190/INT-2016-0094.1
    Lucia, F. J., 1983. Petrophysical Parameters Estimated from Visual Descriptions of Carbonate Rocks: A Field Classification of Carbonate Pore Space. Journal of Petroleum Technology, 35(3): 629–637. https://doi.org/10.2118/10073-pa
    Lucia, F. J., 1970. Lower Paleozoic History of the Western Diablo Platform of West Texas and South-Central Mexico. In: Seewald, K., Sundeen, D., eds., the Geologic Framework of the Chihuahua Tectonic. West Texas Geol. Soc., Midland
    Lucia, F. J., 1995. Rock-Fabric/Petrophysical Classification of Carbonate Pore Space for Reservoir Characterization. AAPG Bulletin, 79: 1275–1300. https://doi.org/10.1306/7834d4a4-1721-11d7-8645000102c1865d
    Ma, B. Y., Hu, Q. H., Yang, S. Y., et al., 2020. Multiple Approaches to Quantifying the Effective Porosity of Lacustrine Shale Oil Reservoirs in Bohai Bay Basin, East China. Geofluids, 1: 1–13. https://doi.org/10.1155/2020/8856620
    Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale Across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621–1643. https://doi.org/10.1306/04011312194
    Meissner, F. F., 1991. Petroleum Geology of the Bakken Formation Williston Basin, North Dakota and Montana. In: Demaison, G., Murris, R. J., American Association of Petroleum Geologists, Tulsa
    Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2): 177–200. https://doi.org/10.1306/07231212048
    Moore, C. H., Heydari, E., 1993. Burial Diagenesis and Hydrocarbon Migration in Platform Limestones: A Conceptual Model Based on the Upper Jurassic of the Gulf Coast of the USA. AAPG Bull., 77: 213–229
    Moore, C. H., Druckman, Y., 1981. Burial Diagenesis and Porosity Evolution, Upper Jurassic Smackover, Arkansas and Louisiana. AAPG Bulletin, 65(4): 597–628. https://doi.org/10.1306/2f919995-16ce-11d7-8645000102c1865d
    Murphy, E. C., Nordeng, S. H., Junker, B. J., et al., 2009. North Dakota Stratigraphic Column. North Dakota Geological Survey, Bismarck
    Nesheim, T. O., 2019. Examination of Downward Hydrocarbon Charge within the Bakken-Three Forks Petroleum System-Williston Basin, North America. Marine and Petroleum Geology, 104(3): 346–360. https://doi.org/10.1016/j.marpetgeo.2019.03.016
    Norbisrath, J. H., Eberli, G. P., Laurich, B., et al., 2015. Electrical and Fluid Flow Properties of Carbonate Microporosity Types from Multiscale Digital Image Analysis and Mercury Injection. AAPG Bulletin, 99(11): 2077–2098. https://doi.org/10.1306/07061514205
    Nordeng, S. H., LeFever, J. A., 2009. Three Forks Formation Log to Core Correlation. North Dakota Geological Survey Geologic Investigation, Bismarck
    Nordeng, S. H., 2009. The Bakken Petroleum System: An Example of a Continuous Petroleum Accumulation. DMR Newsletter, 36(1): 21–24
    Pires, L. O., Winter, A., Trevisan, O. V., 2019. Dolomite Cores Evaluated by NMR. Journal of Petroleum Science and Engineering, 176(1–4): 1187–1197. https://doi.org/10.1016/j.petrol.2018.06.026
    Rezaee, R., Saeedi, A., Clennell, B., 2012. Tight Gas Sands Permeability Estimation from Mercury Injection Capillary Pressure and Nuclear Magnetic Resonance Data. Journal of Petroleum Science and Engineering, 88/89(4): 92–99. https://doi.org/10.1016/j.petrol.201 1.12.014 doi: 10.1016/j.petrol.2011.12.014
    Ross, D. J. K., Bustin, R. M., 2008. Characterizing the Shale Gas Resource Potential of Devonian–Mississippian Strata in the Western Canada Sedimentary Basin: Application of an Integrated Formation Evaluation. AAPG Bulletin, 92(1): 87–125. https://doi.org/10.1306/09040707048
    Ross, D. J. K., Bustin, R. M., 2009. The Importance of Shale Composition and Pore Structure Upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916–927. https://doi.org/10.1016/j.marpetgeo.2008.06.004
    Roth, S., Biswal, B., Afshar, G., et al., 2011. Continuum-Based Rock Model of a Reservoir Dolostone with Four Orders of Magnitude in Pore Sizes. AAPG Bulletin, 95(6): 925–940. https://doi.org/10.1306/12031010092
    Rouquerol, J., Avnir, D., Fairbridge, C. W., et al., 1994. Recommendations for the Characterization of Porous Solids (Technical Report). Pure and Applied Chemistry, 66(8): 1739–1758. https://doi.org/10.1351/pac199466081739
    Saller, A. H., Budd, D. A., Harris, P. M., 1994. Unconformities and Porosity Development in Carbonate Strata: Ideas from a Hedberg Conference. AAPG Bulletin, 78(6): 857–872. https://doi.org/10.1306/a25fe3c9-171b-11d7-8645000102c1865d
    Sandberg C. A., Hammond, C. R., 1958. Devonian System in Williston Basin and Central Montana. AAPG Bulletin, 42: 2293–2335. https://doi.org/10.1306/0bda5bd0-16bd-11d7-8645000102c1865d
    Sonnenberg, S. A., 2017. Sequence Stratigraphy of the Bakken and Three Forks Formations, Williston Basin, USA. In: AAPG Rocky Mountain Section Annual Meeting, Billings, June 25–28
    Sonnenberg, S. A., Gantyno, A., Sarg, R., 2011. Petroleum Potential of the Upper Three Forks Formation, Williston Basin, USA. AAPG Annual Convention and Exhibition, Houston, April 10–13
    Topór, T., Derkowski, A., Ziemiański, P., et al., 2017. The Effect of Organic Matter Maturation and Porosity Evolution on Methane Storage Potential in the Baltic Basin (Poland) Shale-Gas Reservoir. International Journal of Coal Geology, 180(32): 46–56. https://doi.org/10.1016/j.coal.2017.07.005
    Wang, G. W., Li, P. P., Hao, F., et al., 2015. Dolomitization Process and Its Implications for Porosity Development in Dolostones: A Case Study from the Lower Triassic Feixianguan Formation, Jiannan Area, Eastern Sichuan Basin, China. Journal of Petroleum Science and Engineering, 131: 184–199. https://doi.org/10.1016/j.petrol.2015.04.011
    Wang, S., Javadpour, F., Feng, Q. H., 2016. Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores. Scientific Reports, 6: 20160. https://doi.org/10.1038/srep20160
    Wang, X., Jiang, Z., Jiang, S., et al., 2019. Full‐Scale Pore Structure and Fractal Dimension of the Longmaxi Shale from the Southern Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Mercury Intrusion Porosimetry. Minerals, 9(9): 543. https://doi.org/10.3390/min9090543
    Wardlaw, N. C., 1976. Pore Geometry of Carbonate Rocks as Revealed by Pore Casts and Capillary Pressure. AAPG Bulletin, 60(2): 245–257. https://doi.org/10.1306/83d922ad-16c7-11d7-8645000102c1865d
    Wardlaw, N. C., Taylor, R. P., 1976. Mercury Capillary Pressure Curves and the Interpretation of Pore Structure and Capillary Behaviour in Reservoir Rocks. Bulletin of Canadian Petroleum Geology, 24(2): 225–262
    Washburn, E. W., 1921. Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Proceedings of the National Academy of Sciences, 7(4): 115–116. https://doi.org/10.1073/pnas.7.4.115
    Washburn, K. E., Birdwell, J. E., 2013. Updated Methodology for Nuclear Magnetic Resonance Characterization of Shales. Journal of Magnetic Resonance, 233: 17–28. https://doi.org/10.1016/j.jmr.2013.04.014
    Woody, R. E., Gregg, J. M., Koederitz, L. F., 1996. Effect of Texture on Petrophysical Properties of Dolomite: Evidence from the Cambrian-Ordovician of Southeastern Missouri. AAPG Bulletin, 80(1): 119–131. https://doi.org/10.1306/64ed8764-1724-11d7-8645000102c1865d
    Xie, Z. H., Gan, Z., 2018. Value of 20 Mhz NMR Core Analysis for Unconventional Mudstones. In: SPWLA 59th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts, London
    Xiong, J., Liu, X. J., Liang, L. X., 2015. Experimental Study on the Pore Structure Characteristics of the Upper Ordovician Wufeng Formation Shale in the Southwest Portion of the Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 22(1): 530–539. https://doi.org/10.1016/j.jngse.2015.01.004
    Yang, R., He, S., Yi, J. Z., et al., 2016. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27–45. https://doi.org/10.1016/j.marpetgeo.2015.11.019
    Yuan, Y. J., Rezaee, R., 2019. Comparative Porosity and Pore Structure Assessment in Shales: Measurement Techniques, Influencing Factors and Implications for Reservoir Characterization. Energies, 12(11): 2094. https://doi.org/10.3390/en12112094
    Zargari, S., Canter, K. L., Prasad, M., 2015. Porosity Evolution in Oil-Prone Source Rocks. Fuel, 153(6): 110–117. https://doi.org/10.1016/j.fuel.2015.02.072
    Zhang, J. Z., Li, X. Q., Xie, Z. Y., et al., 2018. Characterization of Microscopic Pore Types and Structures in Marine Shale: Examples from the Upper Permian Dalong Formation, Northern Sichuan Basin, South China. Journal of Natural Gas Science and Engineering, 59(3): 326–342. https://doi.org/10.1016/j.jngse.2018.09.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(330) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return