Citation: | Jingxun Zuo, Xuejian Zhu, Yonglin Chen, Wenjian Zhai. Carbon Isotope from Shallow Marine System in North China: Implications for Stratigraphical Correlation and Sea-Level Changes in Cambrian. Journal of Earth Science, 2023, 34(6): 1777-1792. doi: 10.1007/s12583-021-1463-6 |
Cambrian System at the Shatan Section in northern Henan, North China, consists of sedimentary successions of tidal flat and shallow-water carbonate platform facies. Data of carbon isotope (δ13Ccarb) from this section reveals five positive δ13Ccarb (Pst-1–Pst-5) and five negative δ13Ccarb excursions (Nst-1–Nst-5). In the positive excursions, δ13Ccarb rises to 0.88‰, 1.05‰, 2.04‰, 1.00‰ and 2.97‰, respectively, while in the negative excursions δ13Ccarb drops to -8.00‰, -3.50‰, -1.00‰, -0.33‰ and around -2.00‰, respectively. On the basis of chronostratigraphy of Cambrian, the most remarkable carbon isotope excursions can be correlated regionally and globally. In addition, one second-order and ten third-order sequences have been recognized at this section. Correlating third-order sequences and chemostratigraphy indicates that carbonates from the basal part of the transgression system tract (TST) and the upper part of the high-water system (LHST) generally have lighter δ13Ccarb values, whereas massive carbonates with microbialite from the lower part of the high-water system tract (EHST) usually have heavier δ13Ccarb values. The association of δ13Ccarb values with sea-level fluctuations suggests that the positive carbon isotope excursions or high δ13Ccarb values may have been caused by an increase in the marine primary productivity in response to maximum seawater flooding during the transgression.
Abu El Ghar, M. S., Khalifa, M. A., Hussein, A. W., 2015. Carbonate Diagenesis of the Mixed Clastic-Carbonate Galala Formation, North Eastern Desert, Egypt. Arabian Journal of Geosciences, 8(5): 2551–2565. https://doi.org/10.1007/s12517-014-1349-3 |
Açikalin, S., Ocakoğlu, F., Yılmaz, İ. Ö., et al., 2016. Stable Isotopes and Geochemistry of a Campanian-Maastrichtian Pelagic Succession, Mudurnu-Göynük Basin, NW Turkey: Implications for Palaeoceanography, Palaeoclimate and Sea-Level Fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 453–466. https://doi.org/10.1016/j.palaeo.2015.10.005 |
Ahlberg, P., Axheimer, N., Babcock, L. E., et al., 2009. Cambrian High-Resolution Biostratigraphy and Carbon Isotope Chemostratigraphy in Scania, Sweden: First Record of the SPICE and DICE Excursions in Scandinavia. Lethaia, 42(1): 2–16. https://doi.org/10.1111/j.1502-3931.2008.00127.x |
Bagnoli, G., Qi, Y. P., Zuo, J. X., et al., 2014. Integrated Biostratigraphy and Carbon Isotopes from the Cambrian Tangwangzhai Section, North China. Palaeoworld, 23(2): 112–124. https://doi.org/10.1016/j.palwor.2013.12.002 |
Banner, J. L., Hanson, G. N., 1990. Calculation of Simultaneous Isotopic and Trace Element Variations during Water-Rock Interaction with Applications to Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 54(11): 3123–3137. https://doi.org/10.1016/0016-7037(90)90128-8 |
Brasier, M. D., Corfield, R. M., Derry, L. A., et al., 1994. Multiple δ13C Excursions Spanning the Cambrian Explosion to the Botomian Crisis in Siberia. Geology, 22(5): 455. https://doi.org/10.1130/0091-7613(1994)0220455:mcestc>2.3.co;2 doi: 10.1130/0091-7613(1994)0220455:mcestc>2.3.co;2 |
Cen, Y., Wang, J. S., Ding, X., et al., 2022. Tracing the Methane Events by Stable carbon Isotope of Benthic Foraminifera at Glacial Periods in the Andaman Sea. Journal of Earth Science, 33(6): 1571–1582. https://doi.org/10.1007/s12583-022-1750-x |
Chang, C., Hu, W. X., Wang, X. L., et al., 2017. Carbon Isotope Stratigraphy of the Lower to Middle Cambrian on the Eastern Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 479: 90–101. https://doi.org/10.1016/j.palaeo.2017.04.019 |
Chavez, F. P., Messié, M., Pennington, J. T., 2011. Marine Primary Production in Relation to Climate Variability and Change. Annual Review of Marine Science, 3: 227–260. https://doi.org/10.1146/annurev.marine.010908.163917 |
Chen, J. T., Chough, S. K., Lee, J. H., et al., 2012. Sequence-Stratigraphic Comparison of the Upper Cambrian Series 3 to Furongian Succession between the Shandong Region, China and the Taebaek Area, Korea: High Variability of Bounding Surfaces in an Epeiric Platform. Geosciences Journal, 16(4): 357–379. https://doi.org/10.1007/s12303-012-0040-5 |
Silva, A. C., Boulvain, F., 2008. Carbon Isotope Lateral Variability in a Middle Frasnian Carbonate Platform (Belgium): Significance of Facies, Diagenesis and Sea-Level History. Palaeogeography, Palaeoclimatology, Palaeoecology, 269(3/4): 189–204. https://doi.org/10.1016/j.palaeo.2008.04.029 |
Derry, L. A., Kaufman, A. J., Jacobsen, S. B., 1992. Sedimentary Cycling and Environmental Change in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochimica et Cosmochimica Acta, 56(3): 1317–1329. https://doi.org/10.1016/0016-7037(92)90064-p |
Dilliard, K. A., Pope, M. C., Coniglio, M., et al., 2007. Stable Isotope Geochemistry of the Lower Cambrian Sekwi Formation, Northwest Territories, Canada: Implications for Ocean Chemistry and Secular Curve Generation. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3/4): 174–194. https://doi.org/10.1016/j.palaeo.2007.02.031 |
Ding, Y., Chen, D. Z., Zhou, X. Q., et al., 2020. Paired δ13Ccarb-δ13Corg Evolution of the Dengying Formation from Northeastern Guizhou and Implications for Stratigraphic Correlation and the Late Ediacaran Carbon Cycle. Journal of Earth Science, 31(2): 342–353. https://doi.org/10.1007/s12583-018-0886-1 |
Edwards, C. T., Saltzman, M. R., 2014. Carbon Isotope (δ13Ccarb) Stratigraphy of the Lower-Middle Ordovician (Tremadocian-Darriwilian) in the Great Basin, Western United States: Implications for Global Correlation. Palaeogeography, Palaeoclimatology, Palaeo-ecology, 399: 1–20. https://doi.org/10.1016/j.palaeo.2014.02.005 |
Fan, R., Deng, S. H., Zhang, X. L., 2011. Significant Carbon Isotope Excursions in the Cambrian and Their Implications for Global Correlations. Science China Earth Sciences, 54(11): 1686–1695. https://doi.org/10.1007/s11430-011-4313-z |
Feng, Z. Z., Peng, Y. M., Jin, Z. K., et al., 2002. Lithofacies Palaeogeography of the Late Cambrian in China. Journal of Palaeogeography, 4(3): 1–10 (in Chinese with English Abstract) |
Gill, B. C., Lyons, T. W., Young, S. A., et al., 2011. Geochemical Evidence for Widespread Euxinia in the Later Cambrian Ocean. Nature, 469(7328): 80–83. https://doi.org/10.1038/nature09700 |
Glumac, B., Mutti, L. E., 2007. Late Cambrian (Steptoean) Sedimentation and Responses to Sea-Level Change along the Northeastern Laurentian Margin: Insights from Carbon Isotope Stratigraphy. Geological Society of America Bulletin, 119(5/6): 623–636. https://doi.org/10.1130/b25897.1 |
Glumac, B., Spivak-Birndorf, M. L., 2002. Stable Isotopes of Carbon as an Invaluable Stratigraphic Tool: An Example from the Cambrian of the Northern Appalachians, USA. Geology, 30(6): 563–566. https://doi.org/10.1130/0091-7613(2002)0300563:siocaa>2.0.co;2 doi: 10.1130/0091-7613(2002)0300563:siocaa>2.0.co;2 |
Guo, Q. J., Strauss, H., Liu, C. Q., et al., 2010. A Negative Carbon Isotope Excursion Defines the Boundary from Cambrian Series 2 to Cambrian Series 3 on the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 285(3/4): 143–151. https://doi.org/10.1016/j.palaeo.2009.11.005 |
Higgins, J. A., Blättler, C. L., Lundstrom, E. A., et al., 2018. Mineralogy, Early Marine Diagenesis, and the Chemistry of Shallow-Water Carbonate Sediments. Geochimica et Cosmochimica Acta, 220: 512–534. https://doi.org/10.1016/j.gca.2017.09.046 |
Howley, R. A., Jiang, G. Q., 2010. The Cambrian Drumian Carbon Isotope Excursion (DICE) in the Great Basin, Western United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(1/2): 138–150. https://doi.org/10.1016/j.palaeo.2010.07.001 |
Immenhauser, A., Della Porta, G., Kenter, J. A. M., et al., 2003. An Alternative Model for Positive Shifts in Shallow-Marine Carbonate δ13C and δ18O. Sedimentology, 50(5): 953–959. https://doi.org/10.1046/j.1365-3091.2003.00590.x |
Jacobsen, S. B., Kaufman, A. J., 1999. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 161(1/2/3): 37–57. https://doi.org/10.1016/s0009-2541(99)00080-7 |
Jones, D. S., Creel, R. C., Rios, B. A., 2016. Carbon Isotope Stratigraphy and Correlation of Depositional Sequences in the Upper Ordovician Ely Springs Dolostone, Eastern Great Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 85–101. https://doi.org/10.1016/j.palaeo.2016.01.036 |
Kaufman, A. J., Jacobsen, S. B., Knoll, A. H., 1993. The Vendian Record of Sr and C Isotopic Variations in Seawater: Implications for Tectonics and Paleoclimate. Earth and Planetary Science Letters, 120(3/4): 409–430. https://doi.org/10.1016/0012-821x(93)90254-7 |
Lan, Z. W., 2022. WANCE: A possibly Volcanism-Induced Ediacaran Caron Isotope Excursion. Journal of Earth Science, 3(3): 778–788. https://doi.org/10.1007/s12583-020-1106-3 |
Liu, B. C., Qi, Y. A., Dai, M. Y., et al., 2021. Benthic Ecosystem Engineer after the Cambrian Explosion: An Example from Henan Province. Earth Science, 46(1): 148–161. https://doi.org/10.3799/dqkx.2019.245 (in Chinese with English Abstract) |
Lu, Y. H., Dong, T. N., 1953. New Review of the Cambrian Stratotype Section, Shantung Province, North China. Acta Geologica Sinica, 32(3): 164–201 (in Chinese) |
Luo, K. L., 1999. The Boundary of the Zhangxia and Gushan Stages with Reference to the Boundary of the Middle and Upper Cambrian of North China. Professional Papers of Stratigraphy and Palaeontology, 27: 95–102 (in Chinese with English Abstract) |
Maloof, A. C., Schrag, D. P., Crowley, J. L., et al., 2005. An Expanded Record of Early Cambrian Carbon Cycling from the Anti-Atlas Margin, Morocco. Canadian Journal of Earth Sciences, 42(12): 2195–2216. https://doi.org/10.1139/e05-062 |
Mattei, F., Franceschini, S., Scardi, M., 2018. A Depth-Resolved Artificial Neural Network Model of Marine Phytoplankton Primary Production. Ecological Modelling, 382: 51–62. https://doi.org/10.1016/j.ecolmodel.2018.05.003 |
Mei, M. X., Ma, Y. S., Deng, J., et al., 2005. From Cycles to Sequences: Sequence Stratigraphy and Relative Sea Level Change for the Late Cambrian of the North China Platform. Acta Geologica Sinica—English Edition, 79(3): 372–383. https://doi.org/10.1111/j.1755-6724.2005.tb00902.x |
Meng, X. H., Ge, M., Tucker, M. E., 1997. Sequence Sequence Stratigraphy, Sea-Level Changes and Depositional Systems in the Cambro-Ordovician of the North China Carbonate Platform. Sedimentary Geology, 114(1/2/3/4): 189–222. https://doi.org/10.1016/S0037-0738(97)00073-0 |
Metzger, J. G., Fike, D. A., 2013. Techniques for Assessing Spatial Heterogeneity of Carbonate δ13C Values: Implications for Craton-Wide Isotope Gradients. Sedimentology, 60(6): 1405–1431. https://doi.org/10.1111/sed.12033 |
Montañez, I. P., Osleger, D. A., Banner, J. L., et al., 2000. Evolution of the Sr and C Isotope Composition of Cambrian Oceans. GSA Today, 10(5): 1–5 |
Ng, T. W., Yuan, J. L., Lin, J. P., 2014a. The North China Steptoean Positive Carbon Isotope Excursion and Its Global Correlation with the Base of the Paibian Stage (Early Furongian Series), Cambrian. Lethaia, 47(2): 153–164. https://doi.org/10.1111/let.12027 |
Ng, T. W., Yuan, J. L., Lin, J. P., 2014b. The North China Steptoean Positive Carbon Isotope Event: New Insights towards Understanding a Global Phenomenon. Geobios, 47(6): 371–387. https://doi.org/10.1016/j.geobios.2014.09.003 |
Pagès, A., Schmid, S., 2016. Euxinia Linked to the Cambrian Drumian Carbon Isotope Excursion (DICE) in Australia: Geochemical and Chemostratigraphic Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 461: 65–76. https://doi.org/10.1016/j.palaeo.2016.08.008 |
Pei, F., 2000. Division and Correlation of the North China Type Cambrian Biostratigraphic Units of Henan Province. Henan Geology, 18(2): 97–106 (in Chinese with English Abstract) |
Peng, S. C., Zhu, X. J., Zuo, J. X., et al., 2011. Recently Ratified and Proposed Cambrian Global Standard Stratotype-Section and Points. Acta Geologica Sinica—English Edition, 85(2): 296–308. https://doi.org/10.1111/j.1755-6724.2011.00399.x |
Saltzman, M. R., Cowan, C. A., Runkel, A. C., et al., 2004. The Late Cambrian Spice (13C) Event and the Sauk Ⅱ-SAUK Ⅲ Regression: New Evidence from Laurentian Basins in Utah, Iowa, and Newfoundland. Journal of Sedimentary Research, 74(3): 366–377. https://doi.org/10.1306/120203740366 |
Saltzman, M. R., Ripperdan, R. L., Brasier, M. D., et al., 2000. A Global Carbon Isotope Excursion (SPICE) during the Late Cambrian: Relation to Trilobite Extinctions, Organic-Matter Burial and Sea Level. Palaeogeography, Palaeoclimatology, Palaeoecology, 162(3/4): 211–223. https://doi.org/10.1016/s0031-0182(00)00128-0 |
Saltzman, M. R., Runnegar, B., Lohmann, K. C., 1998. Carbon Isotope Stratigraphy of Upper Cambrian (Steptoean Stage) Sequences of the Eastern Great Basin: Record of a Global Oceanographic Event. Geological Society of America Bulletin, 110(3): 285–297. https://doi.org/10.1130/0016-7606(1998)1100285:cisouc>2.3.co;2 doi: 10.1130/0016-7606(1998)1100285:cisouc>2.3.co;2 |
Schmid, S., 2017. Chemostratigraphy and Palaeo-Environmental Characterisation of the Cambrian Stratigraphy in the Amadeus Basin, Australia. Chemical Geology, 451: 169–182. https://doi.org/10.1016/j.chemgeo.2017.01.019 |
Shi, X. Y., Mei, S. L., Chen, J. Q., et al., 1999. Cambrian Sequence Stratigraphy and Sea-Level Cycles of North China Platform. Journal of China University of Geosciences, 10(2): 110–118 |
Sial, A. N., Peralta, S., Ferreira, V. P., et al., 2008. Upper Cambrian Carbonate Sequences of the Argentine Precordillera and the Steptoean C-Isotope Positive Excursion (SPICE). Gondwana Research, 13(4): 437–452. https://doi.org/10.1016/j.gr.2007.05.001 |
Stephens, N. P., Sumner, D. Y., 2003. Late Devonian Carbon Isotope Stratigraphy and Sea Level Fluctuations, Canning Basin, Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 191(2): 203–219. https://doi.org/10.1016/s0031-0182(02)00714-9 |
Swart, P. K., Oehlert, A. M., 2018. Revised Interpretations of Stable C and O Patterns in Carbonate Rocks Resulting from Meteoric Diagenesis. Sedimentary Geology, 364: 14–23. https://doi.org/10.1016/j.sedgeo. 2017.12.005 doi: 10.1016/j.sedgeo.2017.12.005 |
Woods, M. A., Wilby, P. R., Leng, M. J., et al., 2011. The Furongian (Late Cambrian) Steptoean Positive Carbon Isotope Excursion (SPICE) in Avalonia. Journal of the Geological Society, 168(4): 851–862. https://doi.org/10.1144/0016-76492010-111 |
Wotte, T., Álvaro, J. J., Shields, G. A., et al., 2007. C-, O- and Sr-Isotope Stratigraphy across the Lower-Middle Cambrian Transition of the Cantabrian Zone (Spain) and the Montagne Noire (France), West Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(1/2): 47–70. https://doi.org/10.1016/j.palaeo.2007.09.002 |
Wu, Z., Liu, B., Escher, P., et al., 2018. Carbon Diagenesis in Different Sedimentary Environments of the Subtropical Beibu Gulf, South China Sea. Journal of Marine Systems, 186: 68–84. https://doi.org/10.1016/j.jmarsys.2018.06.002 |
Xiang, L. W., Nan, R. S., Guo, Z. M., et al., 1981. Stratigraphy of China, the Cambrian System of China. Geological Publishing House, Beijing. 198 (in Chinese) |
Yuan, J. L., Li, Y., Mu, X. N., et al., 2012. Trilobite Fauna of the Changhia Formation (Cambrian Series 3) from Shandong and Adjacent Area, North China. Science Press, Beijing. 1–758 (in Chinese) |
Yuan, J. L., Li, Y., Mu, X. N., et al., 2000. Biostratigraphy of Trilobites from Changhia Stage (Late Middle Cambrian) in Shandong. Journal of Stratigraphy, 24(2): 136–143 (in Chinese, with English Abstract) |
Zhang, M. S., Peng, X. D., 1998. New Trilobites from the Upper Cambrian Changshan Formation of Shandong and Liaoning. Journal of Changchun University of Science and Technology, 28(3): 241–246 (in Chinese with English Abstract) |
Zhang, W. T., 1963. A Classification of the Lower and Middle Cambrian Trilobites from North and Northeastern China, with Description of New Families and Genera. Acta Palaeontologica Sinica, 11(4): 447–491, 616. https://doi.org/10.19800/j.cnki.aps.1963.04.001 (in Chinese) |
Zhou, X. B., Li, J. H., Wang, H. H., et al., 2014. Reconstruction of Cambrian Global Paleo-Plates and Paleogeography. Marine Origin Petroleum Geology, 19(2): 1–7 (in Chinese with English Abstract) |
Zhu, G., Liu, C., Gu, C. C., et al., 2018. Oceanic Plate Subduction History in the Western Pacific Ocean: Constraint from Late Mesozoic Evolution of the Tan-Lu Fault Zone. Science China Earth Sciences, 61(4): 386–405. https://doi.org/10.1007/s11430-017-9136-4 |
Zhu, M. Y., Babcock, L. E., Peng, S. C., 2006. Advances in Cambrian Stratigraphy and Paleontology: Integrating Correlation Techniques, Paleobiology, Taphonomy and Paleoenvironmental Reconstruction. Palaeoworld, 15(3/4): 217–222.https://doi.org/10.1016/j.palwor. 2006.10.016 doi: 10.1016/j.palwor.2006.10.016 |
Zhu, M. Y., Zhang, J. M., Li, G. X., et al., 2004. Evolution of C Isotopes in the Cambrian of China: Implications for Cambrian Subdivision and Trilobite Mass Extinctions. Geobios, 37(2): 287–301. https://doi.org/10.1016/j.geobios.2003.06.001 |
Zhu, Z. L., Xiang, L. W., Zhang, S. G., et al., 2005. New Advance in the Study of the Upper Cambrian Kushanian Stage of North China. Journal of Stratigraphy, 29(S1): 462–466, 655. https://doi.org/10.19839/j.cnki.dcxzz.2005.s1.011 (in Chinese with English Abstract) |
Zuo, J. X., Peng, S. C., Qi, Y. P., et al., 2018. Carbon-Isotope Excursions Recorded in the Cambrian System, South China: Implications for Mass Extinctions and Sea-Level Fluctuations. Journal of Earth Science, 29(3): 479–491. https://doi.org/10.1007/s12583-017-0963-x |
Zuo, J. X., Zhu, X. J., Fang, H. B., Chen, Y. L., 2020. Carbon Isotope Trend across the Base of Furongian Series of Cambrian, Northern Henan, North China. Earth Science, 45(3): 728–738. https://doi.org/10.3799/dqke.2019.017 (in Chinese with English Abstract) |