Aikman, A. B., Harrison, T. M., Lin, D., 2008. Evidence for Early (> 44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1/2): 14-23. https://doi.org/10.1016/j.epsl.2008.06.038 |
Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67-95. https://doi.org/10.1016/s0377-0273(00)00182-7 |
Bennett, V. C., Esat, T. M., Norman, M. D., 1996. Two Mantle-Plume Components in Hawaiian Picrites Inferred from Correlated Os-Pb Isotopes. Nature, 381(6579): 221-224. https://doi.org/10.1038/381221a0 |
Bhat, M. I., 1984. Abor Volcanics: Further Evidence for the Birth of the Tethys Ocean in the Himalayan Segment. Journal of the Geological Society, 141(4): 763-775. https://doi.org/10.1144/gsjgs.141.4.0763 |
Bienvenu, P., Bougault, H., Joron, J. L., et al., 1990. MORB Alteration: Rare-Earth Element/Non-Rare-Earth Hygromagmaphile Element Fractionation. Chemical Geology, 82: 1-14. https://doi.org/10.1016/0009-2541(90)90070-n |
Cai, F. L., Ding, L., Laskowski, A. K., et al., 2016. Late Triassic Paleogeographic Reconstruction along the Neo-Tethyan Ocean Margins, Southern Tibet. Earth and Planetary Science Letters, 435: 105-114. https://doi.org/10.1016/j.epsl.2015.12.027 |
Canil, D., 1999. Vanadium Partitioning between Orthopyroxene, Spinel and Silicate Melt and the Redox States of Mantle Source Regions for Primary Magmas. Geochimica et Cosmochimica Acta, 63(3/4): 557-572. https://doi.org/10.1016/s0016-7037(98)00287-7 |
Chauvet, F., Lapierre, H., Bosch, D., et al., 2008. Geochemistry of the Panjal Traps Basalts (NW Himalaya): Records of the Pangea Permian Break-up. Bulletin de la Société Géologique de France, 179(4): 383-395. https://doi.org/10.2113/gssgfbull.179.4.383 |
Dai, J. G., Yin, A., Liu, W. C., et al., 2008. Nd Isotopic Compositions of the Tethyan Himalayan Sequence in Southeastern Tibet. Science in China Series D: Earth Sciences, 51(9): 1306-1316. https://doi.org/10.1007/s11430-008-0103-7 |
Diedesch, T. F., Jessup, M. J., Cottle, J. M., et al., 2016. Tectonic Evolution of the Middle Crust in Southern Tibet from Structural and Kinematic Studies in the Lhagoi Kangri Gneiss Dome. Lithosphere, 8(5): 480-504. https://doi.org/10.1130/l506.1 |
Ellam, R. M., Carlson, R. W., Shirey, S. B., 1992. Evidence from Re-Os Isotopes for Plume-Lithosphere Mixing in Karoo Flood Basalt Genesis. Nature, 359(6397): 718-721. https://doi.org/10.1038/359718a0 |
Ewart, A., Marsh, J. S., Milner, S. C., et al., 2004. Petrology and Geochemistry of Early Cretaceous Bimodal Continental Flood Volcanism of the NW Etendeka, Namibia. Part 2: Characteristics and Petrogenesis of the High-Ti Latite and High-Ti and Low-Ti Voluminous Quartz Latite Eruptives. Journal of Petrology, 45: 107-138. https://doi.org/10.1093/petrology/egg082 |
Frey, F. A., Coffin, M. F., Wallace, P. J., et al., 2000. Origin and Evolution of a Submarine Large Igneous Province: The Kerguelen Plateau and Broken Ridge, Southern Indian Ocean. Earth and Planetary Science Letters, 176(1): 73-89. https://doi.org/10.1016/s0012-821x(99)00315-5 |
Frey, F. A., McNaughton, N. J., Nelson, D. R., et al., 1996. Petrogenesis of the Bunbury Basalt, Western Australia: Interaction between the Kerguelen Plume and Gondwana Lithosphere?. Earth and Planetary Science Letters, 144(1/2): 163-183. https://doi.org/10.1016/0012-821x(96)00150-1 |
Frey, F. A., Pringle, M., Meleney, P., et al., 2011. Diverse Mantle Sources for Ninetyeast Ridge Magmatism: Geochemical Constraints from Basaltic Glasses. Earth and Planetary Science Letters, 303(3/4): 215-224. https://doi.org/10.1016/j.epsl.2010.12.051 |
Gao, L. E., Zeng, L. S., Hu, G. Y., et al., 2019. Rare Metal Enrichment in Leucogranite within Nariyongcuo Gneiss Dome, South Tibet. Earth Science, 44(6): 1860-1875. https://doi.org/10.3799/dqkx.2018.390(in Chinese with English Abstract) |
Garzanti, E., 1993. Himalayan Ironstones, "Superplumes", and the Breakup of Gondwana. Geology, 21(2): 105-108. https://doi.org/10.1130/0091-7613(1993)0210105:hisatb>2.3.co;2 doi: 10.1130/0091-7613(1993)0210105:hisatb>2.3.co;2 |
Garzanti, E., 1999. Stratigraphy and Sedimentary History of the Nepal Tethys Himalaya Passive Margin. Journal of Asian Earth Sciences, 17(5/6): 805-827. https://doi.org/10.1016/s1367-9120(99)00017-6 |
Ghiorso, M. S., Sack, R. O., 1995. Chemical Mass Transfer in Magmatic Processes Ⅳ. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contributions to Mineralogy and Petrology, 119(2): 197-212. https://doi.org/10.1007/bf00307281 |
Gibson, S. A., Thompson, R. N., Dickin, A. P., et al., 1995. High-Ti and Low-Ti Mafic Potassic Magmas: Key to Plume-Lithosphere Interactions and Continental Flood-Basalt Genesis. Earth and Planetary Science Letters, 136(3/4): 149-165. https://doi.org/10.1016/0012-821x(95)00179-g |
Gibson, S. A., Thompson, R. N., Dickin, A. P., et al., 1996. Erratum to "High-Ti and Low-Ti Mafic Potassic Magmas: Key to Plume-Lithosphere Interactions and Continental Flood-Basalt Genesis". Earth and Planetary Science Letters, 141(1/2/3/4): 325-341. https://doi.org/10.1016/0012-821x(96)00041-6 |
Herzberg, C., Asimow, P. D., 2015. PRIMELT3 MEGA. XLSM Software for Primary Magma Calculation: Peridotite Primary Magma MgO Contents from the Liquidus to the Solidus. Geochemistry, Geophysics, Geosystems, 16(2): 563-578. https://doi.org/10.1002/2014gc005631 |
Herzberg, C., Asimow, P. D., Arndt, N., et al., 2007. Temperatures in Ambient Mantle and Plumes: Constraints from Basalts, Picrites, and Komatiites. Geochemistry, Geophysics, Geosystems, 8(2): Q02006. https://doi.org/10.1029/2006gc001390 |
Hofmann, A. W., Jochum, K. P., Seufert, M., et al., 1986. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters, 79(1/2): 33-45. https://doi.org/10.1016/0012-821x(86)90038-5 |
Hofmann, A. W., White, W. M., 1982. Mantle Plumes from Ancient Oceanic Crust. Earth and Planetary Science Letters, 57(2): 421-436. https://doi.org/10.1016/0012-821x(82)90161-3 |
Horan, M. F., Walker, R. J., Fedorenko, V. A., et al., 1995. Osmium and Neodymium Isotopic Constraints on the Temporal and Spatial Evolution of Siberian Flood Basalt Sources. Geochimica et Cosmochimica Acta, 59(24): 5159-5168. https://doi.org/10.1016/0016-7037(96)89674-8 |
Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. LA-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications Acta Petrologica Sinica, 23(10): 2595-2604. https://doi.org/10.1631/jzus.2007.b0900(in Chinese with English Abstract) |
Ichiyama, Y., Ishiwatari, A., Koizumi, K., 2008. Petrogenesis of Greenstones from the Mino-Tamba Belt, SW Japan: Evidence for an Accreted Permian Oceanic Plateau. Lithos, 100(1/2/3/4): 127-146. https://doi.org/10.1016/j.lithos.2007.06.014 |
Jackson, M. G., Dasgupta, R., 2008. Compositions of HIMU, EM1, and EM2 from Global Trends between Radiogenic Isotopes and Major Elements in Ocean Island Basalts. Earth and Planetary Science Letters, 276(1/2): 175-186. https://doi.org/10.1016/j.epsl.2008.09.023 |
Jackson, M. G., Hart, S. R., 2006. Strontium Isotopes in Melt Inclusions from Samoan Basalts: Implications for Heterogeneity in the Samoan Plume. Earth and Planetary Science Letters, 245(1/2): 260-277. https://doi.org/10.1016/j.epsl.2006.02.040 |
Jackson, M. G., Weis, D., Huang, S. C., 2012. Major Element Variations in Hawaiian Shield Lavas: Source Features and Perspectives from Global Ocean Island Basalt (OIB) Systematics. Geochemistry, Geophysics, Geosystems, 13(9): Q09009. https://doi.org/10.1029/2012gc004268 |
Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017 |
Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2016. Eocene Neo-Tethyan Slab Breakoff Constrained by 45 Ma Oceanic Island Basalt-Type Magmatism in Southern Tibet. Geology, 44(4): 283-286. https://doi.org/10.1130/g37612.1 |
Kent, W., Saunders, A. D., Kempton, P. D., et al., 1997. Rajmahal Basalts, Eastern India: Mantle Sources and Melt Distribution at a Volcanic Rifted Margin. In: Mahoney, J.J., Coffin, M.F., eds., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union, Washington, D.C. 100: 145-182. https://doi.org/10.1029/gm100p0145 |
Klein, E. M., Karsten, J. L., 1995. Ocean-Ridge Basalts with Convergent-Margin Geochemical Affinities from the Chile Ridge. Nature, 374(6517): 52-57. https://doi.org/10.1038/374052a0 |
Kogiso, T., Hirose, K., Takahashi, E., 1998. Melting Experiments on Homogeneous Mixtures of Peridotite and Basalt: Application to the Genesis of Ocean Island Basalts. Earth and Planetary Science Letters, 162(1/2/3/4): 45-61. https://doi.org/10.1016/s0012-821x(98)00156-3 |
Kogiso, T., Hirschmann, M. M., Frost, D. J., 2003. High-Pressure Partial Melting of Garnet Pyroxenite: Possible Mafic Lithologies in the Source of Ocean Island Basalts. Earth and Planetary Science Letters, 216(4): 603-617. https://doi.org/10.1016/s0012-821x(03)00538-7 |
Kogiso, T., Hirschmann, M. M., Pertermann, M., 2004. High-Pressure Partial Melting of Mafic Lithologies in the Mantle. Journal of Petrology, 45(12): 2407-2422. https://doi.org/10.1093/petrology/egh057 |
Lai, S. C., Qin, J. F., Li, Y. F., et al., 2012. Permian High Ti/Y Basalts from the Eastern Part of the Emeishan Large Igneous Province, Southwestern China: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 47: 216-230. https://doi.org/10.1016/j.jseaes.2011.07.010 |
Lassiter, J. C., Depaolo, D. J., Mahoney, J. J., 1995. Geochemistry of the Wrangellia Flood Basalt Province: Implications for the Role of Continental and Oceanic Lithosphere in Flood Basalt Genesis. Journal of Petrology, 36(4): 983-1009. https://doi.org/10.1093/petrology/36.4.983 |
Li, G. W., Liu, X. H., Alex, P., et al., 2010. In-situ Detrital Zircon Geochronology and Hf Isotopic Analyses from Upper Triassic Tethys Sequence Strata. Earth and Planetary Science Letters, 297(3/4): 461-470. https://doi.org/10.1016/j.epsl.2010.06.050 |
Liu, G. H., Einsele, G., 1994. Sedimentary History of the Tethyan Basin in the Tibetan Himalayas. Geologische Rundschau, 83: 32-61. https://doi.org/10.1007/bf00211893 |
Liu, Y. Q., Ji, Q., Jiang, X. J., et al., 2013. U-Pb Zircon Ages of Early Cretaceous Volcanic Rocks in the Tethyan Himalaya at Yangzuoyong Co Lake, Nagarze, Southern Tibet, and Implications for the Jurassic/Cretaceous Boundary. Cretaceous Research, 40: 90-101. https://doi.org/10.1016/j.cretres.2012.05.010 |
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 |
Liu, Z., Zhou, Q., Lai, Y., et al., 2015. Petrogenesis of the Early Cretaceous Laguila Bimodal Intrusive Rocks from the Tethyan Himalaya: Implications for the Break-up of Eastern Gondwana. Lithos, 236/237: 190-202. https://doi.org/10.1016/j.lithos.2015.09.006 |
Ludden, J. N., Thompson, G., 1978. Behaviour of Rare Earth Elements during Submarine Weathering of Tholeiitic Basalt. Nature, 274(5667): 147-149. https://doi.org/10.1038/274147a0 |
Ludwig, K.R., 2003. ISOPLOT: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. 4: 71 |
Mallmann, G., O'Neill, H. S. C., 2009. The Crystal/Melt Partitioning of V during Mantle Melting as a Function of Oxygen Fugacity Compared with some other Elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50(9): 1765-1794. https://doi.org/10.1093/petrology/egp053 |
Mallmann, G., O'Neill, H. S. C., 2013. Calibration of an Empirical Thermometer and Oxybarometer Based on the Partitioning of Sc, Y and V between Olivine and Silicate Melt. Journal of Petrology, 54(5): 933-949. https://doi.org/10.1093/petrology/egt001 |
McCulloch, M. T., Gregory, R. T., Wasserburg, G. J., et al., 1981. Sm-Nd, Rb-Sr, and 18O/16O Isotopic Systematics in an Oceanic Crustal Section: Evidence from the Samail Ophiolite. Journal of Geophysical Research: Solid Earth, 86(B4): 2721-2735. https://doi.org/10.1029/jb086ib04p02721 |
McKenzie, D., O'Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021 |
Nasdala, L., Hofmeister, W., Norberg, N., et al., 2008. Zircon M257-A Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostandards and Geoanalytical Research, 32(3): 247-265. https://doi.org/10.1111/j.1751-908x.2008.00914.x |
Neal, C. R., Mahoney, J. J., Chazey, W. J., 2002. Mantle Sources and the Highly Variable Role of Continental Lithosphere in Basalt Petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183. Journal of Petrology, 43(7): 1177-1205. https://doi.org/10.1093/petrology/43.7.1177 |
Nielsen, R. L., Gallahan, W. E., Newberger, F., 1992. Experimentally Determined Mineral-Melt Partition Coefficients for Sc, Y and REE for Olivine, Orthopyroxene, Pigeonite, Magnetite and Ilmenite. Contributions to Mineralogy and Petrology, 110(4): 488-499. https://doi.org/10.1007/bf00344083 |
Peate, D. W., Hawkesworth, C. J., Mantovani, M. S. M., 1992. Chemical Stratigraphy of the Paraná Lavas (South America): Classification of Magma Types and Their Spatial Distribution. Bulletin of Volcanology, 55(1/2): 119-139. https://doi.org/10.1007/bf00301125 |
Ren, Z. Y., Wu, Y. D., Zhang, L., et al., 2017. Primary Magmas and Mantle Sources of Emeishan Basalts Constrained from Major Element, Trace Element and Pb Isotope Compositions of Olivine-Hosted Melt Inclusions. Geochimica et Cosmochimica Acta, 208: 63-85. https://doi.org/10.1016/j.gca.2017.01.054 |
Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. John Wiley & Sons, New York. 108-352. https://doi.org/10.1016/0016-7037(95)90141-8 |
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crust. Elsevier, Amsterdam. 1-64 |
Shaw, D. M., 1970. Trace Element Fractionation during Anatexis. Geochimica et Cosmochimica Acta, 34(2): 237-243. https://doi.org/10.1016/0016-7037(70)90009-8 |
Shellnutt, J. G., Jahn, B. M., 2011. Origin of Late Permian Emeishan Basaltic Rocks from the Panxi Region (SW China): Implications for the Ti-Classification and Spatial-Compositional Distribution of the Emeishan Flood Basalts. Journal of Volcanology and Geothermal Research, 199(1/2): 85-95. https://doi.org/10.1016/j.jvolgeores.2010.10.009 |
Shi, Y. R., Hou, C. Y., Anderson, J. L., et al., 2018. Zircon SHRIMP U-Pb Age of Late Jurassic OIB-Type Volcanic Rocks from the Tethyan Himalaya: Constraints on the Initial Activity Time of the Kerguelen Mantle Plume. Acta Geochimica, 37(3): 441-455. https://doi.org/10.1007/s11631-017-0239-2 |
Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon-A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 |
Smith, P. M., Asimow, P. D., 2005. Adiabat_1ph: A New Public Front-End to the MELTS, pMELTS, and pHMELTS Models. Geochemistry, Geophysics, Geosystems, 6(2): Q02004. https://doi.org/10.1029/2004gc000816 |
Smith, R. E., Smith, S. E., 1976. Comments on the Use of Ti, Zr, Y, Sr, K, P and Nb in Classification of Basaltic Magmas. Earth and Planetary Science Letters, 32(2): 114-120. https://doi.org/10.1016/0012-821x(76)90049-2 |
Sobolev, A. V., Hofmann, A. W., Kuzmin, D. V., et al., 2007. The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science, 316(5823): 412-417. https://doi.org/10.1126/science.1138113 |
Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., et al., 2005. An Olivine-Free Mantle Source of Hawaiian Shield Basalts. Nature, 434(7033): 590-597. https://doi.org/10.1038/nature03411 |
Staudigel, H., Plank, T., White, B., et al., 1996. Geochemical Fluxes during Seafloor Alteration of the Basaltic Upper Oceanic Crust: DSDP Sites 417 and 418. In: Bebout, G. E., Scholl, S. W., et al., eds., Subduction Top to Bottom. American Geophysical Union, Washington, D.C. 96: 19-38. https://doi.org/10.1029/gm096p0019 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
Tian, Y. H., Gong, J. F., Chen, H. L., et al., 2019. Early Cretaceous Bimodal Magmatism in the Eastern Tethyan Himalayas, Tibet: Indicative of Records on Precursory Continental Rifting and Initial Breakup of Eastern Gondwana. Lithos, 324/325: 699-715. https://doi.org/10.1016/j.lithos.2018.12.001 |
Toplis, M. J., Corgne, A., 2002. An Experimental Study of Element Partitioning between Magnetite, Clinopyroxene and Iron-Bearing Silicate Liquids with Particular Emphasis on Vanadium. Contributions to Mineralogy and Petrology, 144(1): 22-37. https://doi.org/10.1007/s00410-002-0382-5 |
Vannay, J. C., Spring, L., 1993. Geochemistry of the Continental Basalts within the Tethyan Himalaya of Lahul-Spiti and SE Zanskar, Northwest India. Geological Society, London, Special Publications, 74(1): 237-249. https://doi.org/10.1144/gsl.sp.1993.074.01.17 |
Walker, R. J., Morgan, J. W., Horan, M. F., 1995. Osmium-187 Enrichment in Some Plumes: Evidence for Core-Mantle Interaction?. Science, 269(5225): 819-822. https://doi.org/10.1126/science.269.5225.819 |
Walker, R. J., Prichard, H. M., Ishiwatari, A., et al., 2002. The Osmium Isotopic Composition of Convecting Upper Mantle Deduced from Ophiolite Chromites. Geochimica et Cosmochimica Acta, 66(2): 329-345. https://doi.org/10.1016/s0016-7037(01)00767-0 |
Walker, R. J., Storey, M., Kerr, A. C., et al., 1999. Implications of 187Os Isotopic Heterogeneities in a Mantle Plume: Evidence from Gorgona Island and Curaçao. Geochimica et Cosmochimica Acta, 63(5): 713-728. https://doi.org/10.1016/s0016-7037(99)00041-1 |
Walter, M. J., 1998. Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere. Journal of Petrology, 39(1): 29-60. https://doi.org/10.1093/petroj/39.1.29 |
Wang, C. Y., Zhou, M. F., Qi, L., 2007. Permian Flood Basalts and Mafic Intrusions in the Jinping (SW China)-Song Da (Northern Vietnam) District: Mantle Sources, Crustal Contamination and Sulfide Segregation. Chemical Geology, 243(3/4): 317-343. https://doi.org/10.1016/j.chemgeo.2007.05.017 |
Wang, Y. Y., Gao, L. E., Chen, F. K., et al., 2016. Multiple Phases of Cretaceous Mafic Magmatism in the Gyangze-Kangma Area, Tethyan Himalaya, Southern Tibet. Acta Petrologica Sinica, 32: 3572-3596 (in Chinese with English Abstract) |
Wang, Y. Y., Zeng, L. S., Asimow, P. D., et al., 2018. Early Cretaceous High-Ti and Low-Ti Mafic Magmatism in Southeastern Tibet: Insights into Magmatic Evolution of the Comei Large Igneous Province. Lithos, 296/297/298/299: 396-411. https://doi.org/10.1016/j.lithos.2017.11.014 |
White, W. M., 2015. Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology, 419: 10-28. https://doi.org/10.1016/j.chemgeo.2015.09.026 |
Williams, H., Turner, S., Kelley, S., et al., 2001. Age and Composition of Dikes in Southern Tibet: New Constraints on the Timing of East-West Extension and Its Relationship to Postcollisional Volcanism. Geology, 29(4): 339-342. https://doi.org/10.1130/0091-7613(2001)0290339:aacodi>2.0.co;2 doi: 10.1130/0091-7613(2001)0290339:aacodi>2.0.co;2 |
Xia, Y., Zhu, D. C., Wang, Q., et al., 2014. Picritic Porphyrites and Associated Basalts from the Remnant Comei Large Igneous Province in SE Tibet: Records of Mantle-Plume Activity. Terra Nova, 26(6): 487-494. https://doi.org/10.1111/ter.12124 |
Xiao, L., Xu, Y. G., Mei, H. J., et al., 2004. Distinct Mantle Sources of Low-Ti and High-Ti Basalts from the Western Emeishan Large Igneous Province, SW China: Implications for Plume-Lithosphere Interaction. Earth and Planetary Science Letters, 228(3/4): 525-546. https://doi.org/10.1016/j.epsl.2004.10.002 |
Xu, Y. G., Chung, S. L., Jahn, B. M., et al., 2001. Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58(3/4): 145-168. https://doi.org/10.1016/s0024-4937(01)00055-x |
Xu, Y. G., He, B., Chung, S. L., et al., 2004. Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood-Basalt Province. Geology, 32(10): 917-920. https://doi.org/10.1130/g20602.1 |
Zeng, L. S., Gao, L. E., He, K. J., et al., 2012a. Multiple Mafic Magmatic Events along the Tethyan Himalaya: Tracing the Life-Time of the Neo-Tethyan Ocean. Acta Geoscientica Sinica, 33: 72-73 (in Chinese with English Abstract) |
Zeng, L. S., Gao, L. E., Hou, K. J., et al., 2012b. Late Permian Mafic Magmatism along the Tethyan Himalaya Belt, Southern Tibet and Tectonic Implications. Acta Petrologica Sinica, 28: 1731-1740 (in Chinese with English Abstract) |
Zeng, L. S., Gao, L. E., Shang, Z., et al., 2015a. The Metamorphism in Mafic Dike Swarms from Eocene to Oligocene within the Tethyan Himalaya, Southern Tibet. Acta Geologica Sinica, 89: 309-312 (in Chinese with English Abstract) doi: 10.1111/1755-6724.12417 |
Zeng, L. S., Gao, L. E., Tang, S. H., et al., 2015b. Eocene Magmatism in the Tethyan Himalaya, Southern Tibet. Geological Society, London, Special Publications, 412(1): 287-316. https://doi.org/10.1144/sp412.8 |
Zeng, L. S., Wang, Y. H., Gao, L. E., et al., 2016. Elusive Cenozoic Metamorphism in Mafic Dike Swarms within the Tethyan Himalaya, Southern Tibet. Acta Geologica Sinica, 90: 86-97 (in Chinese with English Abstract) doi: 10.1111/1755-6724.12903 |
Zhou, Q., Liu, Z., Lai, Y., et al., 2018. Petrogenesis of Mafic and Felsic Rocks from the Comei Large Igneous Province, South Tibet: Implications for the Initial Activity of the Kerguelen Plume. GSA Bulletin, 130(5/6): 811-824. https://doi.org/10.1130/b31653.1 |
Zhu, D. C., Chung, S. L., Mo, X. X., et al., 2009. The 132 Ma Comei-Bunbury Large Igneous Province: Remnants Identified in Present-Day Southeastern Tibet and Southwestern Australia. Geology, 37(7): 583-586. https://doi.org/10.1130/g30001a.1 |
Zhu, D. C., Mo, X. X., Pan, G. T., et al., 2008. Petrogenesis of the Earliest Early Cretaceous Mafic Rocks from the Cona Area of the Eastern Tethyan Himalaya in South Tibet: Interaction between the Incubating Kerguelen Plume and the Eastern Greater India Lithosphere? Lithos, 100(1/2/3/4): 147-173. https://doi.org/10.1016/j.lithos.2007.06.024 |
Zhu, D. C., Pan, G. T., Mo, X. X., et al., 2007. Petrogenesis of Volcanic Rocks in the Sangxiu Formation, Central Segment of Tethyan Himalaya: A Probable Example of Plume-Lithosphere Interaction. Journal of Asian Earth Sciences, 29(2/3): 320-335. https://doi.org/10.1016/j.jseaes.2005.12.004 |